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Summary
The following presents patterns of “experienced segregation”—interaction between groups in daily
life—across time and space based on mobile phone data. Constructing a spatial interaction network

for the Bay Area and New York City, we identify changing structure—marked by falling degree
centrality and network density—and rising segregation. Expanding to the 100 largest metropolitan

areas in America, we find mixed results, but a subtle relationship between significant changes to the
network and segregation.
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1. Introduction

The pandemic altered mobility patterns across the world, replacing previously dense networks of
interactions between commercial and residential areas with comparably sparse ones. It has created a
laboratory for understanding spatial interaction networks in cities as mobility data show changing
travel patterns, which influence how communities interact. What impact has the pandemic had on
integration in cities, and is there evidence of lasting changes to network structure?

In this project, we use phone tracking data containing origin-destination flows between home
neighborhoods and points of interest to identify properties and variations of urban socio-spatial
networks, using structural measurements to compare cities across time and space. For each
metropolitan area in the United States, we compute a series of network statistics. Performing
community detection, we explore the consequences of these changes: community size along with
racial profile contribute to the relative sorting of the city as a whole, which allows us to compare the
integration of cities across time. Across our sample, network density fell in April and has not yet
returned to January or February levels, as did degree centrality; while segregation—measured as the
homogeneity of detected communities—rose in New York City and the Bay area, we find little
evidence that it rose systematically across the sample.

In measuring demographic composition, we build on work by economists exploring the concept of
experienced segregation: the notion that residences—how we typically capture segregation—are only
one aspect of daily life, and others may warrant consideration. Davis et al. (2019) use restaurant
reviews to determine the degree to which different communities mix, estimating that individuals are
less likely to visit restaurants in demographically dissimilar neighborhoods. Athey et al. (2020) use
mobile phone data to monitor interactions between individuals, finding that residential segregation is
greater than an experiential measure of it in all American cities studied, and that cities with high
residential segregation have high segregation of activities.

Numerous studies apply theories of experienced segregation to the pandemic (see: Bassolas, Sousa,
Nicosia 2021 and Chang et al. 2020), attempting to understand the relationship between experienced
segregation and risk. Bonaccorsi et al. (2020) document differences in mobility reduction during
Italy’s first wave, finding that lower and income and higher inequality in an area corresponded to
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stronger contractions.

2. Data and Methods

The following work develops rigorous approaches to understanding urban network structure by
constructing social graphs with the growing body of mobility data. We use data from SafeGraph,
which provides locations for 5 million points of interest in the United States along with a
representative sample of visits made to them by American devices and with data on origin
neighborhoods.2 With these records, we construct urban networks for the 100 largest metropolitan
areas by population.

Following Batty (2013), the basic construction of each city’s network (G) is an origin Census block
group (V1), a destination Census block group (V2), reducing each point of interest to its constituent
neighborhood so our graph has a single model, and a weight (w) that represents the number of visitors
moving between those vertices, or the weight of the edge. We then present metrics for assessing
changes across and between networks, including structural correlation (Butts and Carley 2001),
network density and aggregate measures—median, variance—of centrality to compare mobility
networks.3 Below we show this representation by month for New York City and the Bay Area.

Figure 1 Mobility flows for New York City (left) and the Bay Area (right). Visits represent the
number of people flowing along that particular desire line.

We also use community detection to inform our understanding of the network. Several community
detection approaches inform our understanding of these dense networks. Prestby et al. (2019) use the
Louvain method to demarcate communities from mobility data; a recent study of mobility patterns
during the pandemic by Gibbs et al. (2020) leverages the InfoMap approach—which partitions the
movement of a random walker (Bohlin et a. 2014)—to identify changing communities in the United
Kingdom. Because mobility data is dense and large, the InfoMap method is suitable, according to
Yang, Algesheimer, and Tessone (2016). We employ it below, running it multiple times and assigning
neighborhoods based on modal label, following Gao et al. (2018). With these communities we can
then track changes to community size—mean, standard deviation—along with demographic

3 For an explanation of centrality and density, see Jackson (2010).

2 Concerns about the sample are valid: while Safegraph attempts to match the demographic composition of the
users it tracks to estimates from the Census, the sample is representative nationally (Squire 2019), but may
indeed suffer from biases at fine spatial resolutions such as we employ.
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composition.

To understand the composition of these communities we generate statistics for each community and
summary statistics for each city, extending Prestby et al. (2019). Harris and Owen (2018) develop a
dissimilarity index, which says the proportion of the population that would need to move to create an
even demographic composition across areal units, with which we quantify the impact of changes to
community structure.

3. Results

3.1. The Five Boroughs in Focus

We begin by exploring changes to network structure in New York City’s five counties. As Figure 1
shows, the volume of traffic dropped in April and is still down compared to January and February, yet
we see in Figure 2 a lower correlation between November and January than between April and
January. No month is as similar to January as February, implying that the pandemic is still influencing
mobility, but that its influence is changing as people adapt—and perhaps as travel over the holidays in
November and December provide an additional shock.

Figure 2 Graph correlations between months in New York City.

We now look at the consequences of these changes in Figure 3. Community size and network density
fell in April; these communities were more dissimilar, indicating that neighborhoods interacted with
similar neighborhoods—demographically—and did not interact with dissimilar ones. This suggests
that experienced segregation may have increased.4

4 Although, because we evaluate neighborhoods rather than individuals, we cannot say so definitively.
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Figure 3 Dissimilarity index again changes to community structure.

3.2. The Bay Area in Focus

Next we document these changes within the Bay Area, which includes six counties adjacent to the
San Francisco Bay. In Figure 4, We find stronger correlations from one month to the next, even
during April and May, compared to New York City. Yet performing the same community detection
and segregation assessment in Figure 5 as above, we find cleaner results in California than in New
York: network density decreases to its lowest levels in April, where dissimilarity increases to its
highest, and subsequently increases—though not to its highest levels—in the following months, as
dissimilarity decreases.

Figure 4 Graph correlations between months in the Bay Area.
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Figure 5 Dissimilarity index against changes to community structure.

3.3. Expanded Results

In this section we calculate the same statistics for the 100 largest metropolitan areas in America. The
maps in Figure 6 show a clear spatial relationship, with the Southeast showing comparably little
change while the Northeast and West show strong differences between January and April. There are
interacting factors: Miami, as a coastal metropolis, is in this former group but behaves more like the
latter. When we arrange correlations on a North-South axis in Figure 9, we see that Miami is
anomalous: the lowest latitudes have the highest January-April correlation while the opposite holds
true for the highest latitudes. Many of these disrupted cities are in the Acela corridor, stretching from
Washington to Boston; the only exceptions are rural cities in Iowa and Idaho.

Figure 6 Correlation to January of month named.
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Figure 7 Correlation to January of month named, ordered from North to South.
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Figure 8 Mean degree centrality (left) and network density (right), with select cities highlighted.

Degree centrality—the number of other neighborhoods residents visit—and network density changed
substantially during the pandemic, according to Figure 8. With this collection of metropolitan areas,
we see a subtle relationship between changing networks and changing dissimilarity in Figure 9, which
spikes in 50 out of 100 cities in April—and another 27 in May, June or July. In just 8 cities are the
prepandemic months of February and April the most segregated (see Figure 10). Note that Boston and
San Francisco, which saw the virus arrive and spread early, have spikes in March.

Figure 9 Index of dissimilarity, chained to January, over time with same highlighted cities.

4. Discussion

This process has introduced a method for monitoring changes to spatial interaction networks and

Page | 7



shows much change during the early months of viral spread—with little recovery since. Advanced
study is needed to understand what factors predict heightened experienced segregation during the
pandemic. Geography alone is not sufficient to explain the fact that some cities saw segregation while
others saw it fall or remain flat. Further research could also shed light on the differences between
urban and suburban populations. The cases of New York and the Bay Area showed rising segregation
while excluding suburban and exurban counties; when we included the entire metropolitan region,
results for both conurbations along with many others showed a diverse array of network structures.

Figure 10 Most segregated month counts.
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