
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

DSPBench: a Suite of Benchmark
Applications for Distributed Data Stream
Processing Systems
MAYCON V. BORDIN1, DALVAN GRIEBLER2,3, GABRIELE MENCAGLI4, CLAUDIO F. R.
GEYER1, LUIZ G. FERNANDES2
1Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
2School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
3Laboratory of Advanced Research on Cloud Computing (LARCC), Três de Maio Faculty (SETREM), Três de Maio, Brazil
4Department of Computer Science, University of Pisa, Pisa, Italy

Corresponding author: Maycon V. Bordin (e-mail: mayconbordin@gmail.com).

ABSTRACT Applications characterized by the continuous processing of large data streams have recently
attracted the attention of the scientific community and industrial stakeholders. The need of high-level
programming tools has led to the design of Data Stream Processing Systems (DSPSs) able to ease the
development of streaming applications in distributed computing environments. Several systems of this
kind have been released and currently maintained as open source projects, like Apache Storm and Spark
Streaming. Although some benchmark applications are often used by the scientific community to test and
evaluate new techniques to improve the performance and usability of DSPSs, the available benchmark
suites are still lacking of representative workloads coming from the different areas of interest in the
stream processing domain. The goal of this paper is to present a new benchmark suite composed of 15
applications coming from areas like Finance, Telecommunication, Sensor Networks, Social Networks and
others. The paper describes in detail the nature of these applications, their full workload characterization
in terms of selectivity, processing cost, input size and overall memory occupation, and provides a first
assessment of the usefulness of our benchmark suite to compare real DSPSs by selecting Apache Storm
and Spark Streaming for this analysis.

INDEX TERMS Data Stream Processing, Big Data, Benchmarking, Apache Storm, Spark Streaming

I. INTRODUCTION

We are witnessing the exponential growth of data available
from different kinds of sources (e.g., sensors, financial tickers,
social media) often producing information in the form of
streams [1], i.e. unbounded sequences of data items received
at variable speed. Consequently, there has been a large
scientific effort in the design and development of tools for
processing streams in a near real-time fashion to extract
actionable intelligence.

Although this recent interest, the Data Stream Processing
(DSP) topic has been studied for years. First-generation
Data Stream Processing Systems (DSPSs) like Aurora [2],
Borealis [3], STREAM [4], and StreamIt [5] have been
originated from the Database community, and are designed to
execute relational algebra queries on data streams rather than
on finite and permanent relations (tables). This experience
has opened the domain of streaming analytics, with tools

and languages (e.g., SQL dialects like CQL [6]) to process
streams of structured records (often called tuples) and to
process them on-the-fly to calculate online statistics.

As opposed to stream processing, batch processing as-
sumes permanent static inputs available from distributed
filesystems or in memory, and has been made available to
programmers with well-known frameworks like MapReduce
and Hadoop. Over the last years, to complement such
set of programming tools for Big Data and data-intensive
computing, some second-generation DSPSs. (e.g., Apache
Storm [7], Apache Flink [8], Spark Streaming [9]) have
been released as open source projects, often under the
Apache umbrella. Such systems have two distinguishable
features with respect to first-generation DSPSs. First, they are
designed for distributed systems, and hide the complexity of
designing a distributed application to the final users. Second,
they target streaming applications not only in the domain

VOLUME 4, 2016 1

Bordin et al.: DSPBench

of streaming analytics, but a broader range of streaming
workloads dealing with structured or unstructured data (e.g.,
texts and images) can be modeled and developed using their
high-level API. In most cases, this API allows building data-
flow graphs of streaming operators (tasks), which can be
instantiated with general user-defined code. Furthermore,
each operator can be internally replicated (according to
its parallelism level), in order to increase the processing
throughput.

While the design of optimizations for DSPSs is a quite
hot topic in recent research, there is still the need of finding
representative streaming workloads to assess the full potential
of new streaming techniques and optimization strategies.
The existing applications commonly used in the research
literature (e.g., LinearRoad [10] or the RIoTBench suite [11])
mainly focus on the domain of relational algebra queries
and streaming analytics. However, they do not exhibit a high
variety of features in terms of their workload characterization
and complexity of the data-flow graphs. A more complete
review of the existing suites is given in Sect. II.

The main contribution of this paper is to provide a
new benchmark suite (called DSPBench) of 15 applications
coming from different areas and all needing the processing
features offered by modern DSPSs. In some cases, such
applications are derived from prior works, while in others
we have started from existing work but we completely design
the application structure from scratch. This results in a new
rich suite of applications (the largest as far as we known)
that we publicly provide to the community in a GitHub
repository1. The second goal is to create a low-level API
for the unified development of applications, enabling them
to be written once and ran anywhere as long as the specific
adapter components have been developed as well. Finally, we
exemplify the methodology based on our suite to assess and
compare the performance of two popular DSPSs (Apache
Storm and Spark Streaming), providing insights into how
DSPBench is capable of enabling a valuable comparison
between systems.

We claim that DSPBench can become a representative
benchmark suite for DSPSs in the future, and some of the
applications of our suite have already been used by some
existing research papers [12], [13], [14]2.

This paper is organized as follows. Sect. II reviews the
existing benchmark suites in the DSP domain. Sect. III
shows the architecture of our suite and its components.
Sect. IV presents the applications in DSPBench, with the
description of how we chose the different application areas,
the description of each application and of their features.
Sect. V presents a full workload characterization of all the
15 applications. Sect. VI exemplifies the use of our suite

1DSPBench source code is available here: https://github.com/GMAP/
DSPBench

2BriskStream repository available here https://github.com/
Xtra-Computing/briskstream gives credit to our preliminary
version of some DSPBench applications available here
https://github.com/mayconbordin/storm-applications.

(with a subset of its applications) for the evaluation of two
popular DSPSs: Apache Storm and Spark Streaming. Finally,
Sect. VII draws the conclusion of this paper.

II. RELATED WORKS
In this section, we review the literature closely related to
this paper. We introduce what are the main benchmark suites
available to the DSP community and which are their features
in terms of the presence of real-world applications, synthetic
ones, and whether a full workload characterization has been
proposed alongside the presentation of the suites. In this
analysis, we highlight why a new suite is needed, and the
reasons because our new DSPBench attempts to fill the
existing gaps.

A. EXISTING BENCHMARKS
One of the first proposed applications was the Linear
Road Benchmark [10] (LR). It simulates a tolling system
in a fictitious city with the purpose of calculating the
toll values based on traffic jams and accident proximity.
The original suite consists of five queries where only one
(named Toll Notification) is a continuous query whose results
are constantly updated based on the contents of the data,
while the others are historical queries based on events
stored in a database (so no streaming). For benchmarking
purposes, the LR queries have recently been fused in a single
application [12], in order to compare Apache Storm and
Flink with a more complex composition and interconnection
of operators. A widely adopted application is the Yahoo
Streaming Benchmark [15] (YSB). It is another relational
algebra query simulating an advertisement campaign, where
records grouped by the same campaign identifier are counted
in time windows of 10 seconds. Although the simplicity of
this application, which includes a filtering phase and a join
with a static table, it is still used in recent papers [16], [17]
to test and compare prototypes of new DSPSs.

BigDataBench [18] is a more recent suite of big data
applications. One of its merits is to include applications
beyond the set of relational algebra queries (search engines,
e-commerce, and social networks). However, most of the
applications are not for live streaming tasks, but they model
offline workloads that belong to the batch processing domain
(i.e. they are implemented in Spark and Hadoop). The suite is
currently maintained [19], and its last version (v5.0) consists
of 27 benchmarks from different domains (e.g., offline and
graph analytics, NoSQL and data warehousing). Only one
benchmark (grep) is provided in a streamed version with
Spark Streaming.

StreamBench [20] defines seven programs to test Apache
Storm and Spark Streaming. They have been designed
after a workload characterization in three dimensions: data
type, complexity, and use of historical data. The resulting
applications still have a very simple form (four of them
are based on a single operator, even stateless), which is
the main downside of this suite. Only three applications
are graphs of multiple interconnected operators. However,

2 VOLUME 4, 2016

Bordin et al.: DSPBench

Benchmark
Suite

Real-world
Applications

Synthetic
Applications Metrics DSPSs Unified

API
Workload
Charact.

Linear Road
Benchmark 1 - latency Aurora,

STREAM No No

Yahoo Streaming
Benchmark 1 - throughput,

latency
Storm, Flink,

Spark Streaming No No

BigDataBench - 1 wall clock time,
energy Spark Streaming No No

StreamBench - 7
throughput, latency,

fault tolerance,
durability

Storm,
Spark Streaming No Yes

RIoTBench 4 -
throughput, latency,

cpu/mem. usage,
jitter

Storm Yes Yes

HiBench - 4 latency Storm, Flink,
Spark Streaming No No

DSPBench 13 2 throughput, latency,
cpu/mem/net usage

Storm,
Spark Streaming Yes Yes

TABLE 1: Comparison between the existing benchmark suites of data stream processing applications. DSPBench is the new
suite proposed in this paper. For each suite, we considered only streaming applications (continuous queries), while in some
cases the suites provide also applications and their characterization for non-streamed tasks.

they still perform simple computations (like calculating the
maximum, minimum, sum, and average of streaming inputs)
and graphs are only linear chains (pipelines) of operators.
The suite is presented by highlighting that its applications can
be implemented in any DSPSs provided that they are adapted
to their specific programming interfaces. So, a unified API
seems to be not provided. Furthermore, in their analysis, the
authors propose specific metrics to evaluate the impact of
fault tolerance support on the performance of DSPSs. We
do not emphasize this aspect in our evaluation, although this
can be done in the future starting from the same metrics
used by StreamBench.

An interesting streaming suite is RIoTBench [11], which
defines 27 basic Internet of Things (IoT) tasks (e.g., filtering,
pattern matching, statistical analysis) that can be combined
to create micro-benchmarks. The authors propose four
applications composed of a subset of those tasks. This suite
is powerful and interesting since the task API has been
designed to be implemented in any DSPS. However, the
suite evaluation is performed only on Apache Storm, and the
task selection has been made in the field of IoT only, which
was the main goal of that work. Furthermore, although the
nature of the proposed tasks is well discussed in the paper,
their workload characterization is done in terms of operator
selectivity (number of outputs per input) and presence of
an internal state, while it could be extended with a more
precise analysis in terms of input size and processing time
per input that is missing.

HiBench [21] is a suite originally developed to test
batch processing computing platforms like MapReduce and
Hadoop. The applications are designed to stress various com-
ponents like HDFS throughput based on the different data-
access patterns exhibited by the proposed workloads. Only
recently the suite has been extended to cover DSPSs, with
four micro-benchmarks (wordcount, fixed window, identity,

and repartition) used to evaluate specific aspects of streaming
engines like changing the parallelism of a streaming task. The
micro-benchmarks have been implemented in Apache Storm,
Flink, and Spark Streaming. Although the suite is dense of
applications for the batch processing part, the streaming suite
is quite small and does not contain complex applications
involving the interconnection of several streaming tasks.

B. COMPARISON OF BENCHMARK SUITES
The suites described before partially cover the full potential
and expressive power of modern DSPSs. In most cases, they
either focus on a single real-world application or they use a
set of synthetic/micro- benchmark applications. Furthermore,
only a few suites propose a precise workload characterization.
Indeed, the relevance of a benchmark suite depends on the
applications selected, as they need to represent the most
significant use cases as well as a broad and diverse range
of behaviors. In the specific domain of DSP, the workload
characterization should take into account different aspects
that we will describe in more detail in Sect. V.

Table 1 reports the features of the existing suites The
reader can derive the structure of each suite in terms of real-
world applications (if any) and micro-benchmarks, the DSPSs
used in the analysis, the presence of an API that unifies the
development of the applications in various systems, and the
metrics used in the analysis. The last row in the table reports
the features of our DSPBench, which enriches the panorama
of existing benchmark suites both in terms of the number
of real-world applications available, and in terms of their
workload characterization and presence of a unified API to
ease the development.

III. DSPBENCH ARCHITECTURE
In this section, we describe the architecture of DSPBench
based on the components shown in Figure 1. One of the main

VOLUME 4, 2016 3

Bordin et al.: DSPBench

goals of our suite is to enable the comparison among different
DSPSs, not only existing ones but also next-generation
DSPSs that will be developed in the future. Ensuring that
each application has the same behavior across systems
requires some effort. This is because each DSPS exposes
features in a quite different way. For example, the API to
create operators and to connect them in complex data-flow
graphs with different distribution policies is different between
DSPSs. Analogously, the parallelism level of each operator
can be specified in different ways, e.g., in the declaration of
operators in Storm.

Probers ValidatorsAdapters

Storm
Adapter

Spark Streaming
Adapter

Correctness
Validator

Custom
Validator

… …

Latency
Prober

Throughput
Prober

… … … …Applications

Input OutputApplications

FIGURE 1: General architecture of BSPBench.

The translation of the application-agnostic code to the
DSPS-specific code is done by components called adapters.
An adapter is responsible for calling the API of the specific
DSPS and adjusting the application logic accordingly. By
standardizing the development of applications, it becomes
possible to insert probes in the operators and tuples for
monitoring purposes. These probers can inject timestamps in
the tuples to track the latency, they can count the number of
received and sent tuples of an operator, as well as how much
time is required for processing one tuple in an operator and
subsequently calculating its instant throughput. The probers
used by default in the suite are for collecting throughput,
latency, and resource (CPU, memory, and network) usage.
Furthermore, specific components (validators) verify the
correctness of the results.

Two other components of the architecture are the Input
and Output ones. The first is responsible for feeding the
applications with data streams while, the second one, for
storing the results so that they can be verified. The Input
component has been implemented using Apache Kafka [22],
a publish-subscribe distributed middleware. However, this
does not prevent others from using the benchmark suite with a
different messaging system (e.g., RabbitMQ or ActiveMQ) by
re-implementing the Input component. Similar considerations
can be made for the Output component, which should be
based on a storage system able to cope with the throughput
provided by a DSPS. We decided to use Cassandra [23] to
store outputs arriving at the sinks of our applications. Also
in this case this choice can be reconsidered by changing the
implementation of the Output component only.

IV. DSPBENCH APPLICATIONS
This section describes the applications in DSPBench. We
first outline the criteria chosen for the application selection.
Then, we describe each application in terms of its operator
graph and features (communication and role).

A. APPLICATION DOMAINS

The relevance of a benchmark suite is strictly dependent
on how its applications have been chosen. The goal in
DSPBench was to select applications covering a wide
spectrum of areas in the DSP domain. To this end, we
searched for papers describing new DSPSs, performance
comparisons between systems, and use cases. We applied
an in-depth search of the literature over the last eleven
years based on both analytical and browsing approaches [24].
Several query terms were formulated as well as synonyms
and variations in order to retrieve papers matching those
queries. Furthermore, an initial set of papers were selected,
and starting from them a path was followed through their
bibliography, until the point where no more new papers
were found. The main areas identified from the set of 50
resulting papers were: sensor networks, advertising, finance,
telecommunication, social networks, synthetic applications,
and network monitoring. The percentage of papers in our
set belonging to the different areas is depicted in Figure 2
and the complete list can be found in Table 2.

Gaming
1.5%
Telecom
10.6%

Advertising
9.1%

Social Network
21.2%

Finance
6.1%

Sensor Network
16.7%

Network Monitoring
6.1%

Synthetic
16.7%

Traffic Monitoring
9.1%

Count of Areas

FIGURE 2: Identified areas of interests in our bibliography
search over the last eleven years.

Area Papers
Finance [25], [26], [27], [28]
Network Monitoring [29], [30], [31], [32]
Synthetic [33], [34], [35], [36], [37], [38]
Traffic Monitoring [39], [40], [41], [42], [43]
Advertising [29], [30], [15], [44], [45], [46], [47]
Sensor Network [48], [49], [50], [51], [52], [53], [11], [54]
Social Network [55], [56], [57], [58], [59], [60], [61], [62],

[63], [18]
Telecom [64], [65], [66], [67], [68]
Gaming [69]

TABLE 2: Papers used in our applications selection.

The choice of the applications requires the use of a suitable
workload characterization in order to discard those with very

4 VOLUME 4, 2016

Bordin et al.: DSPBench

similar behavior. In past works [70], two techniques are em-
ployed to collect information enabling such characterization:
performance measurement instrumentation and source code
analysis. While the first requires a modification of the code
to allow the collection of statistics at run time, the second
one is fully static. We adopt both approaches in DSPBench.

In addition, we need to identify the relevant classification
dimensions of DSP applications. Past results are the ones
from the topic of scheduling algorithms for DSPSs, as they
usually estimated the cost of applications/operators to build
an execution plan accomplishing a target Quality of Service
(QoS). In [71] the authors propose a scheduling algorithm
able to reduce the latency and memory consumption with
results very close to the optimal. The importance of memory
usage was also acknowledged by the early schedulers for
first-generation DSPSs [72]. Thus, memory usage is an aspect
that has to take part in the characterization criteria.

Early works like [73] characterized the parameters affect-
ing the operator cost. They are: i) the input size, ii) the
selectivity, iii) the average time to execute the user-function
on each input, iv) the time to send outputs to destination
operators. Such information can be obtained by instrumenting
the code to collect such statistics.

The other two application-wise aspects need to be included
in the approach. The first is the identification of the operator
types involved in an application. A classification of operators
can be easily done based on relational algebra for stream
analytics (e.g., selection, projection, join, aggregates, group-
by). For streaming applications in other areas, we classify
operators based on their selectivity (filter, map, and flat-
map) and the presence of an internal state. The second is
related to the number of operators per application and their
communication pattern, i.e. the form of the data-flow graph.
At least two categories can be identified: applications based
on linear chains (pipelines) of operators, and applications
with more complex acyclic graphs, where an operator can
apply several distribution strategies to different subscribers.
Furthermore, each distribution between operators can have
different semantics. Three are the most used: i) shuffle means
that outputs of an operator are delivered to the next operator,
and internally to one of its replicas, randomly; ii) group-by
field means that all the inputs with the same key attribute(s)
are delivered to the same replica of the next operator; iii)
broadcast means that each input is delivered to all the replicas
of the next operator. The identification of these aspects can
be made by a source code analysis as well as through code
instrumentation.

Table 3 summarizes the different aspects of our workload
characterization. We will describe the results later in the next
section. We point out that our approach extends past works.
Indeed, the characterization proposed in StreamBench [20]
was limited to only three dimensions (data type, presence
of multiple operators, and use of historical data), while
RIoTBench [11] focuses on applications in the IoT domain
only.

Aspect Technique
Memory Usage source code analysis, instru-

mentation
Input Size instrumentation
Operator Selectivity instrumentation
Operation Cost instrumentation
Operator Type source code analysis
Communication Pattern source code analysis, instru-

mentation

TABLE 3: Workload characterization aspects in our approach.

B. THE BENCHMARK SUITE
We describe the 15 applications in DSPBench with a
description for each one, a figure showing the data-flow
graph and communication/operator type. Over the connection
between consecutive operators, we report the distribution
type (no label is shown for shuffle distributions). Furthermore,
we will show for each operator a unique identifier (ID) that
will be used in the results of the workload characterization
(in Section V).

1) Word Count (WC)
WC is a popular synthetic application splitting the sentences
of a long text in words, and counting the number of
occurrences of each word in the whole corpus. While the
operator (Splitter) doing the splitting of words is stateless,
words are sent to the instances of the operator doing the
counting (WordCounter) in such a way that all the instances
of the same word are delivered to the same instance of the
counting operator. The graph (see Figure 3) is a pipeline
with a group-by distribution in the middle.

group by wordSplitter

Messaging System

Word
Counter StorageTexts Source

ID=0 ID=1 ID=2

FIGURE 3: Word Count application (WC).

2) Machine Outlier (MO)
MO receives resource usage readings from computers in
a network, calculates the Euclidean distance of reading
from the cluster center of a set of readings in a given
time period, and applies the BFPRT algorithm to detect
abnormal readings [74]. This application has been cleaned
and integrated into our suite from an old GitHub repository3.
The data-flow graph in Figure 4 shows a pipeline of operators
with a group-by distribution in the middle.

3) Log Processing (LP)
The LP application4 receives a stream of logs coming from
HTTP web servers. They are in the Common Log Format
and need to be parsed in order to extract the relevant data

3https://github.com/yxjiang/stream-outlier.
4We adapted the code available (only for Apache Storm) in the GitHub

repository https://github.com/domenicosolazzo/click-topology.

VOLUME 4, 2016 5

Bordin et al.: DSPBench

Messaging System

CPU/Memory
Usage

Observation
Scorer

Storage

Anomaly
Scorergroup by id Alert

TriggererSource

ID=0 ID=1 ID=2 ID=3

FIGURE 4: Machine Outlier application (MO).

fields, such as the timestamp, request verb, resource name,
IP address of the user, and the status code. The data-flow
graph is shown in Figure 5.

Source

Messaging System

Http Server
Logs StorageVolume

Counter
group by

timestamp
minutes

Status
Counter

GeoFinder GeoStatsgroup by country

group by
status code

ID=0 ID=1

ID=2

ID=3

ID=4

FIGURE 5: Log Processing application (LP).

The parsed stream is duplicated to three operators. The
VolumeCounter operator counts the number of visits per
minute, with each event representing a single visit. The
StatusCounter operator stores the number of occurrences
of each status code in an associative array. The GeoFinder
operator finds the location of the user using its IP address
and an IP location database (MaxMind or GeoIP), and emits
a new event with the name of the country and city of the
user if found. The subsequent operator, GeoStats, receives
the location information and updates the counter per country
and city, emitting the new values.

4) Sentiment Analysis (SA)
The SA application5 uses a simple NLP (Natural Language
Processing) technique to calculate the sentiment of sentences,
consisting of counting positive and negative words and using
the difference to indicate the polarity of the sentence. The
application is designed to receive a stream of tweets in JSON
format, where each tweet has to be preliminary parsed in

5Our code has been inspired by the code in the repository https://github.
com/voltas/real-time-sentiment-analytic.

order to extract the relevant fields (identifier of the tweet,
language, and text content). The graph is the pipeline in
Figure 6.

Messaging System

Tweets Classifier StorageSource

ID=0 ID=1

FIGURE 6: Sentiment Analysis Application (SA).

After being parsed, the tweets are filtered to remove
those that have been written in a language that is not
supported by the application. By default, only English is
supported, although our code has been designed in order to
easily switch between languages by loading the right list
of negative/positive words that must be available to support
a new language. The Classifier operator is in charge of
removing so-called stop words, i.e. words that usually do
not carry sentiment and thus are irrelevant. Then, it counts
the positive and negative words in the message. Finally, the
sentiment of the tweet is produced outside: it is positive if
the number of occurrences of positive words is greater than
the negative ones, or negative otherwise.

5) Traffic Monitoring (TM)
The TM application6 is a chain of operators as in Figure 7.
It receives events emitted from vehicles containing their
identifier, location (latitude and longitude from a GPS),
direction, current speed, and timestamp. The MapMatcher
operator receives these events and identifies the road that
vehicles are riding. To do so, this operator is initialized with
a bounding box that corresponds to the borders of the city
being monitored, enabling the component to eliminate the
events that occurred outside the city limits. It also loads
a shapefile with all the roads of the city, which is used
to lookup the road that vehicles are riding based on their
current location. Geo-spatial operations are done using the
GeoTools library [75].

Source

Messaging System

Map
Matcher

StorageSpeed
Calculator

group by road id

GPS Traces

ID=1ID=0

ID=2

FIGURE 7: Traffic Monitoring application (TM).

After finding the road, the MapMatcher operator appends

6Our TM code extends the source code available for Storm at https:
//github.com/whughchen/RealTimeTraffic.

6 VOLUME 4, 2016

Bordin et al.: DSPBench

the road ID to the event and forwards it to the Speed-
Calculator operator, which calculates the average speed
of the vehicles for each road creating a new event with
the timestamp, road ID, average speed and the number of
vehicles on the road.

6) Spam Filter (SF)
The SF application uses Naive Bayes [76] to analyze if
email messages are spam (or ham). As opposed to other
applications that require an offline training phase, in this
case, there is a training stream that enables the application
to be trained in real-time. The data-flow graph (see Figure 8)
is composed of several operators. This application processes
two logically separated streams (for online training and
for the analysis), which is a feature not used by previous
applications.

group by word

group by word

broadcast word count

Source
Analysis

Tr
ai

ni
ng

Messaging System

An
al

ys
is

Tokenizer Word
Probability

Bayes Rule

group by id

Storage

ID=0

ID=2 ID=3

ID=4

Source
Training

ID=1

FIGURE 8: Spam Filter application (SF).

The application also supports offline training, which
means that the probabilities of words are pre-loaded by the
WordProbability operator. In this case, the events from the
Tokenizer operator do not need to be grouped by word since
all the instances of WordProbability have a static read-only
table with all the probabilities of the words. The advantage
of offline training is that the recovery of an operator after a
failure is very quick since it only needs to load the probability
file again instead of having the be trained from scratch. The
downside is that instances of this operator consume memory
to load the large probability file.

7) Trending Topics (TT)
The goal of TT is to extract topics from a stream of tweets,
count the occurrences for each topic in a window of events
(limited size), and emits only the popular topics (i.e. the
trending topics).

The occurrences of topics are tracked by a sliding-window
operator (RollingCounter), which advances by a fixed interval
of time. The IntermediateRanking operator is used to rank
a subset of topics, and in a fixed interval of time, these
intermediate scores are sent to the TotalRanker operator,
which merges the intermediate scores and emits the final

ranking scores of topics. The graph is a pipeline of operators
shown in Figure 9.

group by word

group by rankingRolling
Counter

Messaging System

Tweets

Intermediate
Ranking

Storage

Total
Ranker

Source Topic
Extractor

ID=0 ID=1

ID=2 ID=3 ID=4

FIGURE 9: Trending Topic application (TT).

An example of such an application is the TwitterMon-
itor [77], a system that detects trends in real-time from
Twitter. A similar application has also been used to compare
the performance of a traffic monitoring and analysis tool
called BlockMon [68].

8) Click Analytics (CA)
CA receives events from users accessing a website. These
inputs are logs from the web server, usually in the Common
Log Format, which means they have to be parsed in order
to extract the relevant data fields. The most common fields
are the timestamp, URL, IP address of the user, identifier of
the user (the IP address is used if the ID is not available).
The graph is depicted in Figure 10.

VisitStats

Source

Messaging System

ClickStream Storage

Repeat
Visit

GeoFinder GeoStats

group by
url, client

group by
country

ID=0

ID=1

ID=2

ID=3

ID=4

FIGURE 10: Click Analytics Application (CA).

After the Source operator, the stream is broadcast to two
destination streams using a different distribution strategy
(shuffle and group-by). In the RepeatVisit operator, events
are grouped based on the URL and ID of the user. These two
fields are used as a key in an associative array to verify if the
user has already visited the URL or not. The downstream
operator VisitStats counts the total number of visits and
unique visits.

On the other stream, the events are randomly distributed
among the instances of the Geography operator. During the
initialization, it creates a connection to a remote database
(both MaxMind or GeoIP can be used). Upon receiving an
event, the operator queries the database with the user IP

VOLUME 4, 2016 7

Bordin et al.: DSPBench

address and receives as a result the location of the user.
The operator extracts from the location the name of the
city and the country and forwards them as a new event to
the GeoStats operator. This latter stores some information
fields for each country in an associative array. One field is
a counter of visits. The other is an associative array with
counters per city within the country. Upon the arrival of
events, this operator updates the content of its associative
array and emits the new values.

9) Fraud Detection (FD)
FD uses a Markov model [78], created during an offline
phase, to calculate the probability of a credit card transaction
is a fraud. The source operator is in charge of cleaning the
raw input stream of credit card transactions that are delivered
to the Predictor operator grouped by identifier. The predictor
uses the model to emit transactions that are considered a
fraud with a minimum threshold probability. The graph is
shown in Figure 11.

O
ffl

in
e

Training
Data

Projection
Markov State

Transition
Model

Training Model

O
nl

in
e

Source

Messaging System

Credit Card
Transactions Predictorgroup by id Storage

ID=0 ID=1

FIGURE 11: Fraud Detection application (FD).

10) Spike Detection (SD)
The SD application (see Figure 12) receives a stream of
readings from sensors in order to monitor spikes. The
MovingAverage operator receives these events grouped by the
sensor identifier and maintains for each identifier a moving
window. When a new event is received, the operator adds
the new value to the corresponding window and emits a new
event with the identifier of the device, the current value, and
the moving average. The operator SpikeDetector receives
these events and based on a threshold value specified at
initialization, checks whether the current event is a spike or
not, by computing the relative difference between the current
value and the average of the last window and emitting those
values that exceed the threshold.

11) Bargain Index (BI)
BI is used in past research papers [25], [26], [79] to evaluate
IBM InfoSphere Streams [80] (we translated the code to be
included in our suite, making it available to be run in any
DSPS). The application analyzes stocks available for selling
in quantity and price below the mean observed in the last time
window. To this end, the application computes a so-called
bargain index, a scalar value representing the magnitude

group by device idSource

Messaging System

Sensor
Data

Moving
Average

Spike
Detector Storage

ID=0 ID=1

ID=2

FIGURE 12: Spike Detection application (SD).

of the bargain. The data-flow graph is shown in Figure 13.
The system is fed by a stream of trades and quotes from a
financial market. A trade is a completed transaction while a
quote is a selling/buying proposal (called the bid/ask in the
financial jargon). The Source operator receives both types
of inputs and splits them in two separate streams analyzed
in parallel.

Q
uo
te
s

Messaging System

Tr
ad
es

VWAP

group by
stock

Bargain
Indexergroup by

stock

Source group by stock

Storage

ID=0

ID=1

ID=2

FIGURE 13: Bargain Index application (BI).

The VWAP operator computes the volume-weighted
average price of trades for the same stock symbol over
a window of the last 15 trades received. The BargainIndexer
operator receives quotes and calculates the bargain index
(which requires the comparison between the price and volume
of the quote with the last VWAP computed). Only quotes
with a bargain index greater than a threshold are emitted
to the sink. Further information about the definition of the
bargain index, and of past uses of this application, can be
found in [25], [26], [79].

12) Reinforcement Learner (RL)
We developed this application based on an existing repository
of predictive and exploratory machine learning tools7. The
application has only one operator doing the processing
(ReinforcementLearner). It uses the interval estimate algo-
rithm [81], and to choose the action to take, it uses second-
order statistics of the reward distribution. The graph is shown
in Figure 14.

The input stream conveys PRLs (Page Request Logs)

7https://github.com/pranab/avenir

8 VOLUME 4, 2016

Bordin et al.: DSPBench

broadcastSource
Rewards

Reinforcement
Learner

ID=0

Source
Events

ID=1

Actions

ID=2

R
ew

ar
ds

Messaging System
Ev
en
ts

FIGURE 14: Reinforcement Learner application (RL).

consisting of a session identifier, and a counter incremented
at each new request. The ReinforcementLearner operator
decides which page to display from a pre-configured list and
sends a new event with the session and page identifiers. The
source also receives CTRs (Click Through Rates) for each
one of the pre-configured pages, which can be translated as
the performance of each page displayed to the users. The
CTR data are also fed into the ReinforcementLearner for
building a reward histogram of each page. This is used for
the learning algorithm to improve its decision making.

The algorithm is characterized by two phases: exploration
and exploitation. In the beginning, the reward distribution
does not have enough data, so the algorithm chooses actions
randomly. When enough data are available, the exploitation
phase begins, with the algorithm choosing actions with the
highest mean reward.

13) Smart Grid Monitoring (SM)
This application was proposed for the DEBS 2014 Grand
Challenge8. It monitors the energy consumption of a smart
electricity grid in order to allow load predictions and
detection of outliers. It is based on a graph of operators
as depicted in Figure 15.

The application produces two results: outliers per house
and house/plug load predictions. The outlier detection is
done by first calculating the global median of all houses
and then comparing it with the median of each house plug
(values above the global median are considered outliers). The
prediction uses the current average and median to predict
future loads.

14) Telecom Spam Detection (VS)
The application (called VoipStream or simply VS) detects
telemarketing users by analyzing Call Detail Records (CDRs)
using a set of filters based on time-decaying bloom fil-
ters [82]. A similar application is used in the evaluation of

8http://www.cse.iitb.ac.in/debs2014/?page_id=42

Smart Grid

Messaging System

Source

Sliding
Windows

broadcast

Global
Medianbroadcast

Plug
Median

group by house_id,
household_id, plug_id

Outlier
Detector

broadcast

group by
plug key

House
Load

Predictor
group by house_id

Plug
Load

Predictor
group by house_id

Storage

ID=0

ID=1 ID=2

ID=3

ID=4

ID=5

ID=6

FIGURE 15: Smart Grid Monitoring application (SM).

the BlockMon system [68]. The application consists of a
complex graph of 12 operators depicted in Figure 16.

group by caller, callee
Source

Messaging System

CDR

Variation
Detector

Storage

ECR RCRENCR ECR24 CT24

group by caller

group by callee

group by caller

group by caller group by caller

FoFiR

group by caller

group by caller

URL

group by caller

group by caller

ACD

group by caller group by caller

Global
ACD

group by caller

broadcast

Scorer

group by caller
group by caller group by caller

group by caller

ID=0

ID=1

ID=2 ID=3 ID=4 ID=5 ID=6 ID=7

ID=8 ID=9 ID=10

ID=11

FIGURE 16: Voip Stream application (VS).

Apart from the source, the other operators in VS belong
to two categories: filters and scorers. Filters (CT24, ECR,
ECR24, ENCR, and RCR) implement on-demand time-
decaying bloom filters to keep track of the number of unique
incoming participants in a way that the actual rate decays
according to the insertion time. Scorers receive rates from

VOLUME 4, 2016 9

Bordin et al.: DSPBench

Acronym Application Name Area Dataset
WC Word Count Text Processing Project Gutenberg (∼8GB)
MO Machine Outlier Network Monitoring Google Cluster Traces (36GB)
LP Log Processing Web Analytics 1998 WorldCup (104GB)
SA Sentiment Analysis Social Network Twitter (<collected>)
TM Traffic Monitoring Sensor Network Beijing Taxi Traces (∼300MB)
SF Spam Filter Telecommunications Enron Email Dataset (2.6GB)
TT Trending Topics Social Network Twitter (<collected>)
CA Click Analytics Web Analytics 1998 WorldCup (104GB)
FD Fraud Detection Finance <generated>
SD Spike Detection Sensor Network Intel Berkeley Research Lab (150MB)
BI Bargain Index Finance Kaggle Stock Market Dataset of NASDAQ (3GB)
RL Reinforcement Learning Advertising <generated>
SM Smart Grid Monitoring Sensor Network DEBS 2014 Grand Challenge (3.2GB)
VS VoipStream Telecommunications <generated>
AD Ads Analytics Advertising KDD Cup 2012 (12GB)

TABLE 4: Areas and datasets of each application in DSPBench.

filters and emit a properly weighted value once they have
received at least one rate from each input. The application
makes intensive use of group-by distributions (using two
fields, the caller, and the callee identifiers).

15) Ads Analytics (AD)
AD is an application based on previous research papers [83]
to calculate the Click Through Rate (CTR) of advertisements
(ads). It receives two streams of events: impressions of
ads and clicks of ads. With those two streams, the CTR
is calculated for the combination of the user query and
advertisement identifier. The total sum of impressions and
clicks per query/ads pair is stored in memory and updated
based on a time window. The CTR is emitted at fixed intervals
of time for each query/ads pair. The graph (see Figure 17)
is a graph of four operators: two source operators sending
data with a group-by distribution.

Messaging System

Clicks

Impressions

StorageRolling
CTR

group by
query id
and ad id

group by
query id
and ad id

Source

ID=0 ID=1

FIGURE 17: Ads Analytics application (AA).

V. WORKLOAD CHARACTERIZATION
A summary of the chosen applications, the selected areas,
and the origin of the datasets used to reproduce a realistic
input stream for each of them is provided in Table 4. Most
of the datasets consist of data from real-world scenarios. In
the case of FD, RL, and VS, a dataset has not been found,
instead, a random generator has been used and included in
the source code of DSPBench.

There are also cases where the size of the dataset is
not big enough, i.e. the dataset can be consumed in a few
minutes, requiring it to be replicated until its size becomes

acceptable. It is important to note that replicating a dataset is
not always as simple as making copies of it. There are cases
where some data fields have to be changed in order to not
break the application semantics. As an example, datasets that
have timestamp fields must be altered in order to follow a
continuous timeline. This is done automatically by the Input
component of the DSBBench architecture (see Figure 1).

To characterize the selected applications, we conducted
specific experiments on a single machine in order to measure
the selectivity of operators, the time required to process one
tuple per operator, the size of the tuples at each operator,
and the memory usage of the applications. They are all
characteristics requiring instrumentation as shown in Table 3.
The machine is an Intel Core i7 5500U with a clock rate of
2.4 GHz, 8 GB of RAM, 1 TB Hard Drive + 8 GB SSD, and
Ubuntu 16.04 LTS 64bit. For what regards the remaining
two static characteristics (operator type and communication
pattern) requiring source code analysis, they have already
been provided in the previous section with the description
of the applications and of their data-flow graphs.

The results of the selectivity analysis are shown in
Figure 18a for the operators of the 15 applications (we
excluded sources because they do not receive inputs and
sinks because they do not emit outputs). As already stated,
the selectivity is the ratio between the total number of tuples
received and emitted by the same operator. The greater
the selectivity, the greater is the number of tuples emitted
per input. However, this does not necessarily mean that
the overhead increases, as some DSPSs group tuples and
send them in batches to optimize communications. From the
analysis, the applications in the suite with higher selectivity
are WC (with the Splitter operator), TT (RollingCounter),
and SF (Tokenizer). This last is by far the one with the
highest selectivity. For the other applications, selectivity is
in most cases smaller than 1.0 (filtering) or exactly 1.0 (for
map and projection operators).

The second observed characteristic is the time spent by
an operator to process a single input tuple. The results are
shown in Figure 18b correspond to the 95-th percentiles
obtained from samples retrieved every 5 seconds (several

10 VOLUME 4, 2016

Bordin et al.: DSPBench

0.0
2.5
5.0
7.5

10.0

WC

0
5

10
15
20
25

MO

0.00
0.25
0.50
0.75
1.00

LP

0.00
0.25
0.50
0.75
1.00

SA

0.00
0.25
0.50
0.75
1.00

TM

0
50

100
150
200

SF

0
1
2
3
4

TT

0.00
0.25
0.50
0.75
1.00

CA

0e+00
2e-05
4e-05
6e-05
8e-05

FD

0.00
0.25
0.50
0.75
1.00

SD

0.0
0.5
1.0
1.5
2.0

BI

0.00
0.25
0.50
0.75
1.00

RL

0.00
0.25
0.50
0.75
1.00

Operator ID

SM

0.0
0.5
1.0
1.5
2.0

Operator ID

VS

0.000
0.005
0.010
0.015
0.020

Operator ID

AA

se
le

ct
ivi

ty
se

le
ct

ivi
ty

se
le

ct
ivi

ty
se

le
ct

ivi
ty

se
le

ct
ivi

ty

OP1 OP2 OP1 OP2 OP3 OP1 OP2 OP3 OP4

OP1 OP1 OP2 OP2 OP3 OP4

OP1 OP2 OP3 OP4 OP1 OP2 OP3 OP1OP4

OP1 OP2 OP1 OP2 OP2

OP2 OP4 OP6 OP3 OP6 OP9 OP1

(a) Selectivity

0.00

0.02

0.04

WC

0.0000
0.0025
0.0050
0.0075
0.0100

MO

0.00
0.01
0.02
0.03
0.04

LP

0.00
0.05
0.10
0.15
0.20

SA

0
20
40
60
80

TM

0
2
4
6

SF

0.00
0.05
0.10
0.15
0.20

TT

0.00
0.01
0.02
0.03
0.04

CA

0.000
0.002
0.004
0.006
0.008

FD

0.000
0.005
0.010
0.015
0.020
0.025

SD

0.0
0.1
0.2
0.3
0.4

BI

0.000
0.005
0.010
0.015

RL

0.000
0.025
0.050
0.075

Operator ID

SG

0
100
200
300

Operator ID

VS

0.000
0.005
0.010
0.015
0.020
0.025

Operator ID

AA

tim
e

(m
s)

tim
e

(m
s)

tim
e

(m
s)

tim
e

(m
s)

tim
e

(m
s)

OP0 OP1 OP2 OP0 OP1 OP2 OP3 OP0 OP1 OP2 OP3 OP4

OP0 OP1 OP0 OP1 OP2 OP0 OP1 OP2 OP3 OP4

OP0 OP1OP0 OP1 OP2 OP3 OP4 OP0 OP1 OP2 OP3 OP4

OP0 OP1 OP2 OP0 OP1 OP2OP0 OP1 OP2

OP0 OP2 OP4 OP6 OP0 OP3 OP6 OP9 OP0 OP1

(b) Processing time (95-th percentile)

FIGURE 18: Selectivity and processing time per input (95-th percentile) of the operators in DSPBench.

hundreds of samples are retrieved for each operator during
the long-running of the applications). Here we also include
the source operators in the analysis.

There are applications with homogeneous processing
times across operators, while others have bigger differences.
The highest processing time is for the Tokenizer operator
(OP2) in SF, which can be explained by its high selectivity,
see Figure 18a. The second computationally-demanding
application is TM, where the slowest operator is MapMatcher
(OP1). This happens although this operator actually filters
some tuples (it checks the bounding box of the city by
discarding inputs not falling in the monitored area). However,
although with a selectivity less than 1.0, its computational
cost is high due to the calls of the GeoTools functions,
which revealed expensive. For WC the slowest operator
is the one splitting sentences into words (OP1). MO is a
fine-grained computation where the slowest operator is the
source producing the stream inputs. This also happens for
TT. For VS, although it has a complex graph, one operator
(ValidationDetector, OP1) is the slowest one, because it
broadcasts each input tuple to six distinct operators as shown
in Figure 16.

Figure 19a shows the size of the tuples handled by the
operators of the applications in our suite. In some cases, the
size is variable during the execution, while in others it is
fixed to a specific value. In both cases, we report the sizes
using boxplots. The usual behavior of the tuple size is to
decrease along the path from the sources to downstream
the data-flow graph, which is why the source has usually
the greater tuple size. Some exceptions are MO, FD, SA,
SM, and RL, where the tuple size increases along the path.

This happens because the original tuple is carried along with
the steps in the graph, while more information fields are
aggregated with the tuple at each step. It is worth noting
that the tuple size and the selectivity are often not correlated.
There are cases, e.g., SF with the Tokenizer operator (OP2),
where although the selectivity is high, the tuple size is small
as well as its variation.

It is important to have applications with different patterns
of memory usage in the benchmark suite. Figure 19b
shows the distribution of the memory usage, measured at
fixed time intervals during the execution (every second).
The chart is a kernel density plot showing the density
corresponding to continuous values of memory occupation.
The selected applications exhibit five memory behaviors:
fixed and variable memory usage; and low, medium, and
high memory usages. In Figure 19b, applications with a wide
base in the chart have a high variation of memory usage
(like AA, BI, VS, and TM), while those with a narrow base
have a less variable memory consumption (like WC, SD,
SA, LP, and SF). As a further observation, we point out that
bigger tuple sizes do not necessarily mean high and variable
memory usage (like in VS).

VI. EXPERIMENTS
The aim of this final section is to exemplify the use of
DSPBench to evaluate different DSPSs. We do this by select-
ing a small representative subset of the applications in our
suite, and we consider two different DSPSs: Apache Storm
and Spark Streaming. These two systems are worth being
compared because they adopt different processing models
(one tuple-at-a-time versus micro-batching). Although a full

VOLUME 4, 2016 11

Bordin et al.: DSPBench

50
100
150
200

WC

160
180
200
220
240

MO

0
100
200
300

LP

0
5000

10000
15000
20000

SA

100

150

TM

0
2500
5000
7500

10000
SF

0
5000

10000
15000
20000

TT

0
100
200
300
400

CA

140
150
160

FD

100
120
140
160
180

SD

0

20000

40000

60000
BI

140

160

180

RL

50
100
150
200
250

SM

0
5000

10000
15000

VS

210
240
270
300

AA

tu
pl

e
siz

e
tu

pl
e

siz
e

tu
pl

e
siz

e
tu

pl
e

siz
e

tu
pl

e
siz

e

Operator ID Operator ID Operator ID

OP0 OP1 OP2 OP0 OP1 OP2 OP3 OP0 OP1 OP2 OP3 OP4

OP0 OP1 OP0 OP1 OP2 OP0 OP1 OP2 OP3 OP4

OP0 OP1OP0 OP1 OP2 OP3 OP4 OP0 OP1 OP2 OP3 OP4

OP0 OP1 OP2 OP0 OP1 OP2OP0 OP1 OP2

OP0 OP2 OP4 OP0 OP3 OP6 OP9 OP0 OP1OP6

(a) Tuple size (bytes)

0 1000 3000 5000

0.
00

0
0.

00
4

0.
00

8

WC

N = 103 Bandwidth = 17.01

D
en

si
ty

0 1000 3000 5000

0e
+

00
6e

−
04

MO

N = 41 Bandwidth = 134.5

D
en

si
ty

0 1000 3000 5000

0.
00

0
0.

00
3

LP

N = 359 Bandwidth = 33.71

D
en

si
ty

0 1000 3000 5000

0.
00

0
0.

01
0

SA

N = 145 Bandwidth = 7.122

D
en

si
ty

0 1000 3000 5000

0.
00

00
0

0.
00

02
0

TM

N = 1423 Bandwidth = 197.6

D
en

si
ty

0 1000 3000 5000

0.
00

0
0.

00
4

SF

N = 1088 Bandwidth = 12.29

D
en

si
ty

0 1000 3000 5000

0.
00

0
0.

01
0

TR

N = 186 Bandwidth = 7.939

D
en

si
ty

0 1000 3000 5000

0e
+

00
6e

−
04

CA

N = 44 Bandwidth = 151.2

D
en

si
ty

0 1000 3000 5000

0.
00

00
0.

00
08

FD

N = 40 Bandwidth = 113.2

D
en

si
ty

0 1000 3000 5000

0.
00

0
0.

00
3

0.
00

6

SD

N = 37 Bandwidth = 22.85

D
en

si
ty

0 1000 3000 5000

0.
00

00
0

0.
00

02
0

BI

N = 671 Bandwidth = 255.3

D
en

si
ty

0 1000 3000 5000

0e
+

00
6e

−
04

RL

N = 34 Bandwidth = 133.1

D
en

si
ty

0 1000 3000 5000
0.

00
00

0
0.

00
01

5

SM

D
en

si
ty

0 1000 3000 5000

0.
00

00
0

0.
00

01
5

VS

D
en

si
ty

0 1000 3000 5000

0e
+

00
3e

−
04

AA

D
en

si
ty

(b) Memory usage (MByes)

FIGURE 19: Tuple size and memory usage of the 15 applications in DSPBench.

comparison between DSPSs is not our goal, we propose this
analysis to show the potential of our suite to stress different
aspects of the DSPS architecture.

The chosen subset of applications is composed by Log-
Processing (LP), TrafficMonitoring (TM), and WordCount
(WC). LP is an application example with a complex acyclic
data-flow graph (see Figure 5), involving several kinds of
distributions (shuffle and group-by) as well as a broadcast
out of the Source operator. TM has been chosen for its large
memory footprint and because it is very computationally
demanding (the MapMatcher operator is one with the highest
processing time per input). Finally, WC has been selected
because it exhibits a medium level of selectivity (see
Figure 18a), which is instead very low in the other chosen
applications.

A. PLATFORM SETUP AND METRICS
The experiments were executed in the Azure Cloud com-
puting service with a cluster of eight computing instances,
one master instance, and three data instances, all of the type
Medium (Standard_A2) running Ubuntu. Each instance has
two CPU cores, 3.5 GB of memory, a local HDD of 135 GB
with a maximum I/O disk throughput estimated in 500 IOPS.
The message system adopted was Apache Kafka installed on
the 3 data instances. The data producers that fed Kafka were
also installed on the data instances, thus avoiding network
traffic. Each data instance had one data producer reading
data from a separate HDD and forwarding it to Kafka. On
the application side, the number of Kafka partitions always
matched the number of instances of the source operator in
each application.

Each experiment is executed three times until the whole
dataset for the given application has been emitted to the
DSPS. All metrics are calculated after the end of the
execution, by querying the storage system that recorded the
stream outputs. Some measurements, such as the throughput
of a single operator instance, are logged locally and then
flushed to the storage system. We configure DSBBench
with some probers (see Sect. III) to collect the following
measurements and derive corresponding metrics:

• throughput: it is collected at the level of single
operators by using a counter and a variable to record the
current timestamp. The instant throughput is measured
as the ratio between the number of outputs produced and
the current running time. Instant throughput samples
are then aggregated to produce the average throughput
per operator;

• latency: every tuple has a creation timestamp recorded
when it is generated by the source outside the DSPS.
All the tuples flowing in the graph inherit the creation
timestamp of the upstream tuples according to [84]. The
instant latency is measured as the difference between
the current time at the sink and the creation timestamp
contained in the received tuple. We usually use the
95-th percentiles of the instant latency, and the Network
Time Protocol (NTP) to ensure a coherent global time
in the cluster;

• resource consumption: this prober uses Ganglia [85]
to monitor the nodes in the clusters. The goal is to
collect consumption metrics related to CPU, memory
and network utilization, in order to study the behavior
of the DSPS by changing the application configuration

12 VOLUME 4, 2016

Bordin et al.: DSPBench

0

10

20

30

40

n1
_x

1_
x5

_x
6_

x3

n1
_x

2

n2
_x

1

n2
_x

1_
x5

_x
6_

x3

n8
_x

2_
x5

_x
6_

x3

Configurations

S
ec

on
ds

WordCount on Apache Storm − Latency (95th Percentile)

(a) WC - Storm

0

1

2

3

4

5

n1
_x

1_
x2

_x
1_

x4
_x

2

n1
_x

2_
x2

_x
1_

x4
_x

2

n2
_x

1_
x2

_x
1_

x4
_x

2

n4
_x

1

n4
_x

1_
x2

_x
1_

x4
_x

2

n8
_x

1

n8
_x

1_
x2

_x
1_

x4
_x

2

n8
_x

2_
x2

_x
1_

x4
_x

2

Configurations

S
ec

on
ds

LogProcessing on Apache Storm − Latency (95th Percentile)

(b) LP - Storm

0

50

100

150

200

250

n1
_x

8_
x2

_x
2

n2
_x

6

n4
_x

8_
x2

_x
2

n8
_x

1

n8
_x

2

n8
_x

4_
x2

_x
2

Configurations

S
ec

on
ds

TrafficMonitoring on Apache Storm − Latency (95th Percentile)

(c) TM - Storm

0

10

20

30

40

n1
_x

1_
x5

_x
6_

x3

n4
_x

1_
x5

_x
6_

x3

n4
_x

3_
x5

_x
6_

x3

n8
_x

2_
x5

_x
6_

x3

n8
_x

3_
x5

_x
6_

x3

Configurations

S
ec

on
ds

WordCount on Spark Streaming − Latency (95th Percentile)

(d) WC - SparkStreaming

0

1

2

3

4

5

n1
_x

2_
x2

_x
1_

x4
_x

2

n1
_x

4_
x2

_x
1_

x4
_x

2

n1
_x

8_
x2

_x
1_

x4
_x

2

n2
_x

2_
x2

_x
1_

x4
_x

2

n2
_x

4_
x2

_x
1_

x4
_x

2

n2
_x

8_
x2

_x
1_

x4
_x

2

n4
_x

4_
x2

_x
1_

x4
_x

2

n4
_x

8_
x2

_x
1_

x4
_x

2

n8
_x

4_
x2

_x
1_

x4
_x

2

n8
_x

8_
x2

_x
1_

x4
_x

2

Configurations

S
ec

on
ds

LogProcessing on Spark Streaming − Latency (95th Percentile)

(e) LP - SparkStreaming

0

10000

20000

30000

40000

n1
_x

4_
x2

_x
2

n4
_x

2_
x2

_x
2

n4
_x

8_
x2

_x
2

Configurations

S
ec

on
ds

TrafficMonitoring on Spark Streaming − Latency (95th Percentile)

(f) TM - SparkStreaming

FIGURE 20: Latency (95-th percentile) of WordCount (WC), LogProcessing (LP) and TrafficMonitoring (TM) with Apache
Storm and Spark Streaming on the Azure cluster.

(e.g., number of used nodes and the parallelism of each
operator).

A common issue in configuring Storm and Spark Stream-
ing applications is to choose the right parallelism level
of each operator/transformation. Such parameters must be
carefully chosen by the user to get satisfactory performance
with reasonable resource consumption. The approach chosen
in this paper is to calculate the weighted average of the
processing time required by one tuple for each operator in
relation to the overall processing time of one tuple in the
whole application. To experiment with more configurations,
the initial assignment of parallelism to each operator is
used as a starting point, and, based on a set of multipliers,
we experimented with other configurations with higher
parallelism within the cluster limit.

B. LATENCY AND THROUGHPUT ANALYSIS
We report the 95-th percentile of the latency measured
on the Azure cluster. The results are shown in Figure 20.
We report the 95-th percentile because the mean value
hides the presence of outliers while the maximum value

is ill-affected by single outliers. In each plot, we re-
port the best configurations found. Each configuration is
identified with a label in the form (for WC for exam-
ple): nNodes_xSources_xSplitter_xCounters_xSinks,
i.e. we report the number of used nodes in the cluster, and
the parallelism of each operator (for WC four operators, the
source, splitter, counter and sink). If the operators have the
same parallelism M , we use the notation nNodes_xM .

The latency of WC in Storm and Spark Streaming is
reported in Figure 20a and 20d. For WC, we tried 52
different configurations using 1, 2, 4, and 8 nodes. For each
number of nodes, we report only the best configurations
found for the sake of brevity. As a general consideration,
Storm provides better latency, under 15 seconds in most cases.
Spark Streaming provides instead more stable latency values,
stable in the best configurations but higher than Storm. The
batch size of Spark Streaming has been set to one second,
which was an acceptable compromise to optimize throughput
without hampering latency too much. Qualitatively, the same
outcome has been achieved with the other two applications:
LP and TM. TM is the most computationally demanding

VOLUME 4, 2016 13

Bordin et al.: DSPBench

0

25000

50000

75000

100000

n1
_x

2_
x5

_x
6_

x3

n1
_x

3_
x6

_x
12

_x
3

n2
_x

1_
x5

_x
6_

x3

n2
_x

3_
x6

_x
12

_x
3

n4
_x

2

n4
_x

2_
x1

0_
x1

2_
x6

n8
_x

3_
x3

_x
6_

x3

n8
_x

4

Configurations

tu
pl

es
 /

se
co

nd

WordCount on Apache Storm − Throughput

(a) WC - Storm

0

10000

20000

30000

n1
_x

2_
x2

_x
1_

x4
_x

2

n1
_x

5

n2
_x

4_
x2

_x
1_

x4
_x

2

n2
_x

5

n4
_x

1_
x2

_x
1_

x4
_x

2

n4
_x

4_
x2

_x
1_

x4
_x

2

n8
_x

1

n8
_x

3

Configurations

tu
pl

es
 /

se
co

nd

LogProcessing on Apache Storm − Throughput

(b) LP - Storm

0

10

20

30

40

n1
_x

2

n1
_x

4

n2
_x

4

n2
_x

5

n4
_x

4

n4
_x

4_
x2

_x
2

n8
_x

4

n8
_x

6

Configurations

tu
pl

es
 /

se
co

nd

TrafficMonitoring on Apache Storm − Throughput

(c) TM - Storm

0

25000

50000

75000

100000

n1
_x

1_
x5

_x
6_

x3

n1
_x

2_
x5

_x
6_

x3

n2
_x

2_
x5

_x
6_

x3

n2
_x

3_
x5

_x
6_

x3

n4
_x

2_
x5

_x
6_

x3

n4
_x

3_
x5

_x
6_

x3

n8
_x

2_
x5

_x
6_

x3

n8
_x

3_
x5

_x
6_

x3

Configurations

tu
pl

es
 /

se
co

nd

WordCount on SparkStreaming − Throughput

(d) WC - SparkStreaming

0

10000

20000

30000

n1
_x

2_
x2

_x
1_

x4
_x

2

n1
_x

4_
x2

_x
1_

x4
_x

2

n2
_x

4_
x2

_x
1_

x4
_x

2

n2
_x

8_
x2

_x
1_

x4
_x

2

n4
_x

4_
x2

_x
1_

x4
_x

2

n4
_x

8_
x2

_x
1_

x4
_x

2

n8
_x

4_
x2

_x
1_

x4
_x

2

n8
_x

8_
x2

_x
1_

x4
_x

2

Configurations

tu
pl

es
 /

se
co

nd

LogProcessing on SparkStreaming − Throughput

(e) LP - SparkStreaming

0

10

20

30

40

n1
_x

4_
x2

_x
2

n4
_x

2_
x2

_x
2

n4
_x

8_
x2

_x
2

Configurations

tu
pl

es
 /

se
co

nd

TrafficMonitoring on SparkStreaming − Throughput

(f) TM - SparkStreaming

FIGURE 21: Throughput (error bars report the standard error) of WordCount (WC), LogProcessing (LP) and TrafficMonitoring
(TM) with Apache Storm and Spark Streaming on the Azure cluster.

application in our suite, and this reflects in high latency
values measured in both the DSPSs (with Storm still better),
while LP exhibits a smaller latency, due to its more fine-
grained nature.

The average throughput is shown in Figure 21. Also in this
case we report the best configurations, while error bars (when
visible) report the standard error. For WC and TM the average
throughput is measured in the Sink (number of outputs
received), while for LP we aggregate the average throughput
of the last three operators present in the data-flow graph (see
Figure 5): VolumeCounter, StatusCounter, and GeoStats. The
result is that throughput slowly increases with more nodes
(and a proper choice of the parallelism per operator) except
in TM with Spark Streaming, where using more nodes does
not bring any improvement for this specific application. In
general, stream processing applications do not exhibit perfect
scalability, due to their very erratic nature (e.g., in most
cases the throughput improvement is limited by a skewed
distribution of the key attributes used to group input tuples).
However, the general outcome is that Storm outperforms
Spark Streaming both in latency and throughput for the three

considered applications (although Spark Streaming, with its
micro-batched architecture, provides stabler results).

C. RESOURCE CONSUMPTION ANALYSIS

One of the features of DSPBench is to provide easy-to-plug
probers for different performance/consumption metrics. In
this part, we report the results in terms of resource utilization,
where we are interested in CPU, memory, and network
utilization. The results are in Figure 22.

We report the most interesting results. Network utilization
is shown for two applications: WC and LP (TM, which is
computationally demanding and with low throughput, shows
very low network utilization). For both Spark Streaming (with
WC, see Figure 22a) and Storm (with LP, see Figure 22b),
the network utilization in MB/second slightly increases with
configurations using more nodes in our cluster, while it is
minimal with few used nodes. This trend is less evident in LP
with Storm because the application has a low selectivity (see
Figure 18a) compared with WC, and fewer tuples are emitted
per time unit by its operators. As expected, configurations
providing better throughput are also the ones exhibiting

14 VOLUME 4, 2016

Bordin et al.: DSPBench

0

1

2

3

1_
x1

_x
5_

x6
_x

3

n1
_x

2_
x5

_x
6_

x3

n1
_x

3_
x5

_x
6_

x3

n2
_x

1_
x5

_x
6_

x3

n2
_x

2_
x5

_x
6_

x3

n2
_x

3_
x5

_x
6_

x3

n4
_x

1_
x5

_x
6_

x3

n4
_x

2_
x5

_x
6_

x3

n4
_x

3_
x5

_x
6_

x3

n8
_x

1_
x5

_x
6_

x3

n8
_x

2_
x5

_x
6_

x3

n8
_x

3_
x5

_x
6_

x3

Configurations

U
sa

ge
 (M

B
 /

se
co

nd
)

net_recv net_sent

WordCount on SparkStreaming − Network Utilization

(a) WC - Network Util.

0

5

10

15

n1
_x

1

_x
2_

x1
_x

4_
x2

n1
_x

2

n1
_x

2_
x2

_x
1_

x4
_x

2
n1

_x
3

n1
_x

4

n1
_x

4_
x2

_x
1_

x4
_x

2
n1

_x
5

n1
_x

6

n1
_x

8_
x2

_x
1_

x4
_x

2

n1
_x

8_
x4

_x
2_

x8
_x

4
n2

_x
1

n2
_x

1_
x2

_x
1_

x4
_x

2
n2

_x
2

n2
_x

2_
x2

_x
1_

x4
_x

2
n2

_x
3

n2
_x

4

n2
_x

4_
x2

_x
1_

x4
_x

2
n2

_x
5

n2
_x

6

n2
_x

8_
x2

_x
1_

x4
_x

2

n2
_x

8_
x4

_x
2_

x8
_x

4
n4

_x
1

n4
_x

1_
x2

_x
1_

x4
_x

2
n4

_x
2

n4
_x

2_
x2

_x
1_

x4
_x

2
n4

_x
3

n4
_x

4

n4
_x

4_
x2

_x
1_

x4
_x

2
n4

_x
5

n4
_x

6

n4
_x

8_
x2

_x
1_

x4
_x

2

n4
_x

8_
x4

_x
2_

x8
_x

4
n8

_x
1

n8
_x

1_
x2

_x
1_

x4
_x

2
n8

_x
2

n8
_x

2_
x2

_x
1_

x4
_x

2
n8

_x
3

n8
_x

4

n8
_x

4_
x2

_x
1_

x4
_x

2
n8

_x
5

n8
_x

6

n8
_x

8_
x2

_x
1_

x4
_x

2

n8
_x

8_
x4

_x
2_

x8
_x

4

Configurations

U
sa

ge
 (M

B
 /

se
co

nd
)

net_recv net_sent

LogProcessing on Apache Storm − Network Utilization

(b) LP - Network Util.

0

25

50

75

100

n1
_x

1_
x5

_x
6_

x3

n1
_x

2_
x5

_x
6_

x3

n1
_x

3_
x5

_x
6_

x3

n2
_x

1_
x5

_x
6_

x3

n2
_x

2_
x5

_x
6_

x3

n2
_x

3_
x5

_x
6_

x3

n4
_x

1_
x5

_x
6_

x3

n4
_x

2_
x5

_x
6_

x3

n4
_x

3_
x5

_x
6_

x3

n8
_x

1_
x5

_x
6_

x3

n8
_x

2_
x5

_x
6_

x3

n8
_x

3_
x5

_x
6_

x3

Configurations

U
sa

ge
 (%

)

cpu_used mem_used

WordCount on SparkStreaming − CPU and MEM Utilization

(c) WC - CPU/MEM Util.

0

25

50

75

100

n1
_x

1

x1
_x

2_
x1

_x
4_

x2
n1

_x
2

n1
_x

2_
x2

_x
1_

x4
_x

2
n1

_x
3

n1
_x

4

n1
_x

4_
x2

_x
1_

x4
_x

2
n1

_x
5

n1
_x

6

n1
_x

8_
x2

_x
1_

x4
_x

2

n1
_x

8_
x4

_x
2_

x8
_x

4
n2

_x
1

n2
_x

1_
x2

_x
1_

x4
_x

2
n2

_x
2

n2
_x

2_
x2

_x
1_

x4
_x

2
n2

_x
3

n2
_x

4

n2
_x

4_
x2

_x
1_

x4
_x

2
n2

_x
5

n2
_x

6

n2
_x

8_
x2

_x
1_

x4
_x

2

n2
_x

8_
x4

_x
2_

x8
_x

4
n4

_x
1

n4
_x

1_
x2

_x
1_

x4
_x

2
n4

_x
2

n4
_x

2_
x2

_x
1_

x4
_x

2
n4

_x
3

n4
_x

4

n4
_x

4_
x2

_x
1_

x4
_x

2
n4

_x
5

n4
_x

6

n4
_x

8_
x2

_x
1_

x4
_x

2

n4
_x

8_
x4

_x
2_

x8
_x

4

n8
_x

1_
x2

_x
1_

x4
_x

2
n8

_x
2

n8
_x

2_
x2

_x
1_

x4
_x

2
n8

_x
3

n8
_x

4

n8
_x

4_
x2

_x
1_

x4
_x

2
n8

_x
5

n8
_x

6

n8
_x

8_
x2

_x
1_

x4
_x

2

n8
_x

8_
x4

_x
2_

x8
_x

4

Configurations

U
sa

ge
 (%

)

cpu_used mem_used

LogProcessing on Apache Storm − CPU and MEM Utilization

(d) LP - CPU/MEM Util.

FIGURE 22: Resource (network, cpu and memory) utilization of WordCount (WC) with Spark Streaming and LogProcessing
(LP) with Apache Storm on the Azure cluster. Error bars report the standard error.

the greater network activity, since more tuples are pushed
downstream.

In terms of CPU and memory consumption, Figures 22c
and 22d show the results for the same scenarios. As a general
trend, CPU utilization decreases with configurations using
more nodes in the cluster. By looking at the throughput
results, there is a clear correlation between throughput and
CPU utilization: configurations using more nodes which,
however, do not provide higher throughput are the ones
with lower CPU utilization on the cluster nodes because
more resources are not used effectively. In terms of memory
consumption, the two DSPSs look different in dealing
with the two applications. While WC exhibits a constant
memory consumption with more nodes, LP exhibits instead
a decreasing trend, although this happens slowly. This is
in line with the workload characterization done in the
previous section, where LP exhibited a lower overall memory
occupation, more sensible to variations based on how the
internal state of the operators is maintained and split in case
of higher operator parallelism.

D. FINAL DISCUSSION
The results show that Storm performs better than Spark
Streaming for the three chosen applications. It generally
provides higher throughput and lower latency. In terms of
resource utilization, experiments that performed better on
throughput also had the highest CPU, memory, and network
utilization among the configurations with the same number
of nodes.

One of the takeaways of this analysis is the importance
of a careful configuration of the application in terms of
the number of nodes and the choice of the parallelism
per operator. DSPSs traditionally adopt basic strategies
for choosing how to map operators onto nodes, while
the research is dense of advanced strategies for operator
placement that are not however included in the default run-
time system of those DSPSs. The choice of the degree
of parallelism for each operator is also a decisive point
in achieving good performance. However, its selection
is essentially left to the programmer in all the existing

traditional DSPSs.

The presented experiments have the purpose of showing
that DSPBench is a benchmark suite able to assess the
differences among the existing DSPSs on a rich set of
applications. This section focuses on three of them for the
sake of space, while for all the applications in our suite a
complete workload characterization has been given.

VII. CONCLUSIONS

Data Stream Processing is a computing paradigm useful in an
emerging set of applications that process live streams of data.
Several existing open-source systems (DSPSs) have been
released to develop such kind of applications in distributed
systems like clusters. Although DSPSs have been available
for years, few benchmark suites of real-world applications
have been developed and made publicly available to the
research community. This paper presented DSPBench which,
as far as we know, is the most complete suite of real-world
applications present in the literature. It is composed of
15 applications. Some of them have been taken from the
literature and adapted for the specific purpose of comparing
systems, while others have been designed from scratch. This
paper provides a full workload characterization of all the
applications in terms of memory utilization, tuple size, cost
per tuple, and selectivity of their operators.

In the final part of this paper, we have shown results that
can be obtained by using our suite for comparing DSPSs.
We chose three applications as a representative subset and
two DSPSs of wide popularity. Results are provided in
terms of latency, throughput and resource utilization (CPU,
memory, and network), showing the effectiveness of our
benchmark suite (based on probers) to get metrics. Our work
has a high degree of extendibility, with other applications
that can be included in the future by respecting our API.
Furthermore, our work can be the basis of several new kinds
of research that can be developed in the future to evaluate
new optimizations for DSPSs evaluated on our rich and
publicly available set of applications that we made available
to the community.

VOLUME 4, 2016 15

Bordin et al.: DSPBench

ACKNOWLEDGMENTS
This research is partially funded by CoordenaÃğÃčo de
AperfeiÃğoamento de Pessoal de Nivel Superior - Brasil
(CAPES) - Finance Code 001, FAPERGS 01/2017-ARD
project ParaElastic (No 17/2551-0000871-5), FAPERGS
05/2019-PQG project ParAS (No 19/2551-0001895-9), and
Universal MCTIC/CNPq No 28/2018 project SParCloud (No.
437693/2018-0).

This research has also been supported by the European
H2020 project TEACHING (n. 871385) - www.teaching-
h2020.eu.

REFERENCES
[1] H. C. M. Andrade, B. Gedik, and D. S. Turaga, Fundamentals of Stream

Processing: Application Design, Systems, and Analytics, 1st ed. USA:
Cambridge University Press, 2014.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” The VLDB Journal–The Inter-
national Journal on Very Large Data Bases, vol. 12, no. 2, pp. 120–139,
2003.

[3] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H.
Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina et al., “The design
of the borealis stream processing engine.” in CIDR, vol. 5, 2005, pp. 277–
289.

[4] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa,
J. Rosenstein, and J. Widom, “Stream: The stanford stream data manager
(demonstration description),” in Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD âĂŹ03.
New York, NY, USA: Association for Computing Machinery, 2003, p.
665. [Online]. Available: https://doi.org/10.1145/872757.872854

[5] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language
for streaming applications,” in Proceedings of the 11th International Con-
ference on Compiler Construction, ser. CC âĂŹ02. Berlin, Heidelberg:
Springer-Verlag, 2002, p. 179âĂŞ196.

[6] A. Arasu, S. Babu, and J. Widom, “The cql continuous query
language: Semantic foundations and query execution,” The VLDB
Journal, vol. 15, no. 2, p. 121âĂŞ142, Jun. 2006. [Online]. Available:
https://doi.org/10.1007/s00778-004-0147-z

[7] , “Apache storm,” 2020. [Online]. Available: https://storm.apache.org/
index.html

[8] ——, “Apache flink,” 2020. [Online]. Available: https://flink.apache.org/
[9] ——, “Spark streaming,” 2020. [Online]. Available: https://spark.apache.

org/streaming/
[10] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina,

M. Stonebraker, and R. Tibbetts, “Linear road: A stream data management
benchmark,” in Proceedings of the Thirtieth International Conference
on Very Large Data Bases - Volume 30, ser. VLDB âĂŹ04. VLDB
Endowment, 2004, p. 480âĂŞ491.

[11] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot benchmark
for distributed stream processing systems,” Concurrency and Computation:
Practice and Experience, vol. 29, no. 21, p. e4257, 2017, e4257 cpe.4257.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.
4257

[12] S. Zhang, B. He, D. Dahlmeier, A. C. Zhou, and T. Heinze, “Revisiting
the design of data stream processing systems on multi-core processors,”
in 2017 IEEE 33rd International Conference on Data Engineering (ICDE),
2017, pp. 659–670.

[13] S. Zhang, J. He, C. A. Zhou, and B. He, “Briskstream: Scaling
stream processing on multicore architectures,” 2019. [Online]. Available:
https://doi.acm.org/10.1145/3299869.3300067

[14] M. Bilal, H. Alsibyani, and M. Canini, “Mitigating network side channel
leakage for stream processing systems in trusted execution environments,”
in Proceedings of the 12th ACM International Conference on Distributed
and Event-based Systems, 2018, pp. 16–27.

[15] Yahoo Storm Team, “Benchmarking streaming computation engines at ya-
hoo!” https://yahooeng.tumblr.com/post/135321837876, 2015, accessed:
Mar 2017.

[16] G. Theodorakis, A. Koliousis, P. Pietzuch, and H. Pirk, “Lightsaber:
Efficient window aggregation on multi-core processors,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD âĂŹ20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 2505âĂŞ2521. [Online]. Available:
https://doi.org/10.1145/3318464.3389753

[17] P. M. Grulich, B. Sebastian, S. Zeuch, J. Traub, J. v. Bleichert,
Z. Chen, T. Rabl, and V. Markl, “Grizzly: Efficient stream processing
through adaptive query compilation,” in Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD âĂŹ20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 2487âĂŞ2503. [Online]. Available:
https://doi.org/10.1145/3318464.3389739

[18] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang et al., “Bigdatabench: A big data benchmark suite from internet
services,” in High Performance Computer Architecture (HPCA), 2014
IEEE 20th International Symposium on. IEEE, 2014, pp. 488–499.

[19] Bigdatabench, “Bigdatabench: A big data benchmark suite, benchcouncil,”
http://www.benchcouncil.org/BigDataBench/index.html, 2020, accessed:
June 2020.

[20] R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards benchmarking
modern distributed stream computing frameworks,” in 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing, 2014, pp.
69–78.

[21] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench benchmark
suite: Characterization of the mapreduce-based data analysis,” in Data En-
gineering Workshops (ICDEW), 2010 IEEE 26th International Conference
on. IEEE, 2010, pp. 41–51.

[22] , “Apache kafka,” 2020. [Online]. Available: https://kafka.apache.org/
[23] ——, “Apache cassandra,” 2020. [Online]. Available: https://cassandra.

apache.org/
[24] P. Best, B. Taylor, R. Manktelow, and J. McQuilkin, “Systematically

retrieving research in the digital age: Case study on the topic of
social networking sites and young peopleâĂŹs mental health,” Journal
of Information Science, vol. 40, no. 3, pp. 346–356, 2014. [Online].
Available: https://doi.org/10.1177/0165551514521936

[25] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “Spade: the system
s declarative stream processing engine,” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM, 2008,
pp. 1123–1134.

[26] H. Andrade, B. Gedik, K.-L. Wu, and P. S. Yu, “Scale-up strategies for
processing high-rate data streams in system s,” in Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on. IEEE, 2009, pp. 1375–
1378.

[27] M. Dayarathna, S. Takeno, and T. Suzumura, “A performance study on
operator-based stream processing systems.” in IISWC, 2011, p. 79.

[28] M. Dayarathna and T. Suzumura, “A performance analysis of system s,
s4, and esper via two level benchmarking,” in Quantitative Evaluation of
Systems. Springer, 2013, pp. 225–240.

[29] S. Chakravarthy, Stream data processing: a quality of service perspec-
tive: modeling, scheduling, load shedding, and complex event processing.
Springer, 2009, vol. 36.

[30] M. Smit, B. Simmons, and M. Litoiu, “Distributed, application-level
monitoring for heterogeneous clouds using stream processing,” Future
Generation Computer Systems, vol. 29, no. 8, pp. 2103–2114, 2013.

[31] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu, and
Z. Zhang, “Timestream: Reliable stream computation in the cloud,” in
Proceedings of the 8th ACM European Conference on Computer Systems.
ACM, 2013, pp. 1–14.

[32] M. A. Lopez, A. Lobato, and O. Duarte, “A performance comparison of
open-source stream processing platforms,” in IEEE Global Communica-
tions Conference (Globecom), Washington, USA, 2016.

[33] D. S. Turaga, H. Park, R. Yan, and O. Verscheure, “Adaptive multimedia
mining on distributed stream processing systems,” in Data Mining Work-
shops (ICDMW), 2010 IEEE International Conference on. IEEE, 2010,
pp. 1419–1422.

[34] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench benchmark
suite: Characterization of the mapreduce-based data analysis,” in Data En-
gineering Workshops (ICDEW), 2010 IEEE 26th International Conference
on. IEEE, 2010, pp. 41–51.

[35] P. Bellavista, A. Corradi, and A. Reale, “Design and implementation
of a scalable and qos-aware stream processing framework: the quasit
prototype,” in Green Computing and Communications (GreenCom), 2012
IEEE International Conference on. IEEE, 2012, pp. 458–467.

16 VOLUME 4, 2016

Bordin et al.: DSPBench

[36] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized streams:
an efficient and fault-tolerant model for stream processing on large clus-
ters,” in Proceedings of the 4th USENIX conference on Hot Topics in
Cloud Ccomputing. USENIX Association, 2012, pp. 10–10.

[37] J. Chauhan, S. A. Chowdhury, and D. Makaroff, “Performance evaluation
of yahoo! s4: A first look,” in P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), 2012 Seventh International Conference on. IEEE,
2012, pp. 58–65.

[38] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: fault-
tolerant stream processing at internet scale,” Proceedings of the VLDB
Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[39] Q. Zou, H. Wang, R. Soulé, M. Hirzel, H. Andrade, B. Gedik, and K.-L.
Wu, “From a stream of relational queries to distributed stream processing,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 1394–1405,
2010.

[40] T. Hunter, T. Moldovan, M. Zaharia, S. Merzgui, J. Ma, M. J. Franklin,
P. Abbeel, and A. M. Bayen, “Scaling the mobile millennium system in the
cloud,” in Proceedings of the 2nd ACM Symposium on Cloud Computing.
ACM, 2011, p. 28.

[41] S. Geisler and C. Quix, “Evaluation of real-time traffic applications based
on data stream mining,” in Data Mining for Geoinformatics. Springer,
2014, pp. 83–103.

[42] A. Artikis, M. Weidlich, F. Schnitzler, I. Boutsis, T. Liebig, N. Piatkowski,
C. Bockermann, K. Morik, V. Kalogeraki, J. Marecek et al., “Heteroge-
neous stream processing and crowdsourcing for urban traffic management.”
in EDBT, 2014, pp. 712–723.

[43] M. Hanif, H. Yoon, and C. Lee, “Benchmarking tool for modern dis-
tributed stream processing engines,” in 2019 International Conference on
Information Networking (ICOIN). IEEE, 2019, pp. 393–395.

[44] Y. Wang, “Stream processing systems benchmark: Streambench,” Ph.D.
dissertation, Aalto University, 2016.

[45] E. Shahverdi and S. Sakr, “Comparative evaluation for the performance of
big stream processing systems,” 2018.

[46] S. Zeuch, B. Del Monte, J. Karimov, C. Lutz, M. Renz, J. Traub, S. Breß,
T. Rabl, and V. Markl, “Analyzing efficient stream processing on modern
hardware,” Proceedings of the VLDB Endowment (PVLDB), vol. 12, no. 5,
pp. 516–530, 2019.

[47] H. Nasiri, S. Nasehi, and M. Goudarzi, “Evaluation of distributed stream
processing frameworks for iot applications in smart cities,” Journal of Big
Data, vol. 6, no. 1, p. 52, 2019.

[48] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna, “Adaptive rate
stream processing for smart grid applications on clouds,” in Proceedings
of the 2nd international workshop on Scientific cloud computing. ACM,
2011, pp. 33–38.

[49] B. Lohrmann and O. Kao, “Processing smart meter data streams in the
cloud,” in Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd
IEEE PES International Conference and Exhibition on. IEEE, 2011, pp.
1–8.

[50] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in storm,” in Proceedings of the 7th ACM international conference on
Distributed event-based systems. ACM, 2013, pp. 207–218.

[51] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch,
“Integrating scale out and fault tolerance in stream processing using
operator state management,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’13.
New York, NY, USA: ACM, 2013, pp. 725–736.

[52] S. Girtelschmid, M. Steinbauer, V. Kumar, A. Fensel, and G. Kotsis, “On
the application of big data in future large scale intelligent smart city
installations,” International Journal of Pervasive Computing and Commu-
nications, vol. 10, no. 2, pp. 4–4, 2014.

[53] R. C. Fernandez, M. Weidlich, P. Pietzuch, and A. Gal, “Scalable stateful
stream processing for smart grids,” in Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems. ACM,
2014, pp. 276–281.

[54] G. Hesse, B. Reissaus, C. Matthies, M. Lorenz, M. Kraus, and M. Uflacker,
“Senska–towards an enterprise streaming benchmark,” in Technology Con-
ference on Performance Evaluation and Benchmarking. Springer, 2017,
pp. 25–40.

[55] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and
evaluation of a real-time url spam filtering service,” in Security and Privacy
(SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 447–462.

[56] B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel, “Stream-
rec: a real-time recommender system,” in Proceedings of the 2011 ACM

SIGMOD International Conference on Management of data. ACM, 2011,
pp. 1243–1246.

[57] T. L. A. de Souza Ramos, R. S. Oliveira, A. P. de Carvalho, R. A. C. Fer-
reira, and W. Meira, “Watershed: A high performance distributed stream
processing system,” in Computer Architecture and High Performance
Computing (SBAC-PAD), 2011 23rd International Symposium on. IEEE,
2011, pp. 191–198.

[58] T. Chardonnens, P. Cudre-Mauroux, M. Grund, and B. Perroud, “Big data
analytics on high velocity streams: A case study,” in Big Data, 2013 IEEE
International Conference on. IEEE, 2013, pp. 784–787.

[59] L. Lin, X. Yu, and N. Koudas, “Pollux: Towards scalable distributed
real-time search on microblogs,” in Proceedings of the 16th International
Conference on Extending Database Technology. ACM, 2013, pp. 335–
346.

[60] F. Alvanaki and S. Michel, “Scalable, continuous tracking of tag co-
occurrences between short sets using (almost) disjoint tag partitions,” in
Proceedings of the ACM SIGMOD Workshop on Databases and Social
Networks. ACM, 2013, pp. 49–54.

[61] T. Lunze, P. Katz, D. Röhrborn, and A. Schill, “Stream-based recommenda-
tion for enterprise social media streams,” in Business Information Systems.
Springer, 2013, pp. 175–186.

[62] C. Chen, H. Yin, J. Yao, and B. Cui, “Terec: a temporal recommender
system over tweet stream,” Proceedings of the VLDB Endowment, vol. 6,
no. 12, pp. 1254–1257, 2013.

[63] Z. Nabi, E. Bouillet, A. Bainbridge, and C. Thomas, “Of streams and
storms,” IBM White Paper, 2014.

[64] E. Bouillet, R. Kothari, V. Kumar, L. Mignet, S. Nathan, A. Ranganathan,
D. S. Turaga, O. Udrea, and O. Verscheure, “Processing 6 billion cdrs/day:
from research to production (experience report),” in Proceedings of the
6th ACM International Conference on Distributed Event-Based Systems.
ACM, 2012, pp. 264–267.

[65] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and
P. Valduriez, “Streamcloud: An elastic and scalable data streaming system,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 23, no. 12, pp.
2351–2365, 2012.

[66] M. A. Abbasoğlu, B. Gedik, and H. Ferhatosmanoğlu, “Aggregate profile
clustering for telco analytics,” Proceedings of the VLDB Endowment,
vol. 6, no. 12, pp. 1234–1237, 2013.

[67] L. Pan, J. Qian, C. He, W. Fan, C. He, and F. Yang, “Nim: Scalable
distributed stream process system on mobile network data,” in Data
Mining Workshops (ICDMW), 2013 IEEE 13th International Conference
on. IEEE, 2013, pp. 1101–1104.

[68] D. Simoncelli, M. Dusi, F. Gringoli, and S. Niccolini, “Scaling out the per-
formance of service monitoring applications with blockmon,” in Passive
and Active Measurement. Springer, 2013, pp. 253–255.

[69] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl, “Benchmarking distributed stream data processing systems,” in
2018 IEEE 34th International Conference on Data Engineering (ICDE).
IEEE, 2018, pp. 1507–1518.

[70] P. Balaprakash, D. Buntinas, A. Chan, A. Guha, R. Gupta, S. H. K.
Narayanan, A. A. Chien, P. Hovland, and B. Norris, “Exascale workload
characterization and architecture implications,” in Proceedings of the High
Performance Computing Symposium. Society for Computer Simulation
International, 2013, p. 5.

[71] Y. Bai and C. Zaniolo, “Minimizing latency and memory in dsms: a
unified approach to quasi-optimal scheduling,” in Proceedings of the 2nd
international workshop on Scalable stream processing system. ACM,
2008, pp. 58–67.

[72] B. Babcock, S. Babu, R. Motwani, and M. Datar, “Chain: Operator
scheduling for memory minimization in data stream systems,” in Proceed-
ings of the 2003 ACM SIGMOD international conference on Management
of data. ACM, 2003, pp. 253–264.

[73] Y. Wei, V. Prasad, S. H. Son, and J. A. Stankovic, “Prediction-based qos
management for real-time data streams,” in Real-Time Systems Sympo-
sium, 2006. RTSS’06. 27th IEEE International. IEEE, 2006, pp. 344–
358.

[74] K.-A. Yoon, O.-S. Kwon, and D.-H. Bae, “An approach to outlier detection
of software measurement data using the k-means clustering method,” in
Empirical Software Engineering and Measurement, 2007. ESEM 2007.
First International Symposium on. IEEE, 2007, pp. 443–445.

[75] , “Geotools library,” 2020. [Online]. Available: https://www.osgeo.org/
projects/geotools/

VOLUME 4, 2016 17

Bordin et al.: DSPBench

[76] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras, and C. D.
Spyropoulos, “An evaluation of naive bayesian anti-spam filtering,” arXiv
preprint cs/0006013, 2000.

[77] M. Mathioudakis and N. Koudas, “Twittermonitor: trend detection over the
twitter stream,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010, pp. 1155–1158.

[78] A. Srivastava, A. Kundu, S. Sural, and A. K. Majumdar, “Credit card
fraud detection using hidden markov model,” Dependable and Secure
Computing, IEEE Transactions on, vol. 5, no. 1, pp. 37–48, 2008.

[79] M. Dayarathna and T. Suzumura, “Automatic optimization of stream
programs via source program operator graph transformations,” Distributed
and Parallel Databases, vol. 31, no. 4, pp. 543–599, 2013.

[80] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Verscheure,
H. Koutsopoulos, and C. Moran, “Ibm infosphere streams for scalable,
real-time, intelligent transportation services,” in Proceedings of the
2010 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD âĂŹ10. New York, NY, USA: Association for
Computing Machinery, 2010, p. 1093âĂŞ1104. [Online]. Available:
https://doi.org/10.1145/1807167.1807291

[81] A. L. Strehl and M. L. Littman, “An analysis of model-based interval
estimation for markov decision processes,” Journal of Computer and
System Sciences, vol. 74, no. 8, pp. 1309–1331, 2008.

[82] G. Bianchi, N. d’Heureuse, and S. Niccolini, “On-demand time-decaying
bloom filters for telemarketer detection,” ACM SIGCOMM Computer
Communication Review, vol. 41, no. 5, pp. 5–12, 2011.

[83] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream
computing platform,” in 2010 IEEE International Conference on Data
Mining Workshops. IEEE, 2010, pp. 170–177.

[84] B. Chandramouli, J. Goldstein, R. Barga, M. Riedewald, and I. Santos,
“Accurate latency estimation in a distributed event processing system,” in
Data Engineering (ICDE), 2011 IEEE 27th International Conference on.
IEEE, 2011, pp. 255–266.

[85] , “Ganglia monitoring system,” 2020. [Online]. Available: https://http:
//ganglia.info/

18 VOLUME 4, 2016

