

Jaqpot 5: How to deploy a
predictive model using the

jaqpotpy library

USE: How to deploy a predictive model using the
jaqpotpy library

VERSION: V.1.0

CONTACT DETAILS:
Haralambos Sarimveis: hsarimv@central.ntua.gr
Pantelis Karatzas: pantelispanka@gmail.com
Philip Doganis: filipposd@gmail.com

Jaqpot5 tutorials

mailto:hsarimv@central.ntua.gr
mailto:pantelispanka@gmail.com
mailto:filipposd@gmail.com

Jaqpot 5 Tutorial Page 2 of 26

INTRODUCTION

Jaqpot 5 is a user-friendly web-based e-infrastructure that allows model developers to deploy their
predictive models and share them through the web. The Jaqpot 5 GUI directs the model developers to
further document their models in a way that can be easily understood and used by end-users with little
or no experience on machine learning and statistical analysis. The GUI also allows the end-users to
apply the models on their own data for validation and/or prediction purposes and the results are
collected and visualised in automatically generated tables, graphs and reports. All major machine
learning and statistical data-driven algorithms are supported in Jaqpot 5, by integrating popular
libraries such as the Python Scikit-learn and the R Caret libraries. Jaqpot 5 has been designed as a
generic modelling and machine learning web platform, but particular emphasis is given on serving the
needs of the chemo/bio/nano/pharma/ communities by integrating QSAR, biokinetics, dose-response
and read-across models. Jaqpot 5 has been developed by the Unit of Process Control and Informatics in
the School of Chemical Engineering at the National Technical University of Athens.

This document provides a tutorial on how to deploy a model in Jaqpot 5 using the jaqpotpy library. The
resource has been made available at https://app.jaqpot.org/.

https://www.chemeng.ntua.gr/labs/control_lab/index.html
https://app.jaqpot.org/

Jaqpot 5 Tutorial Page 3 of 26

DEPLLOYING A PREDICTIVE MODEL
USING THE JAQPOTPY LIBARY

Jaqpot 5 is currently integrated with the entire Scikit-learn python library (https://scikit-
learn.org/stable/) which is the most comprehensive and perhaps the most popular open source library
for machine learning, data mining and data analysis. There are plans to integrate algorithms from the R
language caret library (https://cran.r-project.org/web/packages/caret/caret.pdf) as well as techniques
from Julia machine learning libraries, like JuliaML (https://github.com/JuliaML).
The main tool developed by NTUA for integrating the Scikit-learn set of algorithms is the jaqpotpy
library, which lets the user create a machine learning model in the python environment of his choice
and the deployment the model over the web.
To follow this tutorial the user should:

1) Have a Jaqpot 5 account. For more information, please read the tutorial on how to login to
Jaqpot 5

2) The Jaqpotpy library should be installed as a pypi package:
 pip install jaqpotpy

3) One csv file containing the data for a particular modelling example should be available. The file
is provided as supplementary material in this deliverable and its name is:
70_reduced.csv

After the end of the tutorial, the user should arrive to a web service similar to the one hosted in the
following URL: https://app.jaqpot.org/model/uxRBCMsV9lkSQT1Kw7km. Thus model is available
through the NanoCommons organisation. For more information about Jaqpot 5 organisations please
read the specific tutorial on using and managing organisations in Jaqpot 5.

In the Appendix at the end of this tutorial, the reader can find detailed information about all the
functionalities of the Jaqpot 5 library.

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://cran.r-project.org/web/packages/caret/caret.pdf
https://github.com/JuliaML
https://app.jaqpot.org/model/uxRBCMsV9lkSQT1Kw7km

Jaqpot 5 Tutorial Page 4 of 26

The modeller can use the algorithm of her/his choice to fit the best possible model to the available
training data and validate the model based on validation statistics. She/he can also use optimal machine
learning tools provided in Python, such as TPOT, a Python Automated Machine Learning tool that
optimizes machine learning pipelines using genetic programming
(https://github.com/EpistasisLab/tpot).

In this tutorial we will demonstrate how to reproduce and publish in Jaqpot5, a Linear nanoQSAR model
predicting Solubility of C60 Fullerene in Various Solvents, with just a few lines of code in a Jupyter
notebook. The model has been originally presented in the following publication: Farhad Gharagheizi &
Reza Fareghi Alamdari (2008) A Molecular-Based Model for Prediction of Solubility of C60 Fullerene in
Various Solvents, Fullerenes, Nanotubes, and Carbon Nonstructures, 16:1, 40-57, DOI:
10.1080/15363830701779315.

https://github.com/EpistasisLab/tpot

Jaqpot 5 Tutorial Page 5 of 26

Import the jaqpotpy library and various components from the pandas and scikit-learn python packages:

import pandas as pd

from jaqpotpy import Jaqpot

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score, GridSearchCV, RandomizedSearchCV

df=pd.read_csv('70_model_reduced.csv') # Reads the data

print(list(df)) # Prints the headers of all columns

Jaqpot 5 Tutorial Page 6 of 26

Read the data and print the headers of all columns:

df=pd.read_csv('70_model_reduced.csv') # Reads the data

print(list(df)) # Prints the headers of all columns

The response is a list with the headers of all columns:
 ['Solvents', 'piPC03', 'ATS1m', 'Seigp', 'More23e', 'H1m', 'logS Exp.']

Jaqpot 5 Tutorial Page 7 of 26

Define the independent variables and the end-point to be predicted and split randomly the dataset into
training and test sets consisting of 75% and 25% of the data respectively:

Xall=df[['piPC03', 'ATS1m', 'Seigp', 'More23e', 'H1m']] # Defines the columns that will be used as independent
features

Yall=df['logS Exp.'] # Defines the end-point

X_train, X_test, Y_train, Y_test = train_test_split(Xall, Yall, train_size=0.75, test_size=0.25, random_state=1)
Splits the data into training and test sets

Jaqpot 5 Tutorial Page 8 of 26

Develop a pipeline consisting of scaling the data first and then apply the multiple linear regression
algorithm:

stepslinear = [('scaler', MinMaxScaler()), ('MLR', LinearRegression())]
pipelinelinear = Pipeline(stepslinear) # define the pipeline object.

Jaqpot 5 Tutorial Page 9 of 26

Train the model on the training set, compute and print the R2 statistic on the training set, the test set
and on the full set. Finally perform 5-fold cross validation test on the training observation.

pipelinelinear.fit(X_train, Y_train)
print('Training score: ', pipelinelinear.score(X_train, Y_train))
print('Testing score: ', pipelinelinear.score(X_test, Y_test))
print('Total score: ', pipelinelinear.score(Xall, Yall)) #Trains the model and prints R^2 statistics

cross_val_score(estimator=pipelinelinear, X=X_train, y=Y_train, cv=5, n_jobs=-1) #Performs a 5-fold cross
validation

The response is a list with the calculated statistics:

Training score: 0.8994088488271355
Testing score: 0.9043040438111096
Total score: 0.9034772311898356
array([0.91906039, 0.88995619, 0.90445436, 0.86506266, 0.62316459])

Jaqpot 5 Tutorial Page 10 of 26

The results are very satisfactory and very similar to the one reported in the paper, where the model has
been presented. The following commands are used to deploy the model as a web service in Jaqpot 5.
First the user is prompted to enter his username and password:

jaqpot = Jaqpot("https://api.jaqpot.org/jaqpot/services/")

jaqpot.request_key_safe()

Only a single command is needed to deploy the model into Jaqpot 5:

jaqpot.deploy_pipeline(pipelinelinear,Xall,Yall,"Linear Model for Predicting Solubility of C60 Fullerenes in
Various Solvents","Linear Model","linearmodel")

The response is the unique Jaqpot 5 URL on which the model is hosted.

Jaqpot 5 Tutorial Page 11 of 26

Optionally, the user can create a Predictive Model MarkUp Language (PMML) representation of the
model to be included as additional information in the web service:

from sklearn2pmml.pipeline import PMMLPipeline

from sklearn2pmml.pipeline import PMMLPipeline
pipelinepmmllinear = PMMLPipeline([
 ("scaler", MinMaxScaler()), ("MLR", LinearRegression())
])
pipelinepmmllinear.fit(X_train, Y_train)

from sklearn2pmml import sklearn2pmml

sklearn2pmml(pipelinepmmllinear, "SolubilityC60linear.pmml", with_repr = True)

Jaqpot 5 Tutorial Page 12 of 26

The model developer can now enter the Jaqpot UI to add any other information about the model (for
example detailed description, standard reports like Quantitative Model Reporting Format (QMRF),
PMML representations, ontological annotations etc.)

The overview tab: The overview tab opens a markdown free-text editor where the user can include any
information about the model. The editing mode can be activated by clicking the red icon on the bottom
right of the page (Figure 1) and is deactivated by clicking on the floppy disk icon (Figure 2). The
screenshot in Figure 1 is from out full implementation of the model, where we are providing links to the
full dataset, the training dataset and the test data sets, a link to a full QMRF report generated using the
QMRF editor provided by JRC: https://sourceforge.net/projects/qmrf/ the report an editable version of
the QMRF report and the PMML representation of the model. For uploading dataset to Jaqpot 5 please
read the tutorial on uploading datasets.

Figure 1. Overview tab (activating the editing mode).

https://sourceforge.net/projects/qmrf/

Jaqpot 5 Tutorial Page 13 of 26

Figure 2. Overview tab (deactivating the editing mode).

Jaqpot 5 Tutorial Page 14 of 26

The features tab: Here the model creator can provide specific information about the independent
features and the end-point of the model: descriptions, units and ontological classes, which will allow the
model to understand data sets that are ontologically annotated automatically. Below (Figure 3) we
provide a screenshot of the data tab under the C60 solubility model. Like in the overview tab, the user
can enter or change all that information by clicking the red icon on the bottom right of the page, which
activates the editing mode (Figure 4)

Figure 3. The features tab (entering information and ontological annotations for the independent

variables and the end-point predicted by the model).

Jaqpot 5 Tutorial Page 15 of 26

Figure 4. The features tab in editing mode.

Jaqpot 5 Tutorial Page 16 of 26

The model is now complete. The user can share the model with his partners or the community through
the Jaqpot organisations. To do that the user clicks on the share button, which is available in all tabs.

Figure 4. The features tab in editing mode.

Jaqpot 5 Tutorial Page 17 of 26

He can choose to share the models in various levels (read, write, execute) with organisations where he
is a member. For more information about Jaqpot 5 organisations please read the specific tutorial on
using and managing organisations in Jaqpot 5.

Figure 5. Sharing the model with organisations.

Jaqpot 5 Tutorial Page 18 of 26

Appendix. Guidelines on installing and using the jaqpotpy library

Installation
In order to use jaqpotpy, users need to install it first. Installation can be executed conveniently as a pypi
package.

pip install jaqpotpy

Usage and initialization
Import Jaqpot
After installation, Jaqpot needs to be imported with the following command:

from jaqpotpy import Jaqpot

Initialize Jaqpotpy on the services where jaqpot lives.

jaqpot = Jaqpot("https://api.jaqpot.org/jaqpot/services/")

User authentication by Jaqpot
In order to access jaqpot services, first the authentication of the user is required. First it is necessary to
define the web location of the Jaqpot instance being used.

jaqpot = Jaqpot("https://api.jaqpot.org/jaqpot/services/")

The following command will send your username and password, execute your login and set the api key
that is needed:

jaqpot.request_key('username', 'password')

Same as above, this command hides the password if jaqpot is used through a jupiter notebook etc. and
initiates a prompt for your username and password, only visible by the user:

jaqpot.request_key_safe()

Alternatively, for users that have logged in through google or github it is possible to login with the use of
an API key. At the account page, the user can find an api key that can be used in order to have access
toon the services and send it to Jaqpot by substituting the api_key field. Please note that these keys have
short life and should be updated on each login.

Jaqpot 5 Tutorial Page 19 of 26

jaqpot.set_api_key("api_key")

Deploy your models!
You can use the commands below, customised per model type, in order to make models trained with
scikit-learn algorithms available as web services through Jaqpot. Please note:

• all models should be trained with variables that are pandas dataframes
• when calling a jaqpot.deploy function you should use exactly the same variables used to train

the model
• The Y variable (prediction endpoint) should have an index.

1. deploy_linear_model()

jaqpot.deploy_linear_model()
Lets you deploy linear models are created with scikit-learn. Bellow there is a list for the produced
models that can be deployed with this function:

• linear_model.ARDRegression()
• linear_model.BayesianRidge()
• linear_model.ElasticNet()
• linear_model.ElasticNetCV()
• linear_model.HuberRegressor()
• linear_model.Lars()
• linear_model.LarsCV()
• linear_model.Lasso()
• linear_model.LassoCV()
• linear_model.LassoLars()
• linear_model.LassoLarsCV()
• linear_model.LassoLarsIC()
• linear_model.LinearRegression()
• linear_model.LogisticRegression()
• linear_model.LogisticRegressionCV()
• linear_model.MultiTaskLasso()
• linear_model.MultiTaskElasticNet()
• linear_model.MultiTaskLassoCV()
• linear_model.MultiTaskElasticNetCV()
• linear_model.OrthogonalMatchingPursuit()
• linear_model.OrthogonalMatchingPursuitCV()
• linear_model.PassiveAggressiveClassifier()
• linear_model.PassiveAggressiveRegressor()
• linear_model.Perceptron()

Jaqpot 5 Tutorial Page 20 of 26

• linear_model.RANSACRegressor()
• linear_model.Ridge()
• linear_model.RidgeClassifier()
• linear_model.RidgeClassifierCV()
• linear_model.RidgeCV()
• linear_model.SGDClassifier()
• linear_model.SGDRegressor()
• linear_model.TheilSenRegressor()
• linear_model.enet_path()
• linear_model.lars_path()
• linear_model.lasso_path()
• linear_model.logistic_regression_path()
• linear_model.orthogonal_mp()
• linear_model.orthogonal_mp_gram()
• linear_model.ridge_regression()

deploy_linear_model() parameters are:
• model :{is a sklearn trained model} A trained model that occurs from the sklearn.linear_model family

of algorithms
• X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
• y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).
• title: {is a String} The title of the model
• description: {is a String} The description of the model
• algorithm: {is a String} The algorithm that the model implements string

The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

Example usage

from jaqpotpy import Jaqpot
import pandas as pd
from sklearn import linear_model

df = pd.read_csv('/path/train.csv')
X = df[['Pclass', 'SibSp', 'Parch', 'Fare']]
y = df['Survived']

clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y)

jaqpot.deploy_linear_model(clf, X, y, title="Sklearn 2", description="Logistic regression model from python for the titanic
dataset",
 algorithm="logistic regression")

On the above example a linear model (in our case a logistic regression) is created and deployed on
Jaqpot. The dataset is read as a pandas dataframe (a requirement for Jaqpot 5) and the X and y
dataframes are created, on which the algorithm is trained and the model is created.

Jaqpot 5 Tutorial Page 21 of 26

2. deploy_cluster()

Allows deployment of cluster models that are created from scikit-learn algorithms:

• cluster.AffinityPropagation()
• cluster.AgglomerativeClustering()
• cluster.Birch()
• cluster.DBSCAN()
• cluster.FeatureAgglomeration()
• cluster.KMeans()
• cluster.MiniBatchKMeans()
• cluster.MeanShift()
• cluster.SpectralClustering()

jaqpot.deploy_deploy_cluster() parameters are:
• model : {is a sklearn trained model} a trained model that occurs from the sklearn.linear_model

family of algorithms
• X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
• title: {is a String} The title of the model
• description: {is a String} The description of the model
• algorithm: {is a String} The algorithm that the model implements string

The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

3. deploy_ensemble()

Allows deployment of cluster models that are created from scikit-learn algorithms:

• ensemble.AdaBoostClassifier()
• ensemble.AdaBoostRegressor()
• ensemble.BaggingClassifier()
• ensemble.BaggingRegressor()
• ensemble.ExtraTreesClassifier()
• ensemble.ExtraTreesRegressor()
• ensemble.GradientBoostingClassifier()
• ensemble.GradientBoostingRegressor()
• ensemble.IsolationForest()
• ensemble.RandomForestClassifier()
• ensemble.RandomForestRegressor()
• ensemble.RandomTreesEmbedding()
• ensemble.VotingClassifier()

jaqpot.deploy_ensemble() parameters are:
• model : {is a sklearn trained model} is a trained model that occurs from the sklearn.linear_model

family of algorithms
• X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).

Jaqpot 5 Tutorial Page 22 of 26

• y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).
• title: {is a String} The title of the model
• description: {is a String} The description of the model
• algorithm: {is a String} The algorithm that the model implements string

The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

4. deploy_naive_bayess()

Allows deployment of naive_bayes models that are created from scikit-learn algorithms:

• naive_bayes.BernoulliNB()
• naive_bayes.GaussianNB()
• naive_bayes.MultinomialNB()
• naive_bayes.ComplementNB()

jaqpot.deploy_naive_bayess() parameters are:
• model : {is a sklearn trained model} is a trained model that occurs from the sklearn.linear_model

family of algorithms
• X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
• y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).
• title: {is a String} The title of the model
• description: {is a String} The description of the model
• algorithm: {is a String} The algorithm that the model implements string

The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

5. deploy_nearest_neighbors()

Allows deployment of nearest_neighbors models that are created from scikit-learn algorithms:

• neighbors.KNeighborsClassifier()
• neighbors.KNeighborsRegressor()
• neighbors.LocalOutlierFactor()
• neighbors.RadiusNeighborsClassifier()
• neighbors.RadiusNeighborsRegressor()
• neighbors.NearestCentroid()
• neighbors.NearestNeighbors()
• neighbors.kneighbors_graph()
• neighbors.radius_neighbors_graph()

jaqpot.deploy_nearest_neighbors() parameters are:
• model : {is a sklearn trained model} is a trained model that occurs from the sklearn.linear_model

family of algorithms
• X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).

Jaqpot 5 Tutorial Page 23 of 26

• y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).
• title: {is a String} The title of the model
• description: {is a String} The description of the model
• algorithm: {is a String} The algorithm that the model implements string

If y is empty, Jaqpot generates an empty dataframe with the title of the predicted feature.
The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

6. deploy_neural_network()

Allows deployment of neural_network models that are created from scikit-learn algorithms:

• neural_network.BernoulliRBM()
• neural_network.MLPClassifier()
• neural_network.MLPRegressor()

jaqpot.deploy_neural_network() parameters are:
• model : {is a sklearn trained model} is a trained model that occurs from the sklearn.linear_model

family of algorithms
• X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
• y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).
• title: {is a String} The title of the model
• description: {is a String} The description of the model
• algorithm: {is a String} The algorithm that the model implements string

The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

7. deploy_svm()

Allows deployment of svm models that are created from scikit-learn algorithms:

• svm.LinearSVC()
• svm.LinearSVR()
• svm.NuSVC()
• svm.NuSVR()
• svm.OneClassSVM()
• svm.SVC()
• svm.SVR()
• svm.l1_min_c()

jaqpot.deploy_svm() parameters are:
• model : {is a sklearn trained model} is a trained model that occurs from the sklearn.linear_model

family of algorithms
• X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
• y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).

Jaqpot 5 Tutorial Page 24 of 26

• title: {is a String} The title of the model
• description: {is a String} The description of the model
• algorithm: {is a String} The algorithm that the model implements string

if y is empty generate an empty dataframe with the title of the predicted feature.
The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

8. deploy_tree()

Allows deployment of tree models that are created from scikit-learn algorithms:

• tree.DecisionTreeClassifier()
• tree.DecisionTreeRegressor()
• tree.ExtraTreeClassifier()
• tree.ExtraTreeRegressor()

jaqpot.deploy_tree() parameters are:
• model : {is a sklearn trained model} is a trained model that occurs from the sklearn.linear_model

family of algorithms
• X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
• y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).
• title: {is a String} The title of the model
• description: {is a String} The description of the model
• algorithm: {is a String} The algorithm that the model implements string

The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

9. deploy_pipeline()

Allows deployment of pipelined models that are created from scikit-learn algorithms.
jaqpot.deploy_pipeline() parameters are:

• pipeline : sklearn pipeline model is a trained model that occurs from the sklearn.linear_model family
of algorithms

• X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
• y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).
• title: {is a String} The title of the model
• description: {is a String} The description of the model
• algorithm: {is a String} The algorithm that the model implements string

The id of the model / pipeline is returned. The model can be found on the Jaqpot homepage of the user
for editing / sharing / execution (create predictions).
Example usage

Jaqpot 5 Tutorial Page 25 of 26

from jaqpotpy import Jaqpot
import pandas as pd
from sklearn import linear_model

df = pd.read_csv('/path/train.csv')
X = df[['Pclass', 'SibSp', 'Parch', 'Fare']]
y = df['Survived']

clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y)

jaqpot.deploy_linear_model(clf, X, y, title="Sklearn 2", description="Logistic regression model from python for the titanic
dataset",
 algorithm="logistic regression")

On the above example a linear model (in our case a Logistic Regression model) is created and deployed
on jaqpot. The dataset is read as a pandas dataframe (having the variables used for training as pandas
dataframes is a requirement for all algorithms in Jaqpot 5) and the X and y dataframes are created, on
which the algorithm is trained and the model is created.

Jaqpot 5 Tutorial Page 26 of 26

 Support

	INTRODUCTION
	DEPLLOYING A PREDICTIVE MODEL USING THE JAQPOTPY LIBARY
	Appendix. Guidelines on installing and using the jaqpotpy library

