

USE: How to deploy a predictive model using the
jaqpotpy library

VERSION: V.2.0
April 2021

CONTACT DETAILS:
Haralambos Sarimveis: hsarimv@central.ntua.gr
Pantelis Karatzas: pantelispanka@gmail.com
Philip Doganis: filipposd@gmail.com

Jaqpot5 tutorials

Jaqpot 5: How to deploy a
predictive model using the

jaqpotpy library

mailto:hsarimv@central.ntua.gr
mailto:pantelispanka@gmail.com
mailto:filipposd@gmail.com

Jaqpot 5 Tutorial Page 2 of 20

INTRODUCTION

Jaqpot 5 is a user-friendly web-based e-infrastructure that allows model developers to deploy their
predictive models and share them through the web. The Jaqpot 5 GUI directs the model developers to
further document their models in a way that can be easily understood and used by end-users with little
or no experience on machine learning and statistical analysis. The GUI also allows the end-users to apply
the models on their own data for validation and/or prediction purposes and the results are collected and
visualised in automatically generated tables, graphs and reports. All major machine learning and statistical
data-driven algorithms are supported in Jaqpot 5, by integrating popular libraries such as the Python
Scikit-learn and the R Caret libraries. Jaqpot 5 has been designed as a generic modelling and machine
learning web platform, but particular emphasis is given on serving the needs of the
chemo/bio/nano/pharma/ communities by integrating QSAR, biokinetics, dose-response and read-across
models. Jaqpot 5 has been developed by the Unit of Process Control and Informatics in the School of
Chemical Engineering at the National Technical University of Athens.

This document provides a tutorial on how to deploy a model in Jaqpot 5 using the jaqpotpy library. The
resource has been made available at https://app.jaqpot.org/. Detailed documentation is available at:
https://www.jaqpot.org/

https://www.chemeng.ntua.gr/labs/control_lab/index.html
https://app.jaqpot.org/
https://www.jaqpot.org/

Jaqpot 5 Tutorial Page 3 of 20

DEPLOYING A PREDICTIVE MODEL

USING THE JAQPOTPY LIBARY

Jaqpot 5 is currently integrated with the entire Scikit-learn python library (https://scikit-learn.org/stable/)
which is the most comprehensive and perhaps the most popular open source library for machine learning,
data mining and data analysis. There are plans to integrate algorithms from the R language caret library
(https://cran.r-project.org/web/packages/caret/caret.pdf) as well as techniques from Julia machine
learning libraries, like JuliaML (https://github.com/JuliaML).

The main tool developed by NTUA for integrating the Scikit-learn set of algorithms is the jaqpotpy library,
which lets the user create a machine learning model in the python environment of his choice and the
deployment the model over the web.

To follow this tutorial the user should:

1) Have a Jaqpot 5 account. For more information, please read the tutorial on how to login to Jaqpot
5

2) The Jaqpotpy library should be installed as a pypi package:

 pip install jaqpotpy

3) One csv file containing the data for a particular modelling example should be available. The file is
provided as supplementary material in this deliverable and its name is:

70_reduced.csv

After the end of the tutorial, the user should arrive to a web service similar to the one hosted in the
following URL: https://app.jaqpot.org/model/RqCRtRpY85kpbgGtsiXp , which is available to all members
of the NanoCommons organisation. For more information about Jaqpot 5 organisations please read the
specific tutorial on using and managing organisations in Jaqpot 5.

In the Appendix at the end of this tutorial, the reader can find detailed information about all the
functionalities of the Jaqpot 5 library.

https://scikit-learn.org/stable/
https://cran.r-project.org/web/packages/caret/caret.pdf
https://github.com/JuliaML
https://app.jaqpot.org/model/RqCRtRpY85kpbgGtsiXp

Jaqpot 5 Tutorial Page 4 of 20

The modeller can use the algorithm of her/his choice to fit the best possible model to the available training
data and validate the model based on validation statistics. She/he can also use optimal machine learning
tools provided in Python, such as TPOT, a Python Automated Machine Learning tool that optimizes
machine learning pipelines using genetic programming (https://github.com/EpistasisLab/tpot).

In this tutorial we will demonstrate how to reproduce and publish in Jaqpot5, a Linear nanoQSAR model
predicting Solubility of C60 Fullerene in Various Solvents, with just a few lines of code in a Jupyter
notebook. The model has been originally presented in the following publication: Farhad Gharagheizi &
Reza Fareghi Alamdari (2008) A Molecular‐Based Model for Prediction of Solubility of C60 Fullerene in
Various Solvents, Fullerenes, Nanotubes, and Carbon Nonstructures, 16:1, 40-57, DOI:
10.1080/15363830701779315.

https://github.com/EpistasisLab/tpot

Jaqpot 5 Tutorial Page 5 of 20

Import the jaqpotpy library and various components from the pandas and scikit-learn python packages:

import pandas as pd

from jaqpotpy import Jaqpot

from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score, GridSearchCV, RandomizedSearchCV

df=pd.read_csv('70_model_reduced.csv') # Reads the data

print(list(df)) # Prints the headers of all columns

Jaqpot 5 Tutorial Page 6 of 20

Read the data and print the headers of all columns:

df=pd.read_csv('70_model_reduced.csv') # Reads the data

print(list(df)) # Prints the headers of all columns

The response is a list with the headers of all columns:
 ['Solvents', 'piPC03', 'ATS1m', 'Seigp', 'More23e', 'H1m', 'logS Exp.']

Jaqpot 5 Tutorial Page 7 of 20

Define the independent variables and the end-point to be predicted and split randomly the dataset into
training and test sets consisting of 75% and 25% of the data respectively:

Xall=df[['piPC03', 'ATS1m', 'Seigp', 'More23e', 'H1m']] # Defines the columns that will be used as independent
features

Yall=df['logS Exp.'] # Defines the end-point

X_train, X_test, Y_train, Y_test = train_test_split(Xall, Yall, train_size=0.75, test_size=0.25, random_state=1)
Splits the data into training and test sets

Jaqpot 5 Tutorial Page 8 of 20

Develop a pipeline consisting of scaling the data first and then apply the multiple linear regression
algorithm:

stepslinear = [('scaler', MinMaxScaler()), ('MLR', LinearRegression())]
pipelinelinear = Pipeline(stepslinear) # define the pipeline object.

Jaqpot 5 Tutorial Page 9 of 20

Train the model on the training set, compute and print the R2 statistic on the training set, the test set and
on the full set. Finally perform 5-fold cross validation test on the training observation.

pipelinelinear.fit(X_train, Y_train)
print('Training score: ', pipelinelinear.score(X_train, Y_train))
print('Testing score: ', pipelinelinear.score(X_test, Y_test))
print('Total score: ', pipelinelinear.score(Xall, Yall)) #Trains the model and prints R^2 statistics

cross_val_score(estimator=pipelinelinear, X=X_train, y=Y_train, cv=5, n_jobs=-1) #Performs a 5-fold cross
validation

The response is a list with the calculated statistics:

Training score: 0.8994088488271355

Testing score: 0.9043040438111096

Total score: 0.9034772311898356

array([0.91906039, 0.88995619, 0.90445436, 0.86506266, 0.62316459])

Jaqpot 5 Tutorial Page 10 of 20

The results are very satisfactory and very similar to the one reported in the paper, where the model has
been presented. The following commands are used to deploy the model as a web service in Jaqpot 5. First
the user is prompted to enter his username and password:

jaqpot = Jaqpot("https://api.jaqpot.org/jaqpot/services/")

jaqpot.request_key_safe()

Only a single command is needed to deploy the model into Jaqpot 5:

jaqpot.deploy_sklearn(pipelinelinear,Xall,Yall, title="Linear Model for Predicting Solubility of C60 Fullerenes
in Various Solvents",description="A description")

The response is the unique Jaqpot 5 URL on which the model is hosted.

There are two additional optional arguments in the command which deploys the model in Jaqpot. The
first is the definition of the domain of applicability using the leverage method, which is performed by
adding the “doa=” argument, followed by the name of a dataframe, which includes only the independent
variables. The second argument is the model_meta argument. By setting model_meta=True, a list of
metadata is generated and is made available through the Model_meta tab in the Graphical User Interface.
This list of metadata contains the algorithm that was used to develop the model, the values of the
hyperparameters, all the complete Scikit-learn pipeline, when a series of modelling steps has been used
to create the model.

jaqpot.deploy_sklearn(pipelinelinear,Xall,Yall, title="Linear Model for Predicting Solubility of C60 Fullerenes
in Various Solvents",description="A description",doa=Xall, model_meta=True)

Jaqpot 5 Tutorial Page 11 of 20

Optionally, the user can create a Predictive Model MarkUp Language (PMML) representation of the model
to be included as additional information in the web service:

!pip install sklearn2pmml

from sklearn2pmml.pipeline import PMMLPipeline

from sklearn2pmml.pipeline import PMMLPipeline
pipelinepmmllinear = PMMLPipeline([
 ("scaler", MinMaxScaler()), ("MLR", LinearRegression())
])
pipelinepmmllinear.fit(X_train, Y_train)

from sklearn2pmml import sklearn2pmml

sklearn2pmml(pipelinepmmllinear, "SolubilityC60linear.pmml", with_repr = True)

Jaqpot 5 Tutorial Page 12 of 20

The model developer can now enter the Jaqpot UI to add any other information about the model (for
example detailed description, standard reports like Quantitative Model Reporting Format (QMRF), PMML
representations, ontological annotations etc.)

The overview tab: The overview tab opens a markdown free-text editor where the user can include any
information about the model. The editing mode can be activated by clicking the red icon on the bottom
right of the page (Figure 1) and is deactivated by clicking on the floppy disk icon (Figure 2). The screenshot
in Figure 1 is from out full implementation of the model, where we are providing links to the full dataset,
the training dataset and the test data sets, a link to a full QMRF report generated using the QMRF editor

provided by JRC: https://sourceforge.net/projects/qmrf/ the report an editable version of the QMRF
report and the PMML representation of the model. For uploading dataset to Jaqpot 5 please read the
tutorial on uploading datasets.

Figure 1. Overview tab (activating the editing mode).

https://sourceforge.net/projects/qmrf/

Jaqpot 5 Tutorial Page 13 of 20

Figure 2. Overview tab (deactivating the editing mode).

Jaqpot 5 Tutorial Page 14 of 20

The features tab: Here the model creator can provide specific information about the independent features
and the end-point of the model: descriptions, units and ontological classes, which will allow the model to
understand data sets that are ontologically annotated automatically. Below (Figure 3) we provide a
screenshot of the data tab under the C60 solubility model. Like in the overview tab, the user can enter or
change all that information by clicking the red icon on the bottom right of the page, which activates the
editing mode (Figure 4)

Figure 3. The features tab (entering information and ontological annotations for the independent
variables and the end-point predicted by the model).

Jaqpot 5 Tutorial Page 15 of 20

Figure 4. The features tab in editing mode.

Jaqpot 5 Tutorial Page 16 of 20

The model is now complete. The user can share the model with his partners or the community through
the Jaqpot organisations. To do that the user clicks on the share button, which is available in all tabs.

He can choose to share the models in two levels of rights (write, execute) with organisations where he is
a member (Figure 5). For more information about Jaqpot 5 organisations please read the specific tutorial
on using and managing organisations in Jaqpot 5.

Figure 5. Sharing the model with organisations.

Jaqpot 5 Tutorial Page 17 of 20

Appendix. Guidelines on installing and using the jaqpotpy library

Installation

In order to use jaqpotpy, users need to install it first. Installation can be executed conveniently as a pypi
package.

pip install jaqpotpy

Usage and initialization

Import Jaqpot
After installation, Jaqpot needs to be imported with the following command:

from jaqpotpy import Jaqpot

Initialize Jaqpotpy on the services where jaqpot lives.

jaqpot = Jaqpot("https://api.jaqpot.org/jaqpot/services/")

User authentication by Jaqpot
In order to access jaqpot services, first the authentication of the user is required. First it is necessary to
define the web location of the Jaqpot instance being used.

jaqpot = Jaqpot("https://api.jaqpot.org/jaqpot/services/")

Using Jaqpot username/password

The following command will send your username and password, execute your login and set the api key
that is needed:

jaqpot.request_key('username', 'password')

Same as above, this command hides the password if jaqpot is used through a jupyter notebook etc. and
initiates a prompt for your username and password, only visible by the user:

jaqpot.request_key_safe()

Using token (for users accessing Jaqpot with a Google/Github account)

Jaqpot 5 Tutorial Page 18 of 20

Alternatively, for users that have logged in through Google or Github it is possible to login with the use of
an API key. At the account page, the user can find an api key that can be used in order to have access toon
the services and send it to Jaqpot by substituting the api_key field.

jaqpot.set_api_key("api_key")

Please note that these keys have short life and should be updated on each login.

Deploy your models!

You can use the commands below, customised per model type, in order to make models trained with
scikit-learn algorithms available as web services through Jaqpot. Please note:

● all models should be trained with variables that are pandas dataframes
● when calling a jaqpot.deploy function you should use exactly the same variables used to train the

model
● The Y variable (prediction endpoint) should have an index if it is a supervised method.

1. deploy_sklearn()

Lets you deploy models created with scikit-learn with supervised methods.

 deploy_sklearn() parameters are:

● model :{is a sklearn trained model} A trained model that occurs from the sklearn.linear_model family
of algorithms

● X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
● y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).
● title: {is a String} The title of the model
● description: {is a String} The description of the model
● doa: {is a pandas dataframe} The dataframe that is used to train the model (X variables) (Optional by

default null).

● model_meta: {boolean} True or False (optional by default False).

The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

Example usage

from jaqpotpy import Jaqpot
import pandas as pd

Jaqpot 5 Tutorial Page 19 of 20

from sklearn import linear_model

df = pd.read_csv('/path/train.csv')
X = df[['Pclass', 'SibSp', 'Parch', 'Fare']]
y = df['Survived']

clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y)

jaqpot.deploy_sklearn(clf, X, y, title="Sklearn 2", description="Logistic regression model from python for the titanic dataset")

On the above example a linear model (in our case a logistic regression) is created and deployed on Jaqpot.
The dataset is read as a pandas dataframe (a requirement for Jaqpot 5) and the X and y dataframes are
created, on which the algorithm is trained and the model is created.

2. deploy_XGBoost()

Lets you deploy models created with XGBoost library.

 deploy_XGBoost() parameters are:

● model :{is a sklearn trained model} A trained model that occurs from the sklearn.linear_model family
of algorithms

● X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
● y : {is a pandas dataframe} The dataframe that is used to train the model (y variables).
● title: {is a String} The title of the model
● description: {is a String} The description of the model
● doa: {is a pandas dataframe} The dataframe that is used to train the model (X variables) (Optional by

default null).

● model_meta: {boolean} True or False (optional by default False).

The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

3. deploy_sklearn_unsupervised()

Jaqpot 5 Tutorial Page 20 of 20

Lets you deploy models created with unsupervised sklearn methods. These methods do not require Y
since the models are created without one.

 deploy_XGBoost() parameters are:

● model :{is a sklearn trained model} A trained model that occurs from the sklearn.linear_model family
of algorithms

● X : {is a pandas dataframe} The dataframe that is used to train the model (X variables).
● title: {is a String} The title of the model
● description: {is a String} The description of the model
● doa: {is a pandas dataframe} The dataframe that is used to train the model (X variables) (Optional by

default null).

● model_meta: {boolean} True or False (optional by default False).

The id of the model is returned. The model can be found on the Jaqpot homepage of the user for editing
/ sharing / execution (create predictions).

 Support

