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Abstract

Recent advances in aircraft design and multidisciplinary formulation have
led to new workflows involving many disciplines, ranging up to high levels of
fidelity codes. However, there is still a lack of information about the different
available optimization methods and their efficiency depending on the problem
properties.
Aeronautics design is especially multidisciplinary and, in this context, some
integer or categorical variables could arises such as the number of engine, the
shape of the tail of the type of the wingtip devices. To tackle this class of
problem, some mixed integer multidisciplinary design optimization algorithms
have recently been developed. The framework of this internship is limited to
low-dimension (less than 50) mixed integer optimization and its application
to aeronautic design. The problem will be treated as an expensive black-box
that we try to optimize with as few evaluations as possible.
Firstly, we present an overview of the different types of methods that exists
to solve these problems. Then, to illustrate this optimization framework, a
method based on continuous optimization is presented and was implemented
in an open-source library. Finally, a benchmark of functions was proposed to
validate the method and a preliminary result was then treated on a reference
model of an A320 aircraft design problem.

v



Chapter 1

Introduction

1.1 Description of the host laboratory

This internship was realized at the Institut supérieur de l’aéronautique et de l’espace (ISAE-SUPAERO)
and partly at the Office National d’Etudes et de Recherches Aérospatiales (ONERA) in Toulouse,
France. I was working for the research federation between ENAC, ISAE-SUPAERO and ONERA
in the team XOAD working on Multidisciplinary Design Optimization. The supervisors of this
internship were Joseph Morlier (ISAE/DMSM), Youssef Diouane (ISAE/DISC), Nathalie Bartoli
(ONERA/DTIS) and Thierry Lefebvre (ONERA/DTIS).
ISAE-SUPAERO is an engineering school, it is one of the world leader in higher education in the
field of aerospace engineering. ONERA is the French national aerospace research centre. It is a
public establishment with industrial and commercial operations, and carries out application-oriented
research to support enhanced innovation and competitiveness in the aerospace and defense sectors.
Both institute are managed by the french ministry of armed force.

At ISAE-SUPAERO, I was mostly posted in the Department of Complex Systems Engineering
(DISC), I was also partly involved with the Department of Mechanics, Structures and Materials
(DMSM). The DISC departement of ISAE-SUPAERO develops knowledge in mathematics and com-
puter science for the aerospace industry. In education as in research, it is interested in models,
methods and tools to control the behavior and the performances of complex systems. This complex-
ity may come from the multiphysics or multiscale nature of the systems, their dynamic behavior or
their connected and distributed structure.

At ONERA, I was posted in Département de Traitement de l’Information et Systèmes (DTIS), Unité
Méthodes Multidisciplinaires, Concepts Intégrés (M2CI). M2CI takes advantage of the applications-
methods duality in the field of aerospace vehicle design for:

• On the one hand, developing methods inspired by the needs of applications and validated on
representative cases of these needs.

• On the other hand, proposing and assessing innovative integrated concepts for aircraft or launch
vehicles, the definition of which is improved by the use of appropriate design methods.

The developed methods (optimization algorithms, Multidisciplinay Design Optimization (MDO) for-
mulations, surrogate models, uncertainties management) aim at increasing the number of disciplines
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covered, improving multi-fidelity exploration of the design space, and quantifying uncertainties in
a multidisciplinary framework. From the application viewpoint, the goal is to promote innovative
concept ideas (e.g., hybrid-electric aircraft, reusable winged launch vehicles), from initial exploration
to expert assessment for the benefit of the sector’s manufacturers, including collaborative approaches
at national or European level.

1.2 Context and objectives of the internship

In the context of the European AGILE 4.0 project (https://www.agile4.eu/, 2019-2022), ISAE-
SUPAERO and ONERA proposed an internship related with the application of numerical opti-
mization methods to solve aerospace engineering problems. The AGILE 4.0 project is the AGILE
(https://www.agile-project.eu/, 2015-2018) follow-up project that intended to develop the next gen-
eration of aircraft multidisciplinary design and optimization processes, which target significant re-
ductions in aircraft development costs and time to market, leading to cheaper and greener aircraft
solutions.

The internship is proposed in collaboration with ONERA (the French aerospace lab). AGILE 4.0
significantly extends AGILE’s scope by adding manufacturing, maintenance, and certification aspects
and extending the aircraft product optimization to the entire life cycle and addressing the extensive
aeronautical supply chain. The extension to production and certification domains challenges the
optimization strategies currently in use in the aeronautical world. Therefore one of the ambitions
of AGILE 4.0 is to enhance the AGILE optimization strategies with the capabilities to address a
larger number of heterogeneous disciplines, considering multiple optimization criteria and handling
discrete variables such as a choice of architecture, or a choice of materials.

In the context of this collaborative project, ONERA and ISAE-SUPAERO proposed to extend an
in-house Bayesian optimization (BO) solver to handle mixed continuous/integer/categorical design
variables. The high level target of AGILE is to obtain a significant reduction in development costs
of aircraft through the implementation of a more competitive supply chain at the early stages of
design. This will be reached by practicing research on the project’s four technical objectives.

Notwithstanding the availability of powerful software systems to integrate complex computational
design processes, today there is a lack of quantified knowledge on how optimization workflows involv-
ing many disciplines, ranging up to high levels of fidelity codes, should be set up in the most effective
and efficient way. To this purpose, the first objective of AGILE is the structured development of
advanced multidisciplinary optimization techniques and their integration, reducing the convergence
time in aircraft optimization.

Today’s advanced analysis codes and software tools are mostly discipline-specific and well understood
by disciplinary experts. However, the operation of the system of tools as a whole and the interpreta-
tion of the results are additional challenges in the collaboration between the disciplinary specialists,
and the aircraft generalists. Therefore, the second objective of AGILE is the structured development
of processes and techniques for efficient multisite collaboration in the overall design teams.
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Mastering complex systems highly depends on the exploitation of knowledge. Besides the interaction
of experts, the smart handling of data, information and knowledge using information technologies
offers high potential. Thus; the third objective of AGILE is the structured development of knowledge
enabled information technologies to support interdisciplinary design campaigns. The fourth objective
of AGILE is to develop and publish an Open MDO Test Suite, enabling the access to the project
technologies by other research activities, and providing a reference database for future aircraft con-
figurations research.

ONERA and ISAE developed solvers for efficient global optimization based on surrogate models.
The objective of this internship is threefold:

• First, we aim at implementing new mixed integer surrogate models. These models can be used
for optimization but also for Multidisciplinary Design Analysis, sensitivity analysis...

• Second, the generalization of Efficient Global Optimization (EGO) for expensive mixed integer
black-box optimization.

• Third, this internship can be seen as a preparatory my PhD thesis under the supervision of the
same tutors.

Concretely, this internship allows me:

• To understand the state of the art and the background.

• To do a review of the state-of-the-art methods and include them in my comparison.

• To implement mixed integer metamodels.

• To implement mixed integer Bayesian optimization techniques.

• To test these models and run optimization problems.

• To test a practical aerospace test case.

The rest of this report is organized as follows. First, I will investigate Bayesian optimization existing
methods as well as the background of the current study. My aim is to give a detailed review of the
state-of-the-art methods in order to include them in my numerical comparison. Then, implementation
details regarding the mixed integer metamodels for Bayesian optimization will be given. Last, to the
validation of the implemented approach will be exposed using both academic test cases as well as an
aerospace application.
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Chapter 2

State of the art

2.1 The Aircraft Optimization Framework

Aeronautic design is a complex system and, as such, is highly multidisciplinary [1]. Therefore, to
find an acceptable aircraft, many disciplines should be balanced together as Aerodynamics, Struc-
ture, Geometry, Performance, Weight, Dynamic Stability,... This part is called Multidisciplinary
Design Analysis (MDA). Once we have a good balanced aircraft design after MDA, it can be opti-
mize by modyfing inputs. This optimization process is called Multidisciplinary design optimization
(MDO) [2]. Therefore, when we modify the Design variables inputs to find a better aircraft according
to an objective, we should balanced it another time to have a new balanced aircraft that we expect
to be better according to an objective [3].

Figure 2.1: Multidisciplinary Design Analysis and Optimization diagram [4]

Figure 2.1 shows the MDO/MDA process. After, in this report, the MDA process will be considered
by the MDO process as an expensive black-box to optimize [5].
Let f(x) be the value of objective function evaluated through the MDA black-box and ∀i ∈ {1 . . . q} gi(x)
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be the values of the q constraints functions. Assuming the variables x are continuous, the optimiza-
tion problem is:

minimize
x ∈ Rk

f(x)

subject to ∀i gi(x) ≤ 0
(2.1)

To begin with, we will talked about Efficient Global Optimization (EGO) to solve the problem
(2.1) without constraints (excepted when it is explicitly mentioned that we are talking about the
constrained case). The goal of EGO is to solve Equation (2.1) with the fewest possible evaluation
points f(x) of an expensive black-box [6].
In a second part, we will talked about the extension of EGO to mixed integer problem where the
variables in the problem could also be integers or categorical variables.

2.2 Efficient Global Optimization

In Efficient Global Optimization (EGO) of Black-Box Functions [6], Jones et al. were among the
first to adapt a whole model of bayesian kriging to optimize expensive to evaluate black boxes,
globally and without differentiation (based on preliminary results of Močkus [7]). Stochastic global
optimization methods are used to adjust response surfaces models (RSM) from a set of initial point
picked up from a specific pattern (Design of Experiments) [8, 9, 10].

Figure 2.2: A response surface model (right) built from a given Design of Experiments (left).

Figure 2.2 represents a model explaining the values of chosen points. This is a 2D example of a
model with second-degree polynomial for a augmented full factorial Design of Experiments (DoE) of
250 points.
Consequently, the model is exact on the known point but approximative everywhere else. Thereafter,
one will seek to construct a model interpolating our DoE based on stochastic processes. This will
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allow us to obtain a mean response hypersurface with a pointwise estimation of the variance. The
calibration of stochastic processes to a Design of Experiments is called kriging.
We will consider that our unknown black-box functional "f(.)" is a realization of an underlying
distribution of zero mean (or µ, µ̂, µ̂(x)) and of covariance function k(x, x′): f(.) ∼ GP (0, k(., .)).

Figure 2.3: 1D Kriging with Gaussian Random Field

A Gaussian Random Field (GRF) of zero mean and standard deviation 1 (the model a priori) is
represented on the left of Figure 2.3. On the right, it was added an intial DoE consisting of one
central point, to show how the information is incorporated into the model. The point being known,
it corresponds to a zero standard deviation and to a small one on its neighbourhood. Because a
priori, the process is C∞, it was chosen to use a square exponential covariance kernel k(x, x′) in this
example.
At every given iteration, a new surrogate model (our metamodel) of the black box is calculated with
a known DoE. Then, one wants to estimate the best new point to evaluate by taking into account
all the information a priori to converge as fast as possible to the real optimum of the black-box.
This new point is the point which should probably gives the best improvement a priori. This
point value is evaluated and then incorporate into a new metamodel. The hyperparameters which
characterize and define the model and especially the form of the covariance kernel are thus updated
at each iteration until convergence. The bayesian optimization made from these Gaussian processes
is called Efficient Global Optimization (EGO).
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Figure 2.4: Diagram showing the architecture of the EGO algorithm

Figure 2.4 comes from [11] and describes the general functioning of the EGO.
In the following sections, we will explore each part of this general process of EGO.

2.2.1 Design of Experiments

Choosing a good initial DoE is important for the convergence of the optimization. A good DoE will
give a good surrogate model of the functional and one seeks to have the least possible points that
fill the best the search space. For instance, the Latin Hypercube Sampling (LHS) is widely used for
stochastic optimization since it is simple and efficient.
In [11], they used the Enhanced Stochastic Evolutionary (ESE) [12]. In the latter, Jin & Sudjianto
proposed an rapid algorithm to optimize a criterion (maximin distance, entropy, CL2..) which can
be chosen by the user. Depending on the a priori knowledge of the problems, engineers can choose
some others properties (like orthogonality) or design (full factorial, partial factorial,...).
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2.2.2 Surrogate Model

Assuming n already evaluated points of a deterministic function in Rk. The vector xi = (xi
1, ..., x

i
k) ∈

Rk corresponds to the ith point, i ∈ {1, .., n}. The stochastic model [13] can be rewrite as:

y(xi) = Σ
h
βhfh(xi) + εi ∈ R

with εi is the error term between the true black-box and the model that should be estimated.
In practice, there are three main categories of kriging:

• Simple kriging: y(xi) = µ+ εi, where µ is known as in Figure 2 with µ = 0.

• Ordinary kriging where µ is constant and unknown.

• Universal kriging where µ = Σ
h
βhfh(xi) is polynomial and unknown.

If y is continuous and knowing that the functions f are selected to be continuous, we deduce that
uncertainty terms ε are continuous. The closer the data xi and xj, the more the errors εi and εj are
correlated.
Let the weighted distance be:

d(xi, xj) =
k∑

h=1
Θh|xi

h − x
j
h|

Thus, the covariance kernel being square exponential: k(x, x′) = exp(−1
2 .d(x, x′)2) The parameters

Θh are the inverse correlation lengths in the h direction. Id est that the more the variable h causes
significant changes in the functional, the shorter the correlation length: a displacement of 1

Θh1
in the

direction h1 will have the same impact as a displacement of 1
Θh2

in the direction h2. This corresponds
to the variable "length_scale" in the Figure 2.

Figure 2.5: Plot of two correlation functions for two activity level Θ [6]

Figure 2.5 comes from [6] and describes the kernel described above (p = 2: square). Hence, we
obtain a metamodel taking into account the dependencies between the normally distributed random
variables ε(xi). Note that they considered the Pearson correlation: Corr(X, Y ) = Cov(X,Y )√

V ar(X).V ar(Y )
.

We consider the covariance kernel and not the correlation one as the first can be deduced from the
latter (we assume constant variance hyperparameter σ2).
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The Stochastic Process Model (SPM) that they build with this kernel is the DACE (Design and
Analysis of Computer Experiments) which has k+2 parameters, what corresponds to ordinary kiging:
Θk, µ, σ.
Let y be the vector of evaluated values at the points x, and let R be the error correlation matrix
between inputs points Rij = Corr(ε(xi), ε(xj)). The hyperparameters Θk are estimated by maximum
likelihood of the samples. Then by maximizing the following likelihood

L = 1
(2π)n/2(σ2)n/2|R|1/2 exp−(y − 1µ)′R−1(y − 1µ)

2σ2

and knowing the hyperparameters, they estimate µ and σ by:

µ̂ = 1′R−1y

1′R−11
and σ̂2 = (y − 1µ)′R−1(y − 1µ)

n

By substituting these expressions in L and maximizing it, it is possible to recover an estimation for
Θk and therefore R.
one also seeks to estimate the expected response between points. To do this, the BLUP (Best Linear
Unbiaised Predictor) can be used. Let ri(x∗) = Corr(ε(x∗), ε(xi)), then (BLUP) ŷ = µ̂+r′R−1(y−1µ̂)
and the DACE interpolate data. The Mean Squared Error (MSE) is

s2(x∗) = σ2[1− r′R−1r + (1− 1′R−1r)2

1′R−11
]

which gives a zero error on data.

Models can be validated using leave-one-out strategies or more generally cross-validation. For exam-
ple, Jones et al. calculated the number of standard deviations of error between a known value and
its prediction by the DACE generated by a leave-one-out strategy [11, 14].
In the case of variance component estimation, the original data set is replaced by a set of contrasts
calculated from the data, and the likelihood function is calculated from the probability distribution
of these contrasts, according to the model for the complete data set. In particular, Restricted
Estimation by Maximum of Likelihood (REML) is used as a method for fitting linear mixed models.
In contrast to the earlier maximum likelihood estimation, REML can produce unbiased estimates of
variance and covariance parameters [15].

2.2.3 Optimization strategy

Now that we are able to build inexpensive surrogate models, we need to handle the associated un-
certainties on those models. In fact, by using the minimum of the current surrogate model , one
may get trapped by local minimum as the surrogate is an approximation and can be very uncer-
tain in some regions. This criterion is called Surrogate Based Optimization (SBO). The Bayesian
paradigm consists in searching for the best point to evaluate by taking into account the estimation
of the uncertainties at every possible point. In theory, we want the point that will have the biggest
probability to improve our minimum incumbent.

The first method is to use a Figure of Merit (FoM) consisting on a trade-off functions between:

• Local research which searches into the optimal information by exploiting the minimum zone the
metamodel.
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• Global research which searchs into the missing information by exploring the zone where we could
find a better minimum (a potential minimum is a small amount of standard deviation under
the mean prediction).

The first Figure of Merit, widely used in EGO is the Expected Improvement (EI). Let fmin be the
current incumbent. The EI criterion is given by

EI(x) = E [max (fmin − y(x), 0)] .

Figure 2.6: DoE (red points) with Surrogate model (Left), Figure of Merit-EI (Right)

As you can see in Figure 2.6 where we are searching for the maximum, we are choosing exploitation
and not exploration because the exploitation peak is higher on the Figure of Merit (the EI on the
right).
We talked about SBO and EI but we can talk about other Figure of Merit criteria. Among the
widely used we have Upper Confident Bound (µ− 3σ), WB2s (s.EI − µ) [11, 14] or the Generalized
EI [16].

When a Figure of Merit is defined to be used, the optimization problem becomes:

min
x ∈ Rk

FoM(GP (x|x0, .., xn, f(x0), .., f(xn)))

A lot of different algorithms can be found in the literature like Evolutionary Algorithms, Gradient-
Based algorithms, COBYLA, Simplex, Interior Points, Branch and bounds ...

Another method for global optimization is to use NOMAD (Nonlinear Optimization by Mesh Adap-
tive Direct Search) [17].
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Algorithm 1: Optimizing with NOMAD
Result: Minimum of a function
Given a distance and a step ∆, build a mesh grid. Let ε be a threshold value.
Let y∗ be the current minimal value the algorithm has found.
while ∆ > ε do

Search better points near the incumbent on the mesh grid according to the mesh (SEARCH
step).
if the SEARCH step improve the minimum: ySEARCH < y∗ then

y∗ ← ySEARCH .
∆← ∆+ with ∆+ > ∆. If successful, we take a bigger step ∆ for the mesh at the next
iteration.

else
Use a given strategy to explore new zones of the mesh (POLL step).

end
if the POLL step improve the minimum: yP OLL < y* then

y∗ ← yP OLL

∆← ∆+ with ∆+ > ∆. If successful, we take a bigger step ∆ for the mesh at the next
iteration.

else
∆← ∆− with ∆− < ∆. If not successful, we take a smaller step ∆ to tighten the mesh
and have more possible points to explore at the next iteration.

end
end

2.2.4 Stopping criterion

The new point to compute determined, its value is evaluated through the black-box to optimize and
integrated into the DoE. Then, a surrogate model is again built and this whole operation is iterated
until reaching a stopping criterion fixed beforehand [18] . For example a long period wiout finding
a better point, a progression of less than one percent several times in a row, a ∆ bigger than a
threshold,... However, the main stopping criterion usually imposed is given by a maximum number
of iterations related to a computational budget and not by a convergence criterion.

2.3 Efficient Global Optimization with constraints

To tackle the constraints of the problem (2.1), we have several possible approaches. In NOMAD [19,
20], they use a filter to only keep the feasible region. Another approach is to penalize the Expected
Improvement (for example like a Lagrangian) [21]. We can integrate the penalization directly into
the Figure of Merit by, like the expected improvement, creating a metamodel but for the expected
violation of the constraints [11, 14]. All this methods and some others are summarized in [22].

2.4 Dealing with integer and categorical variables: A method overview

Previously, we have seen how to treat continuous variable bur in order to resolve mixed problems,
we need a method to optimize discrete variables taking values in Z or categorical variables taking
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values in a finite set. Integer variables are in an ordered ring but categorical variables have not a
mandatory complete order structure, neither a dyadic operation.
For example let z be a integer variable. If z=2, z+1=3>z and let u be categorical such that
u ∈ {banana, apple} ’banana’ and ’apple’ can not be compared and we have no signification for
’banana’+’apple’.
Let u be categorical variable with 4 levels such that u ∈ {Red,Green,Blue, Cyan, Y ellow}
In label encoding, we are replacing our categorical variable by a integer variable whose possible values
are X ∈ [1, .., nb_categories], e.g, X = 1 is x =′ Red′ and X = 4 is x =′ Cyan′.
In one-hot encoding, we are replacing our categorical variable by nb_categories binary variables
(X1, ..., Xnb_categories) with Xi = 1 if X = i, e.g. X = (1, 0, 0, 0, 0) is x =′ Red′ and X = (0, 0, 0, 1, 0)
is x =′ Cyan′.
In the following, x will be the continuous variables, z the integer (order relation) and u the categor-
ical variables.

A categorical variable can take different values called levels. Categories are possible arrangement
of levels. Example: shape and color are 2 categorical variables, square, circle, rhombus are 3 shape
levels, green, blue are 2 color levels and blue square, blue circle, blue rhombus, green square, green
cirle and green rhombus are the 2*3=6 categories.

In EGO, one wants to build a surrogate model which approximate the back-box. The inputs being
mixed integer, we need to find new strategies to build mixed surrogate model. Then, we need new
optimization strategies based on these models to converge quickly.
When one has an optimization goal, it is necessary to choose a model more specialized for it but this
optimization-oriented models are not precise outside the minimal zone. This is why it is interesting
when we are after two objectives, precise metamodels and efficient optimization, to have different
approaches.
Different strategies from literature are explained in the following. In every case, we have a different
type of models and a different type of optimization. Some methods are more oriented toward the
model construction and some other are more about the optimization.

2.4.1 Building a mixed model with many sub-models

A Mixed Integer Efficient Global Optimization (AMIEGO) [23] is a mixed EGO optimizer that
constructs the global mixed surrogate model as a combination of models for the integers and models
for the continuous variables (not for categorical ones). For every mixed function f(x, z), g(x, z)
(objective or constraint) they build a different set of metamodels. From now, let’s focus on a mixed
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metamodel for f , the objective function.
Algorithm 2: Building a metamodel with AMIEGO
Result: Mixed Surrogate Model

• Generate a DoE for the integer variables zk and another DoE for the continuous variables
denoted xk

• ∀zi ∈ zk, for each point of this integer DoE, build a continuous model (MC) over the continous
space based on the continuous DoE xk knowing that the integer variables are equal to the
current integer MCi = MC |z = zi

• ∀zi ∈ zk, yIi = min
x

(MCi). For every point in the integer DoE, the corresponding integer output
is the minimum according to the continuous model for this integer value (the SBO).

• The integer metamodel is then build, as a continuous model, based on the minima from the
different continuous models (zk

i , yIi).

For the dimension not to scale to quickly with the dimension, the kriging model is coupled with
Partial Least Square regression (see Section 3.1.1) [24].

To optimize the metamodel, they compute a Figure of Merit over the integer model. Then, they
used the new infill point z according to the Figure of Merit as a constant and built a new continuous
model. The minimum of this new continuous model gives us the y output. The couple (z, y) is then
add in the integer DoE and the integer metamodel is refined.
The Figure of Merit used is a generalized EI under constraints. In fact, in 2019 [25], they used a
new strategy called Multiple Infill via a Multi-Objective Strategy (MIMOS). This multi-objective
formulation seeks to simultaneously maximize three objective functions: the original expected im-
provement function (balance between exploration and exploitation), the distance from an existing
evaluated point (pure exploration), and a particular case of the generalized expected improvement
function (see [16]) that reduces to the probability of improvement (pure exploitation). They used a
binary-coded multi-objective evolutionary algorithm that also satisfies the integer constraints of the
design variables and generates a 3-D Pareto front of non-dominated designs.

The main drawback of this method for model buiding is that the integer model being only a model
according to the minimum in the continuous dimension, it can gives us no information about the
space elsewhere, far from the continuous minimum. However, this is a really good result for our
second pursued objective as the model concentrates over the minimum and then is efficient for the
optimization.
Unfortunately, AMIEGO does not tackle problem with categorical variable and is limited in size by
the explosion in the number of models to build when there is a lot of continuous variables together
with integer ones.

2.4.2 Building a mixed model with continuous relaxations

Garrido-Merchán & Hernández-Lobato (GMHL) [26] proposed a method that uses continuous relax-
ations of integer and categorical variables to deal with categorical and integer-valued variables in a
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BO framework. They distinguishes 3 approaches:

• The Naive approach consists in solving the continuous relaxation of the problem and then to project
afterwards to the closer admissible point for evaluation. Naive approach can select several times the
same point to evaluate or do not converge to the correct solution because of the rounding which
do not guarantee the Figure of Merit to be maximized on the integer or categorical value with the
biggest value.

• The basic approach proposed consists in doing the same but rounding into the wrapper that eval-
uate the black box besides of doing it outside.

• In the best approach proposed by GMHL, they computed discretized gaussian processes by replac-
ing every point where the mean and the variance are evaluated by the nearest valid point before
computing the estimate means and correlations so they obtain more realistic results. The conse-
quence of this method is that the Euclidean distance between the points that lead to the same
variable configuration becomes zero. This enforces maximum correlation between the function val-
ues at those input points under the GP, obtaining the expected constant behavior.

As they used a flat acquisition function (continuous by part Figure of Merit), they optimize via a
block coordinate ascent methodology which iterates between optimizing non-real variables (integer-
valued and categorical) and real variables by using the grid and the L-BFGS method to optimize
all real variables. Then, the One-Exchange Neighborhood (OEN) strategy is used to optimize the
transformed integer and categorical variables. The OEN strategy is a greedy method [27, 28].
The algorithm can be summarized in the following way:
Algorithm 3: Building a metamodel with GMHL
Result: Mixed Surrogate Model

• Relax continuously every integer dimension.

• ∀uj (categorical variables), ∀i ∈ Luj , Ω = Ω× [0, 1] We add a variable uji in [0,1] for every
level of every categorical variable (one-hot encoding).

• Generate a continuous DoE in Ω with admissible values.

• Create a continuous model with the relaxed inputs that gives us a mean µ and a covariance
kernel k.

• Project the continuous model to have a new constant by part model where every point has the
value of the closer physically admissible point.

• µ′(x) = µ(T (x)) and k′(x, x′) = k(T (x, x′)) with T (x) being the closer value of x in the search
space.

• T (x) is x for continuous variable. T (z) rounds z to the closer integer. ∀i ∈ Luj ,
k := arg max

uji

µ(uji), T (ujk) = 1, T (uji 6=k) = 0, the chosen level (set to 1) is the one with the

biggest relaxed value.
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To compare their results, they introduced two BO methods: SMAC (Sequential model-based opti-
mization for general algorithm configuration) with randoms forests [29] and TPE (Tree-structured
Parzen Estimator Approach) with a generative approach [30]. These methods do not use gaussian
processes.

Figure 2.7: GMHL variants optimizations methods compared with SMAC and TPE [26]

Figure 2.7 compares these different methods in a set of test cases (there are other comparisons in
the paper [26]).
GMHL method is really simple and can treat all types of variables but as the space is relaxed
continuously, we often explore and optimize a really big space with a lot of flat parts because of the
rounding and moreover, the dimension of the space highly increases with the combinatorics when
there is several integer or categorical variables. We can do as in AMIEGO and use KPLS to reduce
dimension but the strategy is not adapted for high dimension.

2.4.3 Building a model with mixed covariance kernels

Group kernels for Gaussian process metamodels with categorical inputs [31], introduce the notion
of categorical kernels. Let w = (x, u) such that x = (x1, .., xI) the continuous variables and u =
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(u1, .., uJ) the categorical ones. Here, we consider an integer to be a categorical variable. For example,
z ∈ [−2, 2] will be considered as u ∈ { "-2","-1","0","1","2"}.
Then the product space is D = U ×

J

Π
j=1
{1, .., Lj} with U ⊂ RI and Lj is the number of levels the

jth categorical variable can take and denote m the dimension of the categorical space m =
J

Π
j=1
Lj. As

before, we denote k the covariance kernel of the gaussian process, k(w,w′) = Cov(ε(w), ε(w′).
Mixed kernels are defined as combination of continuous and discrete ones:

• Product: k(w,w′) = kcont(x, x′)kcat(u, u′).

• Sum: k(w,w′) = kcont(x, x′) + kcat(u, u′).

• ANOVA: k(w,w′) = (1 + kcont(x, x′))(1 + kcat(u, u′)).

The question then comes down to constructing a valid kernel on a finite set, which is a positive
semidefinite (PSD) matrix, the discrete covariance kernel is then a matrix T . Instead of creating
a big matrix of size m for each possibility called Category-Wise kernel (CW), we could combine
1-dimensional kernels with the operations denoted * (Sum, Product or Anova) which preserve posi-
tiveness.
For example: kcont(x, x′) = k1

cont(x1, x
′
1) ∗ .. ∗ k1

cont(xI , x
′
I) and kcat(u, u′) = [T1]u1,u′

1
∗ .. ∗ [TJ ]uJ ,u′

J
For

Integer, it is proposed to use a transformation on the space and then to apply a discrete kernel.
Pellamati et al. distinguish the homoscedastic case where T is a constant diagonal (constant variance
through levels) and the general heteroscedastic case where the variance can vary between dimensions.
Usually, PSD matrices are decomposed in T = PDP T with D diagonal and P an orthogonal matrix
decomposed via classic transform (Cayley transform, Eulerian angles, Householder transformations,
Givens rotations...) or T = LLT with Cholesky decomposition. In a homoscedastic case, the columns
of L have the same norm and represent points on a sphere in RLj . For heteroscedastic matrices, one
can uses a hypersphere decomposition of the lower triangular matrix L.
An other way to extract hyperparameters without the dimension explosion of the full CW kernel is
the compound Symmetry (CS) kernel where it is assumed common correlation for all levels [32]. The
CS covariance matrix treats equally all pairs of levels, which is an important limitation, especially
when L is big. More flexibility is obtained by considering groups of levels.
Roustant et al. separate the levels of a categorical level into G groups of non constant sizes and
consider a PSD matrix T by block.

T =

 W1 B1,2 ... B1,G

... ... ... ...
BG,1 ... BG,G−1 WG


where the diagonal blocks Wg contain within-group covariances, and the off-diagonal blocks Bg,g′ are
constant matrices containing between-group covariances. one wants the matrices W to be PSD and
then Wg −

−
WgJg to be PSD with

−
Wg being the mean of Wg and Jg the matrix of one of the size of

the gth group. This modelized the Generalized Compound Symmetry (GCS) matrices.
Let u a categorical variable partitioned in G groups, g/u denotes that the variable u belongs to the
group Gg. Considering the following hierarchical Gaussian model:

ηg/u = µg + λg/u, g = 1, .., G, u ∈ Gg
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µ ∼ N (0, B∗) is the group effect and λg/. ∼ N (0,W ∗
g ) is the within-group levels effects and it

is assumed independence between these variables. W ∗
g = Cov(λg/.|

−
λg/. = 0) and up to centering

conditions on λg/., µg is the mean of group g. Hence, B∗ is interpreted as the between group means
covariance. Similarly, λg/. is the within-group effect around the group mean. This justifies the
notations B∗ and W ∗

g .
Roustant et al. give two theorems and a method for building a generalized compound symmetry
matrix. See Appendix B.
In Efficient global optimization of constrained mixed variable problems [33], they used product of
continuous and discrete kernels like before [31]. In order to ensure that the chosen kernel is valid, it
is necessary for the covariance function to be symmetric and PSD.
Pellamati et al. proposed several kernels models, the trivial one is the Category-Wise kernel (CW),
which is a correlation matrix with

J

Π
j=1
Lj(Lj + 1)/2 parameters (due to symmetry).

As mentioned previously, the hyperparameters are calculated via an hypersphere decomposition first
applied within the scope of mixed variable GP by Zhou et al. [34]. The Figure of Merit used is
the Infill Criterion, which is the product between the Expected Improvement and the Probability
of Feasibility (PoF). The latter is optimized by relying on a mixed continuous/discrete Genetic
Algorithm (GA) similar to the one presented by Stelmack et al. [35].
A more reasonable way is to consider only the small matrices between levels and then do the product
what was called combining 1-dimensional kernels.
As in Roustant et al., they decompose the kernel into kcat(u, u′) =

J

Π
j=1

[Tj]uj ,u′
j
.In this case, the

heteroscedatic kernel by level with an hypersphere decomposition (He_HS) has
J

Σ
j=1
Lj(Lj + 1)/2

parameters and the homoscedatic one (Ho_HS) has
J

Σ
j=1
Lj(Lj − 1)/2 parameters. The compound

symmetry model has 2 Lj parameters with a variance and a covariance parameter by level. One
particular case of this simple model allows us to rewrite the kernel as a mixed one between continuous
and discrete space with the Gower distance [36].
Thus obtaining the mixed kernel:

kGower CS(w,w′) = σ2exp

− I∑
i=1
θi

 |xi−x′
i|

∆xi

I + J

pi

−
J∑

j=1
θj+I

(
1uj 6=u′

j

I + J

)pj+I


Logically He_HS should be the best model but covariance between categories are badly calculated
because they are calculated over the whole continuous space. In fact, the more the model is general
and complex, the more it is efficient and precise but the more it has hyperparameters. Hence, for a
given budget, having a lot of hyperparameters is not a good choice because the bayesian estimated
values of these parameters are less precise. Nevertheless, having few parameters means oversimplified
models which have well-estimated parameters but are not realistic. In practical cases, Ho_Hs tends
to be the one which seems to works the best.
The procedure belows summarized the usage of a kernel in the building of a metamodel once we have
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chosen and built the structure of our categorical/discrete kernel (GCS, CS, Ho_Hs, He_Hs, CW,...):
Algorithm 4: Building a metamodel with group kernels
Result: Mixed Surrogate Model

• Generate a DoE for the continuous variable xk and a DoE for the categorical variables (integer
are considered as categorical) uk.

• Only for the integer variables in uk, we have, [Tj]zj ,z2
j

= kj(Fj(z), Fj(z2)). So, before
calculating the matrix (Step 3), we transform the input with a metafunction (hyperparameters
to optimize) which is continuous and strictly increasing (can be linear by part, quadratic,...).
This function distorts the inputs to take into account the order relation that exists between
integers before calculating the covariances.

• kcat(U,U2) =
J

Π
j=1

[Tj]uj ,u2
j
, Tj ∈MLj . The categorical kernel is the product of the matrices of

"sub-kernels" represented on correlation matrices form for every categorical variable.

• Build a mixed kriging model, with covariance kernel k(w,w2) = kcont(x, x2).kcat(u, u2)

The correlations between the categories are calculated over the whole continuous space and indepen-
dently. This can lead to badly evaluated categorical correlations for the minimal continuous zone.
It is a global model contrary to AMIEGO which is a good model only on the minimal regions. By
choosing a more complete problem, we have a better representation but as we have a lot of hyperpa-
rameters, there are badly optimize whereas with few hyperparameters they are way better optimized
but lead to a too simple model. Together with this trade-off between models, if we choose the Gen-
eralized Compound Symmetry kernel, then, there is a lot of clustering work to choose the block in
the matrices. In a concrete case, it is almost impossible to predict which model will be the best.

2.4.4 Adapting Nonlinear Optimization by Mesh Adaptative Direct Search to Mixed
Variable Programming

Pattern search algorithms are derivative-free direct search algorithms [37]. In Audet [19], they
filtered the non feasible and non-optimal solution, according to the best feasible incumbent [17].
They used the Mixed Variable Programming (MVP) optimization algorithm, a pattern search for
bound constraints. Originally, they only guaranteed convergence to a stationary point when the
objective function was continuously differentiable in the continuous variables, but Abramson’s thesis
has extended this result using the Clarke calculus (1990) as in Audet and Dennis [17] for the continous
case [38]. In Abramson, linear constraints for mixed variable programming are treated using the idea
presented in Lewis and Torczon (2000). It involves setting the objective function value equal to +inf
when one of them is violated, and when the current iterate is sufficiently close to the boundary, the
polling directions must contain directions tangent to the boundary [39].
The Audet-Dennis Generalized Pattern Search (GPS) algorithm for bound constrained mixed variable
optimization problems is extended to problems with general nonlinear constraints by incorporating
a filter, in which new iterates are accepted whenever they decrease the incumbent objective function
value or constraint violation function value. Additionally, the algorithm can exploit any available
derivative information (or rough approximation thereof) to speed convergence without sacrificing
the flexibility often employed by GPS methods to find better local optima. In generalizing existing

18



GPS algorithms, the new theoretical convergence results reduce seamlessly to existing results for
more specific classes of problems. While no local continuity or smoothness assumptions are made, a
hierarchy of theoretical convergence results is given by Kokkolaras, Audet and Dennis, in which the
assumptions dictate what can be proved about certain limit points of the algorithm [38].

The MVP code was used to solve a thermal insulation problem [38, 39]. In this problem, there is a
temperature variable (continuous) for each intercept and a distance (continuous) between every two
following intercepts. The discrete variables are: the number of intercept (integer) and the type of
insulator (categorical) between Nylon(N), Teflon(T) and fiber-glass Epoxy(E).
The discrete neighbourhood are manually defined as such:

• Any of the existing intercepts and the insulator to its left are removed.

• A new intercept together with an insulator to its right are added.

• The type of insulator between two intercepts is changed.

Then the NOMAD MVP is operated with this sequence:
Algorithm 5: Optimizing with NOMAD MVP
Result: Minimum of a mixed function

Given a distance and a step ∆, build a mesh grid. Let ε be a threshold value.
Let y∗ be the current minimal value the algorithm has found.
while ∆ > ε do

• Do the search step as usual on the mesh grid.

• If no new minimum is found. Do a poll step on every continuous dimension.

• If no new minimum is found. Do a discrete poll on user-defined discrete neighbourhood.

• If no new minimum is found. Do an extended poll: when the minimum found on a discrete
neighbourhood is close to the incumbent, do a continuous poll on this discrete value.

• If no new minimum is found: ∆← ∆−.

• When a new minimum is found: ∆← ∆+ and update the incumbent y∗.

end

This MVP needs to have good prior knowledge to manually define neighbourhoods. Although it
could work really well, it could be long to execute in high dimension.

2.4.5 An heuristic for surrogate Optimization

Surrogate Optimization-Mixed Integer(SO-MI) [40] is an heuristic to optimize a mixed integer func-
tion but only with a defined distance, so it is not really adapted to categorical variables.
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The algorithm works as follows:
Algorithm 6: Optimizing with SO-MI
Result: Minimum of a mixed function

• Create 4 groups of candidates by perturbing (continuous variables) or (discrete variables) or
(both) of the incumbent or by uniform sampling over the domain.

• Calculate a Score for every candidate in his group.

• Select the best candidate of each group for enrichment.

• Add the four new points into the surrogate model.

Let W be the score value. Kj is the j-th candidate of one of the four groups K. The explo-
ration score is defined with the minimal euclidean distance D from a sampling point to its closer
already sampled point. D(Kj) = min

i=0..n
||Kj − xi|| Considering the K-th group, Dmin = min

j
D(Kj),

Dmax = max
j

D(Kj) Hence, the distance score of a sample relative to its group denoted VD is

VD = Dmax−D(Kj)
Dmax−Dmin

1Dmin 6=Dmax + 1Dmin=Dmax

Similarly, the exploitation score is defined with the estimated surrogate value Sf . Smin = min
j
Sf(Kj),

and thus, the surrogate response of a sample relative to its group is VR = Sf(Kj)−Smin
Smax−Smin

1Smin 6=Smax +
1Smin=Smax

Therefore, they defined the trade-off score value of a point as W (Kj) = ωRVR(Kj) +ωDVD(Kj) with
some rules for the weight parameters.
The weight at iteration k is ωk.

• ∀k, ωk
R ≥ 0 and ωk

D ≥ 0

• ∀k, ωk
R + ωk

D = 1

• ω0
D = 1, ω0

R = 1, initially, we want to explore the search space.

• ∀k, ωk
D > 0→ ωk

D < ωk
D, the more the model has point, the more one wants to exploit it.

• if ωk
D = 0 then ωk+1

D = 1. The weights cycle to avoid converging into a local minimum.

There is also a penalization based on the constraint violation for the constrained case.
Theorem: The algorithm SO-MI is asymptotically complete, i.e. assuming an indefinitely long run-
time and exact computations, a global minimum of the optimization problem will be found with
probability one.

This random heuristic is not really efficient in very large spaces because of the curse of the dimension-
ality which creates more and more distant points in high dimension. The random sampling strategy
could not work efficiently in high dimension where we could prefer pseudo-random heuristic, for ex-
ample. This heuristic does not work for the categorical variables and has several tuning parameters
to optimize.
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Figure 2.8: SO-MI, GA, NOMAD and B&B optimizations on a dimension 15 case (with 5 integers) [40]

Figure 2.8 compare SO-MI with a Genetic Algorithm (GA), a Branch & Bound algorithm (B&B) [41]
and NOMAD for integer. Other tests cases are presented on the paper [40]. In this particular case,
the method performs really well. As expected, NOMAD is more efficient that non-adapted methods
like GA or B&B.

2.4.6 Optimizing a mixed model with an adaptation of Nonlinear Optimization by
Mesh Adaptive Direct search algorithm for a Figure of Merit optimization

The original Categorical Efficient Global Optimization (Cat-EGO) algorithm combines different
methods [42]. In fact, Zuniga and Sinoquet have developed a new automatic heuristic for using
NOMAD without physics a priori (cf. section 2.4.4) on the structure of the problem which is the
core improvement but in their algorithm, they use the mixed NOMAD to optimize the Expected
Improvement.
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Algorithm 7: Optimizing with Cat-EGO
Result: Minimum of a mixed function

• As in NOMAD, start by separating the continuous, integer and categorical variables.

• For continuous and integer variables, do the same procedure as in a classic NOMAD because
the neighbourhoods are well-defined, with an euclidean distance.

• When the ordered NOMAD SEARCH and POLL failed on the ordered variables x and z, do
an extended poll on the categorical variables u. To do this, one has to generate with an
heuristic a probability law Zk at iteration k. The probability law is constructed as such:

– Let pk,i = P(Zk = ci) and U be the number of categories.
– Z0 is initialized as an equiprobability for changing to another category
(P(ZP oll

k = ci|ZCurrent
k = cj, Z

P oll
k 6= cj) = 1

U−1 so that each category is at the same
"probability distance".

– At each iteration, the probabilities of being in a known state pk,i are updated and then,
the probabilities of changing to another state are defined as:
P(ZP oll

k = ci|ZCurrent
k = cj, Z

P oll
k 6= cj) = pk,i

1−pk,j

– The probabilities to be in a specific category at iteration k decomposed into
pk,i = αkp

g
k,i + (1− αk)pm

k,i.

– The exploration term is approximated by ˆpg
k,i = 1− (nk,i

nk
)1/2 with nk being the number of

point known at iteration k and nk,i being the number of points known at iteration k in the
category i. If we have evaluated no points in category i at iteration k, pg

k,i = 1 and if we
have evaluated only points in category i, pg

k,i=0.

– The exploitation term is approximated by ˆpm
k,i = 1− SRk,i

U

Σ
j=1

SR
k,j

with SR
k,i being an

approximation of the mean number of standard deviation improvement we can expect on
the cumulative distribution function of the minimum of our surrogate knowing that z = ci

(the exploitation term in the Expected Improvement).

• Let Vk be the realization of a simulated uniform distribution over [0,1]. And let u = cj (the
current category is the j-th) if u 6= c1 and v ∈ [0, pk,1

1−pk,j
]→ u := c1

else ∀i ∈ {2..U}, i 6= j, if v ∈ [
i−1
Σ

l=0
pk,l

1−pk,j
,

i

Σ
l=0

pk,l
1−pk,j

]→ u := ci

The space can now be explored in case of no prior information in NOMAD and we still have a good
convergence with NOMAD but the heuristic can takes a lot of time to converge as SO-MI. This
algorithm is less expensive in high dimension than a classic pure NOMAD as it combine different
approaches.

The list of presented methods is not exhaustive, the goal was to introduce different types of ap-
proaches to deal with mixed integer to give an overview of the different ideas used. To cite one
article not presented in this review, we can talk about Bandit-BO [43] which uses a Multi-Armed
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Bandit (MAB) and, like for Cat-EGO (cf. section 2.4.6), deduces a probability law over the categories
but by considering the minimum of every continuous model, like AMIEGO (cf. section 2.4.1).
We have presented totally different approaches and their functioning but to conclude on this section,
we will summarize the characteristics of these approaches for our two objectives: the modelling and
the optimization.
AMIEGO, GMHL, Group kernels, MVP, SO-MI and Cat-EGO refer to methods presented in the
sections 2.4.1 to 2.4.6.

2.4.7 Models Summary

In this section we will summarize the interests of the methods for the construction of a metamodel.
The first criterion that arises is does the model can manage categorical variables?
Some mixed EGO methods do not take into account the non ordered variables and therefore can
not use them without a defined distance. This is the case for AMIEGO and SO-MI, for example.
In the first case, there is no way to build a metamodel without distance and in the second case, the
only possible method could be by random sampling what is totally not appropriate to this particular
problem. One method which is not designed for categorical variable but can still managed them is
MVP but in this case, one needs prior information to manually define categorical neighbourhood. In
Group Kernel, the opposite problem arises because integers are treated as categorical variables but
this problem is solved by adding a meta-function to correct the distance between the points. On the
particular case of the Compound Symmetry, they found that the model is equivalent to the Gower
Distance [36] which means that the natural distance between two categorical variables should be the
relative Hamming distance defined as the number of different levels between two categories. Let u
and u′ be two categories corresponding to J categorical variables then DHamming(u, u′) =

J∑
j=1

1uj 6=u′
j

J
.

This distance is in [0, 1] and this is also the case in the two last methods, GMHL and Cat-EGO
having adapted distance for categorical variables.
Cat-EGO is based on group kernels models and brings innovations only for the optimization like SO-
MI, based on a Radial Basis Function (RBF) kernel. NOMAD can optimize a mixed integer problem
but the only underlying metamodel is the continuous mesh grid and there is no mixed model.
Therefore, we have three types of models to approximate the relationship between categories:

• Models based on a probability law which define a transition probability between two categories
(CAT-EGO).

• Models based on a covariance kernel with a geometric distance between categories (GMHL,
MVP).

• Models based on a covariance kernel with a discrete matrix (Group Kernels).

In all the presented methods, only the Group kernels and GMHL can be used for building a meta-
model. In the case of GMHL, the distance being continuous and the categorical variables being
relaxed in [0, 1], we came back to an Hamming distance when evaluating the distance between cate-
gories.
Now, it could be interesting to distinguish models that could be used for optimization purpose.
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2.4.8 Optimization Summary

In this section we will summarize the interests of the methods for the optimization of an expensive
black-box.
The second question that interest us is does the model can be used to efficiently optimize the underlying
black-box ?
As previously said, two steps NOMAD strategy or Figures of Merit can be used to have a criterion
or a procedure that fulfill the global aspect of the optimization goal. We then have several methods
to optimize these different criteria. For mixed integer, probability-based methods can also be used
to choose between different discrete possibilities. Another strategy could be to optimize a model
based on the optimization of a sub-model like in AMIEGO where the integer model is built by op-
timizing several other continuous models. Some classic solvers like evolutionary algorithm can also
be used once the model is built, for example to optimize the Figure of Merit [33, 35]. To finish with,
CAT-EGO and SO-MI are probability-based methods, CAT-EGO works with NOMAD to optimize
the EI of the model and SO-MI uses four different strategies in parallel (an exploration by random
sampling and three exploration with different perturbations). The efficiency of CAT-EGO seems to
indicate that combining different approaches is relevant to optimize quickly.

For its simplicity, I have chosen to test GMHL and then to implement this particular method into
SMT. This method using continuous relaxations, it can be optimized once the model is build with
a classic continuous optimizer. Another possibility would have been to implement a group kernel
variant, for example Compound Symmetry which have really few hyperparameters but then it would
have been necessary to develop a relevant mixed optimization method. CAT-EGO, for example,
seems really promising.
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Chapter 3

Developed Algorithm

3.1 Models and optimizers used in the Surrogate Modeling Toolbox

The surrogate modeling toolbox (SMT) is a Python package developed by ISAE-Supaero, ONERA,
NASA and the University of Michigan [44]. It contains a collection of surrogate modeling methods,
sampling techniques, and benchmarking functions. This package provides a library of surrogate
models that is simple to use and facilitates the implementation of additional methods. SMT is
different from existing surrogate modeling libraries because of its emphasis on derivatives, including
training derivatives used for gradient-enhanced modeling, prediction derivatives, and derivatives
with respect to the training data. It also includes new surrogate models: kriging by partial-least
squares reduction (KPLS, KPLSK) which scales in inputs and energy-minimizing spline interpolation
(RMTS) which scales in training points. SMT is documented using custom tools for embedding
automatically-tested code and dynamically-generated plots to produce high-quality user guides with
minimal effort from contributors.
SMT library can be downloaded and installed from this link: https://www.github.com/SMTorg/smt.
The developments made during this internship were implemented in SMT and are now available
on the official version with the previous link. The dedicated documentation can be found at
https://smt.readthedocs.io/en/latest/_src_docs/applications/mixed_integer.html.

3.1.1 Kriging with Partial Least Square

Partial Least Squares (PLS) is a statistical method to analyze the variations of a quantity of interest
with respect to underlying variables. In the same spirit as the Principal Component Analysis (PCA)
which gives directions that maximize the inertia of data, PLS gives directions that maximize the
variation of the quantity of interest. In [24], they used the PLS to define subspaces to make high-
dimensional Kriging more efficient. The first step is to make an analysis on the dataset, define the
number of principal components h we are interested in, then apply projections of datasets on the
found principal components. Doing so, they proposed a solution to reduce the dimension of the
problem while keeping a maximum of explicative data.
Therefore, Kriging with Partial Least Square regression (KPLS) consists into projecting the hyperpa-
rameters space into a smaller space of dimension h. The h first axis are called principal components
and used to span this new small space of lower dimension and only h hyperparameters are optimized).
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Figure 3.1: Formulas from: https://smt.readthedocs.io/

3.1.2 Kriging with Partial Least Square+K

KPLSK is a KPLS-based model. As before, we project into the small space of dimension h spanned
by principal components. Then we optimize the reduced number of hyperparameters in the small
space [24]. Thereafter, the optimized reduced hyperparameters are projected back into the full orig-
inal space and this projected reduced optimal are used as a starting point for a local optimization of
all the hyperparameters.

The models KPLS and KPLSK could be easily coupled with GMHL. For instance to reduce the
dimension. The criterion qEI can also be coupled with GMHL (cf. Appendix C).

3.2 Super Efficient Global Optimizer with Mixture Of Experts

Adaptive surrogate models have become more and more popular in engineering optimization prob-
lems. The SuperEGO (SEGO) algorithm with a mixture of experts model (MOE) well suited to
high-dimensional problems is known as SEGOMOE [1, 11, 14, 24]. They start by constructing
the best surrogate model by combining automatic clustering and best expert selection. Then, they
approach the solution iteratively by balancing the exploration/exploitation phase. It leads to a re-
stricted number of calls of time-consuming high-fidelity models (so called budget).

SEGOMOE was not used during this internship but would have been be interesting to work with for
both constraints handling, as in Equation (2.1) and high-dimensional purposes.
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3.3 Study and implementation of continuous relaxations in the Surro-
gate Modeling Toolboox to deal with integer and categorical vari-
ables

3.3.1 Continuous relaxation preliminary tests of variants and coding

Figure 3.2: SMT optimization results

The left scale is for the function value and the right scale is for the Expected Improvement value.
Figure 3.2 presents a step of EGO optimization of a continuous quadratic functional. The problem
max

x
EI(x) is solved using Sequential Least Squares Programming (SLSQP).

The first method I have implemented is what GMHL called Naive approach for integers. The In this
method, we round to the nearest integer the result of an ego continuous relaxation, as only integers
have a value through the black-box. The infill point is

x∗ = bmax
x

EI(µ(x), σ(x))c

where b c denotes the floor function, also called the greatest integer function. In a second approach, it
was tested to round the expected improvement. In fact, when evaluating the next point to evaluate,
as only integer have defined value, we should take, not the best point of the continuous relaxation
but the best integer in term of Figure of Merit. Hence, for a given Figure of Merit, e.g EI, we
optimize FoM(floor(x)). The problem with this method is that a continuous by part function is
harder to optimize as we can’t use gradient-based methods, in this case, the solver used is no longer
Sequential least squares quadratic programming (SLSQP) but Constrained optimization by linear
approximation (COBYLA). The infill point is

x∗ = max
bxc

EI(µ(x), σ(x))
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Figure 3.3: GMHL naive approach
Figure 3.4: GMHL with rounded EI

Figure 3.3 presents the naive approach and Figure 3.4 presents the method but with rounded
expected improvement. The functional is the same as in Figure 3.2 but with an integer variable
z ∈ [56, 70]. We have in both case two points and we see the associated expected improvement and
its maximum corresponding to the last point that was added to the model. The black line corre-
sponds to the mean, the gray zone is 3 standard deviation around the mean. As we can see, with
the rounded EI, we have an EI of 0 on the segment [63,64] which is coherent with the fact that we
have already evaluated the two integers 63 and 64.

The best approach from GMHL is to compute discretized gaussian processes. To do this, we replace
every point where we evaluate the mean and the variance by the nearest integer before computing
the estimate means and covariances. The infill point is x∗ = max

x
EI(µ(bxc), σ(bxc))

The discrete gaussian processes are more relevant, the variances are better calculated and the con-
tinous expected improvement helps the gradient-based optimization algorithm, but the problem is
that we can select a point already evaluated because we round after optimizing the Figure of Merit
to find the best newer point. A workaround implemented was to use tunneling penalization [45].
With this, we penalized the Figure of Merit in the neighbourhood of already evaluated integers. At
iteration i, the DoE is the k points we have already evaluate xDoE = (x0, ...xk)

FoMpenalized(x) := max( FoM(x)−
k

Σ
i=0
penalization(x, xk), 0 )

with penalization(x, xk) = max( F oM(x)−F oM(xk)
||x−xk||2λ

, 0 )
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Figure 3.5: GMHL for integer with tunneling

Figure 3.3 shows 4 iterations of the best approach. Now, it is the model which is discrete and not
the Expected Improvement we will optimize. And at iteration 3, you can clearly see the effect of the
tunneling around z = 16 but the definition should give a continuous expected improvement. In this
case, λ = 2.

For categorical variables, we will use a one-hot encoding. As before, we round the values of the
prediction to one of the possible outcomes. The biggest component of the relaxed optimization will
be set to 1 and the others to zero. For example, if (0.9,0.8,0.7) is the point to evaluate, we will use
the prediction for the value (1,0,0). Therefore, the corresponding black-box objective is expected to
be constant in those regions of the input space that correspond to the same configuration.
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Figure 3.6: GMHL for categorical variables

Figure 3.6 shows what the rounding operation does on a 2D example. On the left, the blue model
represents the continuous case and on the right is the rounded case. As we have a categorical vari-
able, the only possible values are (1,0): we choose the first level or (0,1): we choose the second level.
Therefore, we have an oblique separation when we round to the closer possible admissible value. We
observe that the uncertainty is equal to zero after just collecting one observation that corresponds
to the True value and just one observation that corresponds to the False value.

By testing the latter on different test cases, we notice that the penalization is too expensive for high
dimension problems but the tunneling option is still available in SMT. This conclude the section of
the investigation of the different continuous relaxation algorithms. In SMT, we will only implement
the best approach called GMHL. This implementation is presented in the next section.

3.3.2 Implementation in the toolbox

Later on, I have implemented a first model in SMT based on these results.
The toolbox is built around the models. Hence, the first step was to build mixed surrogate models.
To do this, we specified the type of every variable and then we relaxed them in an expanded space
and we project to admissible value a posteriori.
The second step consists in implementing the tunneling in the FoM, allowing different models in the
optimizer (for example KPLS or KPLSK), transforming the mixed inputs for building the metamodels
in the relaxed space and transforming the outputs of the FoM for evaluating points in the tight original
space and assigning labels to categorical variables(e.g x3 should correspond to "blue").
Two pull requests were submitted and implemented in the last version of SMT. The later code was
then refactored by Rémi Lafage (ONERA/DTIS). Therefore, the following presents the last version
of the developments.
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Figure 3.7: Build a mixed metamodel with SMT-GMHL

Figure 3.8: Optimize with SMT-GMHL

Figure 3.7 presents the building of a mixed metamodel with SMT. Figure 3.8 presents the opti-
mization of a mixed metamodel with SMT.
In the following, I will explain how the code works and the different functions implemented into the
final version. A new class named mixed_integer was implemented.
Inputs

• The input "xtype" is an array of strings representing the type of the variables (continuous,
integer or categorical) and the number of levels for categorical variables.

• The input "xlimits" gives the bounds for every variable. For example xlimits= [[0.0,2.5],[-2,2],
["blue","red"]] for a continuous, an integer and a categorical variable.

Functions

• "unfold_with_continuous_limits" expands xlimits to add continuous dimensions. Each cate-
gorical level corresponds to a new continuous dimension in [0,1]. Integer dimensions are relaxed
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continuously.

• "cast_to_discrete_values" projects continuously relaxed values to their closer admissible values.
For instance, if an input dimension is typed ["blue", "red", "green"] in xlimits a sample/row of
the input x may contain the values (or mask) [..., 0, 0, 1, ...] to specify "green" for this original
dimension.

• "fold_with_enum_index" reduces inputs from the discrete unfolded space to initial x dimension
space where categorical x dimensions are valued by the index in the corresponding enumerate
list. For instance, if an input dimension is typed ["blue", "red", "green"] a sample/row of the
input x may contain the mask [..., 0, 0, 1, ...] which will be contracted in [..., 2, ...] meaning
the "green" value.

• "unfold_with_enum_mask" expand categorical inputs from initial x dimension space where
categorical x dimensions are valued by the index in the corresponding enumerate list to the
discrete unfolded space. This function is the opposite of "fold_with_enum_index".

• "cast_to_enum_value" return enumerate "green" for the enumerate index 2.

Usage
Algorithm 8: Generating a mixed DoE
Result: Mixed DoE
vartype = ["int",("cate",2)]
xlimits= [[-2,2],["red","blue"]]

• Transform vartype into a relaxed array which define the size of the relaxed space. vartype’=
[1,2,2]

• Relax the limits to have the bounds of this relaxed space. xlimits’= [[-2.0,2.0],[0.0,1.0],[0.0,1.0]]

• Generate a continuous DoE in the 3D space. DoE’= [(-1.2,0.2,0.3), (2.51,0.8,0.6)]

• Project the value of the DoE to admissible values. DoE’= [(-1.0,0.0,1.0), (3.0,1.0,0.0)]

• Assign labels to have a valid DoE. DoE = [(-1,"blue"),(3,"red")]

Algorithm 9: Building the model
Result: Mixed metamodel for the expensive black-box
Given vartype and xlimits.

• Transform vartype into a relaxed array which define the size of the relaxed space.

• Relax the limits to have the bounds of this relaxed space.

• Generate a mixed DoE like in the algorithm 8 and denote y the value of these points through
the black-box or use a DoE if given.

• Use the projected DoE in the relaxed space and their corrresponding value to fit a continuous
kriging model in the relaxed space.

• Project all values of the model to the prediction at their closer admissible value.
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Algorithm 10: Mixed integer EGO
Result: Minimum of an expensive black-box
while not stopping criterion do

• Compute the Figure of Merit (and the qEI) with projected values of mean and standard
deviation in the relaxed space based on the metamodel.

• Find the new point to evaluate with a continuous optimizer for the EI.

• Project this new point to evaluate and label it.

• Evaluate the point through the black-box.

• Add the new value into the relaxed DoE at its corresponding coordinates.

• Recalculate the mixed metamodel with a bigger DoE into the relaxed space.

end
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Chapter 4

Results

The previously implemented algorithm was tested on different tests cases. Firstly we wanted to
validate the mixed models implementation. We have three models which worked properly, Kriging,
KPLS and KPLSK.
To begin with, it was tested on a set of test cases extracted from state of the art papers. There-
after, it was tested on a real test case in which the Bayesian Optimization (BO) was coupled with
Muldisciplinary Design Analysis (MDA) [46].

4.1 Analytic validation

I have summarized these cases in the webpage : https://mixed-optimization-benchmark.github.io/index/

Figure 4.1: Case 5: the Branin testcase [25]

Figure 4.1 presents the test case called Branin 5. It consists in a Branin function but the dimension
x2 is considered as an integer one. Therefore, we still have the three local minima.
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Figure 4.2: Branin_5 models visualization

On the left of Figure 4.2, in green, is plot the true function to approximate. For two sizes of DoE,
we have the plots of µ+ 3σ in red and µ−3σ in blue. The interest of the Bayesian optimization is to
estimate this uncertainty. Obviously, on the diagram for a DoE of 100 points, on the right, the blue
and red curves are really close because we have a good model approximation but with only 30 points,
we can clearly see that the model has some uncertainties. On the contour plot with 100 points, we
can clearly see the three local minima in purple. Even with 30 points, we found the structure of the
valley.

Figure 4.3: Set 1 case

Figure 4.3 shows an other test case in dimension 11 in which there is a categorical variable with 10
levels and a continuous variable.

35



Figure 4.4: Set_1 models visualization

On the left of Figure 4.4, it is the true problem where each continuous function curve corresponds
to a given level. Then, in the middle and on the right, two models are build with DoE of size 20 and
100. We see that the more we have points to build the model, the closer the model is to the true
function. The methods to generate the mixed DoE should gives approximately the same amount of
point for every level.
For the two functions Branin 5 and Set 1, in Figure 4.5 and Figure 4.6 and for different DoE sizes,
we have plot two quantitative values for model validation.

On the left, there is an estimated Root Mean Square Error defined as RMSE =
√

n∑
i=1

1
n
(ŷi − yi).

• For a given DoE of size n, we generate a Latin Hypercube Sampling of size 2.n.

• Half of this points are used for building the model with n points and are called the data set.

• The other n points are used to calculate the RMSE and are called the validation set.

On the right, the plot represents the surrogate models minima for different DoE size and in dotted
line the true minimum. These minima are computed with the SBO criterion on the models and
optimize with SLSQP.
For the values to be consistent, they are calculated over 20 runs and represented by boxplots. The
yellow line is the median, the box is delimited by the first and the third quartile.
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Figure 4.5: Branin_5 model validation

Figure 4.6: Set_1 model validation

Figure 4.5 and Figure 4.6 show that the RMSE converges to 0 when the number of points in the
DoE increase and that the estimated minimum converge to the true minimum. Another effect is that
the biggest the DoE the less the variation between the 20 runs is important and that is reflected by
the fact that the boxplot tends to become flat.

Now, we want to test the optimization of the metamodels by choosing adaptive enrichment points
instead of picking a lot of points. In this case, we want to have the best estimated minimum with
the least evaluation points.

37



Figure 4.7: Branin_5 optimization validation

Figure 4.8: Set_1 optimization validation

In Figure 4.7 and Figure 4.8, on the left, it is the log of the difference between the incumbent and
the actual minimum on average over 20 runs for different budget and on the right, we show boxplots
of the 20 incumbent after 50 iterations, the true minimum still being the dotted line. By considering
a log of difference of -2, the Branin function converges after 33 iterations on average and the set of
10 curves converges after 27 iterations.
An interesting result is that the final variation, after 50 runs, between the 20 minima founded for
Branin 5 is of the order of 0.02 whereas it is of the order of .33 for the function Set 1. Hence, when
an optimization is not precise on its minimum, error of e−4 for Set 1 contrary to an error of e−6 for
Branin 5, then, the best point found can vary a lot from one optimization to another. In practice,
we do not know the real true minimum but if we obtain important variations between two runs of
the same optimization, it is a good indicator that the optimization has not converged.
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Figure 4.9: CAT-EGO and GMHL optimizations compared on Set_1 test case

Figure 4.9 compare 4 variants of the method CAT-EGO with the GMHL implementation on the
test case Set_1. In CAT-EGO, the model used is the covariance matrices mixed kernel [31]. The
four methods correspond to different Expected Improvement sub-optimizations: NOMAD with Uni-
form Sampling (EGO Uni), NOMAD with improved sampling (EGO Imp) which corresponds to the
method developed in CAT-EGO [42] and two methods with a continuous optimization for each of
the 10 possible levels, BFGS algorithm (EGO BFGS) or NOMAD (EGO MAD per level). Starting
with 100 DoE of 5 points, for each method, the boxplots shows the numbers of iterations needed to
converge to a given accuracy (0.1 on the left, 0.001 on the right) with a maximal budget of 50 itera-
tions. For every method, the number between brackets is the number of optimizations that converged
to the correct optimal categorical level. For the accuracy 0.1, GMHL converged more quickly than
every other CAT-EGO method and 94 GMHL optimizations found the correct level. On the other
hand, when the requested accuracy is 0.001, only half the iteration converged with GMHL what is
worse than every other variant of CAT-EGO. The GMHL algorithm uses a new dimension for every
possible level, in this case, the KPLS models reduce the total dimension from 11 to 5 but this makes
the algorithm exploring more the space and, in particular, the categorical dimensions. As the model
is more complex, it can find quickly a promising region. This is also verified on the Branin test case
where the GMHL algorithm find a local optimum in approximately 5 iterations. Notwithstanding
this good exploration at the start, when it comes to find a good accuracy, the algorithm is not
adapted anymore because of three drawbacks : the increased number of dimensions led to a large
unfold region to explore, the continuous by part model makes it hard to find a good descent direction
for local optimization and the continuous expected improvement deceive the algorithm and makes it
partly searching into non-significant space (for example level 1.3 besides of level 1.2 that will both
be rounded to level 1). Compared to CAT-EGO, GMHL algorithm is better to explore the space
and find an approximation of the minimum but it becomes harder to find a precise value of this min-
imum and, in the last case, CAT-EGO is a more robust method. The proposed CAT-EGO method
(EGO Imp) and NOMAD perlevel gives similar results but the latter used 10 times more evaluations.
EGO Imp seems the best of the compared methods for finding a minimal value with an high accuracy.
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In the previous sections, two test cases were presented but you can find more problems in Appendix A
where you can find all the problems definition and the resulting curves and boxplots.
This table (Figure 4.10) summarizes the test cases used that you can find in Appendix but the
cases with constraints were not evaluated during this internship.

Figure 4.10: Test cases overview

Figure 4.11: Mean percentage of test cases converged for a given budget

Based on the 11 problems without constraints, Figure 4.11 shows the number of iterations required
in mean over 20 runs to converge (log |fmin − f ∗true| ≤ −2). The letter corresponds to abbreviation
of the name of the cases (S1= Set 1, RS= Rosen-Suzuki, B5= Branin 5,...).
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4.2 Preliminary results on a aerospace engineering application

To face the increasing environmental footprint of commercial aviation, industrial and research efforts
have been focusing on exploring unconventional configurations and new propulsion paradigms, mostly
based on electric technology. Such explorations require Overall Aircraft Design (OAD) that has to
be performed in an integrated multidisciplinary design environment [47].
Such design environments are often limited to multidisciplinary analysis, adapted for a single air-
craft configuration or require an important effort to be mastered. FAST-OAD (Future Aircraft
Sizing Tool-OAD) is a software program developed by ONERA and ISAE-SUPAERO for aircraft
sizing analysis and optimization with emphasis on user friendliness and modularity. It is an aircraft
sizing code based on Multidisciplinary Design Optimization (MDO) [2, 5] techniques and the point
mass approach to estimate the required fuel and energy consumption for a given set of Top Level
Aircraft Requirements (TLAR). This software FAST-OAD is an evolution of the original software
program, called FAST [48] based on OpenMDAO [3].

TLAR defined possible configurations and constraints. We want to select between configurations.
To do so, we used the Multidisciplinary Design Optimizer of FAST-OAD. This optimization problem
that aims at minimizing the fuel consumption for the mission (objective), with respect to the wing
position (design variables), subject to a static margin (constraints).
Sometimes, the constraints can not be respected because of the initial configuration so we should
have to optimize with constraints, the MDA is used as a black box function and we do not touch the
wing position variables, the "black-box function" does it. See the Figure 4.12 . The interface has
been set up by Nathalie Bartoli with the help of Christophe David (ONERA/DTIS).

Figure 4.12: FAST-OAD coupled with SMT for the optimization

Technically, the surrogate model of the fuel consumption for the mission depending on the initial
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configuration should be influenced by the hidden wing position variables so it should mimic the
outputs of the underlying optimizer.

The treated test case is the optimization of the Short Range Reference Aircraft CeRAS (CEntral Ref-
erence Aircraft data System) based on a Airbus A320. The details can be found at: https://w3.onera.fr/ceas-
tcad2014/sites/w3.onera.fr.ceas-tcad2014/files/06_reference_aircraft_s1_a_rwth.pdf
The variables of the SMT-GMHL optimizer are:

• The number of engines between 1 and 4,

• The layout for the engine position: under the wing or on rear fuselage,

• If the horizontal tail is attached to fuselage or on top of vertical tail,

• The Mean Average Chord at 25 percent for the wing in the x dimension between 16 and 18 meters.

Figure 4.13: Mixed variables for the BO

Figure 4.13 shows the definition in FAST-OAD of the variables, their name, their meaning and
their bounds.

Figure 4.14: FAST test case continuous variable

Figure 4.14 shows the meaning in aircraft design of the continuous variable. On Figure 4.16,
we can see that the tail of the aircraft and its size change from one configuration to another. The
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problem that we will resolve in SMT is, without constraint:

minimize
x, layout, T_tail, # of engines

Mission Fuel(FAST −OAD(x, layout, T_tail,# of engines))

For every 16 configurations (2 layouts, with or without t-tail, 1-4 number of engines), I ran a 1D
continuous optimization with the x_mac_at_25_percent variable between 16 and 18 and display
the outputs.

Figure 4.15: Data of the converged CeRAS configurations

Figure 4.15 shows for every configuration, the outputs of the MDO optimization with FAST-
OAD for the value minimizing the Fuel - Mission output. The legend "CeRASxyz" reads CeRAS
configuration with T_tail x in layout y and with z engines.
The 4 engines configurations are thus in pink and we see that the Maximum Take-Off Weight Break-
down (MTOWB) scales with the number of engines. The aircraft minimizing the fuel consumption
is the one with 1 engine under the wing and an horizontal tail attached to the top of the vertical
tail. Obviously, this configuration is unstable and the static margin is negative.
By running 16 optimizations purely continuous in 1D, we need around 2 points in DoE and 3
iterations to converge every time for a total of 48 iterations and 32 points DoE: 80 evaluations of
the expensive black-box function.
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Figure 4.16: Geometries of the CeRAS configurations with the optimal on the right

Figure 4.16 is the contour of geometry of the airplane for every continuously optimized configura-
tion. The optimal configuration is CeRAS 111 (layout 1 with a T_tail and 1 engine) for MAC at
25% of 16 meters.

With the new mixed code, with 10 points in the initial DoE, we assure to find the same optimal con-
figuration in 5 iterations which is a lot faster to compute: 15 evaluations (instead of 80 evaluations)
of the expensive black-box function. The minimal fuel consumption is 18799 kg.
The results are based on the optimization done with FAST-OAD. FAST-OAD is still in a development
phase and the mixed optimization was done without constraint. Therefore, the previous preliminary
results are only a proof of concept and should be considered as such. The airplane with only one
central engine is not physically relevant.
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Chapter 5

Conclusion

To conclude, this internship allow us to do a brief review of the literature on the mixed integer
efficient global optimization (bayesian optimization).
It concludes really well my Master II of the Ecole Nationale de l’Aviation Civile in Operations
Research and my Engineering diploma of the Institut National des Sciences Appliquées de Toulouse.
It allowed me to go further from the courseworks Advanced Combinatory Optimization (OCA) of
Capelle and Berghman and to overtake the courseworks of the INSA Computer Experiments with
the article of Roustant et al.
This internship at ISAE-Supaero and ONERA with N. Bartoli, Y. Diouane, T. Lefebvre and J. Mor-
lier was then a perfect opportunity to achieve my second cycle studies with strong relations with
both INSA and ENAC.

On the personal aspect, this internship was in an excellent environment of research, with a lot of
researchers and students and the supervisors helped me a lot to achieve better, especially during the
covid-19 lockout and I want to thanks them all in this conclusion.
They gave me the opportunity to make two presentations of the preliminary works of this internship
with M. Kokkolaras (McGill University, Canada) and D. Sinoquet (IFPEN, France).

About the results, I have still works to do but we can talk about the implementation into SMT, an
open-source Python library, of the GMHL methods to deal with integer and categorical variables
with the help of R. Lafage (ONERA/DTIS). After investigation of the method, both mixed models
and mixed optimization were implemented.
It was started to do a base of problems for mixed integer comparaison of methods and the complete
results of the methods are in appendix A. We treated the CeRAS problem with the ONERA toolbox
FAST-OAD with the help of C. David and S. Defoort (ONERA/DTIS).

This internship will end on the twenty-five of September and will lead to a thesis to tackle the
high dimension "High dimensional multidisciplinary design optimization for aircraft design". In this
PhD thesis, we will investigate efficient parameterization tools to significantly reduce the number
of design variables by using active learning technics. An extension of the method could be also
proposed to handle mixed continuous and categorical inputs using some previous works on low di-
mensional problems. Practical implementations within the OpenMDAO framework (an open source
MDO framework developed by NASA) are expected. This will continue the previous PhD works of
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M. A Bouhlel and R. Priem.

This internship led to correct results. We have still some improvement to do like comparison with
other methods, including new models based on the mixed kernels.... The results we have now are a
first step toward optimized mixed integers problems which can be presented to the European project
AGILE 4.0 and we are looking for generalize it to high dimension and constraints within the solver
SEGOMOE.
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Appendix A

Detailed Results

The first part of this appendix will present the 11 test cases and their definition. Then, in a second
part, the models and optimization results will be presented.

Figure A.1: Test cases overview

This table (Figure A.1) summarizes the test cases used that you can find in this Appendix but the
cases with constraints were not evaluated during this internship.

A.1 All test cases

Branin 1

From [33]
Reference solution: -4.517207270143658
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Figure A.2: Branin_1 case

Branin 2

From [33]
Reference solution: Reference : -14.186036350718284

52



Figure A.3: Branin_2 case

Goldstein 1

From [33]
Reference solution : 38.08474427
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Figure A.4: Goldstein_1 case

Cosine 1

From [31]
Reference solution: -1

Figure A.5: Cosine_1 case

Set 2
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From [31]
Reference solution: -0.6657395614066074

Figure A.6: Set_2 case

EVD52
From [42]
The modification made by Zuniga and Sinoquet is to considerate a categorical variable which select
between fi function.
We made the assumption that the continuous variables are between [-5,5] because the original prob-
lem was left unbounded.

Reference solution :-249.43247170013404

Figure A.7: EDV52 case

Rosen-Suzuki
From [42]
The modification made by Zuniga and Sinoquet is to considerate a categorical variable which select
between fi function.
We made the assumption that the continuous variables are between [-5,5] because the original prob-
lem was left unbounded.

Reference solution: 245
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Figure A.8: Rosen-Suzuki case

Spiral
From [42]
The modification made by Zuniga and Sinoquet is to considerate a categorical variable which select
between fi function.
We made the assumption that the continuous variables are between [-5,5] because the original prob-
lem was left unbounded.

Reference solution: 0

Figure A.9: Spiral case

Wong 1
From [42]
The modification made by Zuniga and Sinoquet is to considerate a categorical variable which select
between fi function.
We made the assumption that the continuous variables are between [-5,5] because the original prob-
lem was left unbounded.

Reference solution: -2389.627479486391
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Figure A.10: Spiral case

Set 1
From [42]
The modification made by Zuniga and Sinoquet is to considerate a categorical variable which select
between fi function.
We made the assumption that the continuous variables are between [-5,5] because the original prob-
lem was left unbounded.

Reference solution: -2.3296038673969974

Figure A.11: Set 1 case

Branin 5
From [23]
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Reference value: 0.49398053

Figure A.12: Branin 5 case

A.2 All results

Figure A.13: Branin_1 Model
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Figure A.14: Branin_1 Optimization

Figure A.15: Branin_2 Model

Figure A.16: Branin_2 Optimization
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Figure A.17: Branin_5 Model

Figure A.18: Branin_5 Optimization

Figure A.19: Cosine_1 Model
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Figure A.20: Cosine_1 Optimization

Figure A.21: EVD52 Model

Figure A.22: EVD52 Optimization
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Figure A.23: Goldstein_1 Model

Figure A.24: Goldstein_1 Optimization

Figure A.25: Rosen-Suzuki Model
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Figure A.26: Rosen-Suzuki Optimization

Figure A.27: Set_1 Model

Figure A.28: Set_1 Optimization
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Figure A.29: Set_2 Model

Figure A.30: Set_2 Optimization

Figure A.31: Spiral Model
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Figure A.32: Spiral Optimization

Figure A.33: Wong Model

Figure A.34: Wong Optimization
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Appendix B

Roustant et al. - Theorems about how to
construct matrices

Below are the two results that one’s used to generate Generalized Compound Symmetry matrices
under the centered (zero mean) assumption.

1. Assume that λg/. are of zero mean, the covariance matrix of η is a GCS block matrix with

∀(g, g′) ∈ {1..G}2 : Wg = B∗g,g′Jng + W ∗
g and Bg,g′ = B∗g,g′Jng ,ng′ where W

∗
g = Cov(λg/.|

−
λg/. = 0) is

a centered PSD matrix. Conversely, let T be a PSD CGS block matrix, T is the covariance of η
with zero mean error if B∗ =

∼
T and Cov(λg/.|

−
λg/. = 0) = Wg −

−
WgJg where

∼
T is the G× G matrix

obtained by averaging each block of T.
2. T is PSD iif

∼
T is PSD. T is positive definite iif

∼
T and all the diagonal blocks Wg are positive definite.

Figure B.1: Pratical usage to build a GCS matrix [31]

where "Eq. 18" is the theorem 1.
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Appendix C

qEI in SMT

For the optimization to run faster, one’s could seek to execute parallel optimizations. The Expected
improvement (EI) is extended to proposed q new sampling points instead of one, Ginsbourger et
al. [49] called this criterion the qEI criterion.
As explained in the documentation of SMT, the basic idea is to run q iterations of the EGO algorithm
and to set temporally the response ŷq of the q new sampling points to a virtual value.

To do so, 4 strategies have been implemented:

• The minimum constant liar (CLmin) strategy: ŷq = min(Y )

• The Kriging believer (KB) strategy: ŷq = µ(xq)

• The KB Upper Bound (KBUB): ŷq = µ(xq) + 3.σ(xq)

• The KB Lower Bound (KBLB): ŷq = µ(xq)− 3.σ(xq)
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