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Summary

Spatial autocorrelation statistics have a long-standing history being used by geographers to
determine whether identifiable spatial patterns exist in data. However, existing research has

identified that solely relying on p-values can be problematic when working with large datasets.
This paper introduces a generalised model that can capture geographical data’s spatial

patterns using a graph convolutional network (GCN). The preliminary analysis demonstrates
that GCN can capture the localities among areas in local-scale datasets by processing the data

features and the spatial information separately into the graph network.
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1 Introduction

Determining whether or not identifiable spatial patterns exist is a crucial step in spatial data
analysis. According to Haining (2001, p. 14763), “spatial autocorrelation refers to the presence of
systematic spatial variation in a mapped variable”. Spatial autocorrelation is defined as positive
if adjacent observations have similar values and negative if adjacent observations have contrasting
values. The concept of spatial autocorrelation plays an important role in defining the discipline
of spatial analysis. Since the mid-1990s, the idea of spatial autocorrelation was extended to local
variation, which led to the development and use of local statistics (Getis, 2008). The latter can be
defined as descriptive statistics whose value is calculated for each entity in a spatial dataset and
focus on the relationship between each entity and its neighbours. The concept behind the statistical
measurements for calculating spatial autocorrelation has a close connection to statistical theory, and
a local statistic can be derived from “almost any standard statistic” (O’Sullivan and Unwin, 2014,
p. 222). Some of the more commonly utilized algorithms in the study of spatial autocorrelation
include: local Moran’s I (Anselin, 1995), local Gi and Gi* statistic (Getis and Ord, 1992; Ord and
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Getis, 1995) and LISA (Anselin, 1995). Similar to many standard statistics, interpreting the results
of local statistics involves the expected values of the statistical model and its statistical inference,
which often uses p-value to quantify the idea of statistical significance as evidence that whether
spatial autocorrelation exists in the data.

However, Lin et al. (2013) raised concerns about the use of p-value associated with large datasets,
as p-values quickly tend to zero. Thus, solely relying on p-values and commonly used significance
thresholds can lead to no sufficient grounds to support the results of statistical models. In geographic
information analysis, those same concerns limit the scalability of local statistical models.

This paper aims to investigate the potential of semi-supervised learning approaches, and in particu-
lar deep learning neural networks for modelling spatial patterns (i.e., local spatial autocorrelation)
in a large geographic area. To overcome the issues related to common approaches to assess the
significance of statistical methods when working with large databases, we propose a deep learning
model named graph convolution network (GCN) to investigate local object’s features of input data.
The source code used for this paper is available on GitHub1.

2 Method: Graph Convolutional Neural Network

The overall workflow of the proposed method is shown in Figure 1. We frame the problem of
classifying local statistics in such spatial matrix as a graph-based semi-supervised learning task
(see next section for more detailed explanations) and graph convolution network (GCN) (Kipf and
Welling, 2016) is suitable for modelling complex spatial patterns in geographic data. Spatial weights
are a key component in the measurement of spatial autocorrelation statistics (O’Sullivan and Unwin,
2014). The weights encode the neighbouring relationship between the observations as a n×n matrix
A where the elements Aij of the matrix are the spatial weights.

Graph Convolutional Network

Figure 1: The workflow of the proposed method. Map boundaries source: Office for National
Statistics licensed under the Open Government Licence v.3.0. Contains OS data © Crown copyright
and database right 2021.

1https://github.com/PengyuanLiu1993/GISRUK2021 GCN spatial autocorrelation
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In its simplest form, the Aij will be 1 if two locations are adjacent and 0 if they are not, where the
whole area is represented as nodes and their connections. Therefore, such adjacency can be seen as
a graph-based generalization of a spatial matrix.

3 Case Study

3.1 Regular Grid: Hexagons

The first step to validate the proposed approach is to test it on data of known properties. Therefore,
our first experiment aimed to test whether our approach can correctly identify values that have been
artificially generated to be spatially autocorrelated. We tested our model on a dataset that consists
of 2700 hexagons. The use of hexagons has a long-standing history in GIScience for investigating
spatial patterns at various geographical scales. Compared with irregular geometry shapes (e.g.,
output areas, postal areas), hexagons are the polygons closest to a circular shaped polygon that
can be tessellated as an evenly-spaced grid. Furthermore, their shape reduces the sampling bias
that can emerge from edge effects. Thus, hexagons can be a useful tessellation for the preliminary
testings for our proposed model.

Using the hexagonal grid as a base, we followed the method introduced by Goodchild (1986) to
generate values (one per hexagon) displaying local spatial autocorrelation, as shown in Figure 2(a).
We used standardized local G value (z -score) and p significance value from the standard Getis-Ord
Gi* statistic (Gi*) (Getis and Ord, 1992) for each output area to identify and label hot spot areas
(z>0, p<0.01), cold spot areas (z<0, p<0.01) and non-significant areas (p>=0.01).

Having a set of spatially autocorrelated data and a set of labels defining whether each hexagon is
part of a hot or cold spot (or neither), this first experiment will assess whether a GCN trained
on a subset of those data can learn the relationship between the values of each hexagon and its
neighbours, and the labels assigned through the Gi* analysis.

The code is developed in Keras2 with Tensorflow3 as the backend. We randomly selected 500
hexagons as training samples for the two-layer GCN’s hyperparameter optimisation. We choose
a dropout rate of 0.2 for all layers, L2 regularisation factor for the first GCN layer and 16 as
the number of hidden units. We train the GCN model for a maximum of 3000 epochs (training
iterations) using Adam (Kingma and Ba, 2014) with a learning rate of 0.01 on a cross-entropy
loss function, and early stopping with a window size of 300, that is the model stop training if the
validation loss does not decrease for 300 consecutive epochs. Trainable weights initialisation and
feature vectors normalisation remain the same as in Kipf and Welling (2016). As shown in Table
1, GCN achieves a high accuracy (92.77%) in node classification task using partially labelled data.
Figure 2(b) demonstrates that the labels generated by the GCN model mostly match the labels
assigned during the Gi* analysis. The result shows a significant association existed between the
GCN outputs and labels assigned based on Gi* statistics (X2(4)=3252.2, p<0.01). This experiment
indicates our proposed model has the potential to be implemented on large size datasets for the
spatial autocorrelation analysis.

2https://keras.io/
3https://www.tensorflow.org/
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Data Accuracy

Hexagons: Simulated Data 92.77%

Table 1: Results of the GCN accuracy.

(a) Simulated data

(b) Comparisons between classification results and pre-assigned labels

Figure 2: Simulated dataset for hexagons and the results produced by GCN.
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3.2 Leicester: Artificial Dataset

Having tested our model on regular grids, we further tested our model on an irregular geometry
using output areas. Using the geometry of the city of Leicester (969 output areas) as a base, we
adopted the similar approach as described in the previous section to artificially generate attributes
displaying local spatial autocorrelation, as shown in Figure 3(a). We subdivided Leicester’s city into
six broad areas to ensure internal variation, aggregating neighbouring 2011 Census Middle-Super
Output Areas (MSOAs). We generated a set of spatially autocorrelated values (one per broad area)
and used that value as a starting point to generate spatially autocorrelated values for each OA
within each broad area separately. We used the standard Gi* statistic to identify the hot and cold
spots created by the artificial, generative process just described, defining neighbour OA based on
the 12 nearest neighbours. Same to the previous experiment, we used the standardized local G
value (z -score) and p significance value for each output area to identify and label hot spot areas
(z>0, p<0.01), cold spot areas (z<0, p<0.01) and non-significant areas (p>=0.01).

(a) Simulated data in the city of Leicester (b) Comparisons between classification results and
pre-assigned labels

(c) Visual Chi-Square statistical tests

Figure 3: Simulated dataset for Leicester and the results produced by GCN. Map boundaries source:
Office for National Statistics licensed under the Open Government Licence v.3.0. Contains OS data
© Crown copyright and database right 2021.
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Data Accuracy

Leicester: Simulated Data 96.25%

Table 2: Results of the GCN accuracy.

We selected one of the six broad areas containing 204 OAs (roughly, the west part of Leicester)
as training samples for the two-layer GCN’s hyperparameter optimisation. The rest of 795 OAs
are used as the validation set and not be used during the training. The classifications’ accuracy
is summarised in Table 2, where GCN still achieves good performance (96.25% accuracy) in node
classification task using partially labelled data on the irregular geometry.

This experiment’s outcome is illustrated in Figure 3(b), which shows how the labels generated
through the GCN model for the 795 OAs in the validation set largely match the labels assigned
during the Gi* analysis. Figure 3(c) can be interpreted as visual representations of the Chi-Square
statistical tests, showing the correspondence between the classification produced by the GCN and
during the Gi* analysis. The test clearly shows that there is a significant association between the
GCN outputs and labels assigned based on Gi* statistics (X2(4)=1647.2, p<0.01). This exper-
iment’s results provide a first clear indication that GCN is capable of learning to identify local
patterns of spatial autocorrelation through message exchanging between nodes in the geographic
neighbours’ network.

4 Discussions

We adopt a semi-supervised GCN to model the spatial statistics for areas where its nature limits
traditional Gi* statistics. The p-value of significance in traditional spatial statistics is simulated
through multiple comparisons, and it can lead to uncertainties for large datasets. Therefore, we
introduce a generalised model that can capture geographical data’s spatial patterns using graph
convolutional networks. Our preliminary analysis demonstrates that a GCN can capture the corre-
spondence between the labels assigned through a classic Gi* analysis and the spatial autocorrelation
of values by processing the data features and the spatial information separately through the graph
network. In our future research, we will test the framework on larger (e.g., national) scales to test
the scalability and robustness of the GCN-based method.
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