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Summary
Maps of landscape types (LTs) are useful abstractions that facilitate land resources management.

However, their creation is difficult as local landscapes arise from a fusion of patterns of many natural
themes. This paper introduces the integrated co-occurrence matrix (INCOMA) – a signature for
numerical representation of multi-thematic categorical patterns. The region tessellated into local

landscapes can be represented by INCOMA, which allows for the identification of LTs using standard
clustering techniques.  The concept of INCOMA is described, and its application is demonstrated by

an unsupervised mapping of LTs in Europe based on combined patterns of land cover, landforms, and
soils.
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1. Introduction

Landscape types (LTs) are groups of areas with recognizable, although often heterogeneous patterns
of natural themes (Mücher et al. 2010). Identification and classification of LTs is a foundation for
planning and management for sustainable use of land resources, and they also provide first-order
information about the geographical distribution of biodiversity and ecological processes.

LTs can be delineated by aggregating areal units with similar spatial patterns, although, identifying
and mapping LTs is challenging. First, multiple themes (layers), including topography, land cover,
climate, and soil/geology, all  contribute to a LT’s character,  and decisions how to represent their
patterns  and  combine  them  together  need  to  be  made.  Second,  landscape,  as  represented  by  a
categorical raster, is a pattern formed by many differently-labeled cells (Omernik and Griffith 2014),
rather than an aggregate of cells with the same labels. LTs delineated as aggregates of same-label
cells (see, for example Sayre et al. (2014)) represent homogeneous landscape elements rather than
heterogeneous landscapes.

Using pattern-based methods, a study area is tessellated into relatively small square blocks of cells -
areal units called local landscapes (LLs), and LLs with similar patterns are grouped together into
mutually exclusive and exhaustive clusters (Wickham and Norton 1994). Such methods have two
core ingredients: (a) pattern signature that provides a numerical embedding of a categorical pattern,
and  (b)  a  dissimilarity  function  that  quantifies  a  degree  of  dissimilarity  between  two
patterns/signatures.

It is important to note that the existing literature on pattern-based delineation of LTs is restricted to
using only a single theme – land cover. The purpose of this paper is to introduce the integrated co-
occurrence  matrix  (INCOMA)  –  a  signature  for  numerical  representation  of  multi-thematic
categorical patterns. INCOMA tabularizes intra-thematic as well as inter-thematic adjacencies, and
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thus contains information about composition and configuration of patterns representing individual
themes as well as information about relative positions of patterns associated with different themes. To
demonstrate the ability of INCOMA to identify and map LTs, we apply it to the continent of Europe
using three variables – land cover (LC), landforms (LF), and soils (SO).

2. Signatures

2.1. Co-occurrence matrix

A spatial co-occurrence matrix is a signature used to represent spatial patterns of single layer datasets
(Haralick,  Shanmugam,  and  Dinstein  1973).  It  counts  all  of  the  pairs  of  the  adjacent  cells  in
categorical raster data. The result is a  by  square matrix, where  is a number of classes in a raster.
This signature can be converted into a normalized co-occurrence histogram, where the sum of all
values of the elements equals one. Thus, calculating a dissimilarity between a pair of LLs, needed to
cluster them into LT, is tantamount to calculating dissimilarity between two histograms.

2.2. Integrated co-occurrence matrix
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Figure 1
Example of a set of categorical rasters and their spatial signatures, integrated co-occurrence

matrix and normalized integrated co-occurrence histogram.



INCOMA,  based  on  an  earlier  approach  for  representing  the  color  and  intensity  of  pixel
neighborhoods for images (Vadivel, Sural, and Majumdar 2007), is an extension of the co-occurrence
matrix to two or more themes/layers. INCOMA representing two themes has four parts (Figure 1).
The upper left part is a co-occurrence matrix for the first (land cover) raster. The bottom right part is a
co-occurrence  matrix  for  the  second  (landforms)  raster.  The  remaining  two  parts  count  co-
occurrences between classes of land cover and classes of landforms (inter-thematic co-occurrence).
INCOMA contains  not  only information about  patterns  of  all  themes but  also information about
relative positions of different themes’ patterns.

INCOMA can also be converted into a one-dimensional form - a normalized integrated co-occurrence
histogram (Figure 1).

3. Dissimilarity function

Comparison of two LLs represented by signatures is straightforward using distance measures, such as
the Jenson-Shannon divergence:

J S D ( A , B )=H ( A+B
2 )−

1
2

[ H ( A )+H (B ) ] ,
(1)

where  A is the normalized integrated co-occurrence histogram for one LL,  B is the integrated co-
occurrence histogram for the second LL, and H ( A ) and H (B ) are the values of the Shannon entropy
for each histogram.

4. Software

We developed two open-source R packages: comat (https://github.com/Nowosad/comat) to calculate
INCOMA and motif (https://github.com/Nowosad/motif) to perform pattern-based spatial analysis.

5. Identifying and mapping landscape types in Europe

To delineate LTs in Europe, we used three themes/datasets: 2018 C3S land cover (ECMWF 2019),
the Hammond’s landform regions (Karagulle et al. 2017), and USDA soil taxonomy dataset (Hengl et
al. 2017). The datasets were reprojected and resampled to the same grid for Europe with 300 meters
resolution. Additionally, they were simplified, resulting in nine land cover categories, four landform
classes, and 12 soil categories.

Next, the study area was divided into ~40,000 15 km x 15 km (50 x 50 cells) square blocks (LLs).
Spatial  patterns  of  the  three  themes  were  used  to  calculate  INCOMA  signature  for  each  LLs.
Identification of LTs was achieved via clustering LLs using the K -means clustering with K=20 and
the J S D  as a distance between signatures (Figure 2).
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The quality of delineation depends on how similar patterns are within a single LT and how dissimilar
are patterns between different LTs. The intra-cluster dissimilarity of an LT, δ , is calculated based on
an average dissimilarity between all LLs within a zone. Smaller values of  δ  indicate better-defined
zones/LTs. The inter-cluster dissimilarity between a given LT and other LTs is calculated based on a
distance between the given cluster and the rest of the clusters using the average linkage. The metric β
for a given LT is an average of values of average linkage between this LT and all other LTs. Larger
values of β indicate more distinct zones/LTs.

Values of metric β are mostly high (between 0.63-0.91), which means that LTs are distinct from each
other. Values of metric δ  have a large range, from as small as 0.12 for LT 19 to as large as 0.73 for
LT 7.

Inhomogeneity can also be assessed visually with a pattern mosaic. Pattern mosaic is an artificial
rearrangement of a subset of randomly selected areas belonging to a given zone. Figure 3 shows
examples of two pattern mosaics, for the most homogeneous LT 19 and the least homogeneous LT 7.
LT 19 has  land  cover  consisting  mostly  of  agricultural  areas  with  smaller,  dispersed  patches  of
settlements and forests located on plains. This LT’s soils are mostly mollisols, with substantial areas
of  alfisols,  both naturally fertile  soils.  On the other hand,  all  three layers in  LT 7 contains  LLs
characterized by various, not similar patterns, suggesting that this cluster should be divided further
into two or three LTs. This LT was delineated by K -means algorithm as a single entity based on its
dissimilarity to all other nineteen LTs (β of 0.91).
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Figure 2 Map of 20 landscape types in Europe obtained by clustering local landscapes of
INCOMA embeddings of patterns of land cover, landforms, and soils.



6. Conclusions

INCOMA brings together an interest in landscape classification with unsupervised machine learning
methods like clustering and segmentation and provides a principled way to make maps of landscape
types.  INCOMA can also  find  application  in  tasks  other  than  mapping LTs,  which  also  require
calculating similarities between multi-thematic patterns, such as content-based search and retrieval in
spatial databases. The purpose of search and retrieval is to find LLs most similar to the query local
landscape (LL0), which can be achieved by calculating INCOMA-based dissimilarities between LL0

and each LL in the area of interest and select LLs characterized by the smallest dissimilarities values
as the answer to the query.
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Figure 3 Examples of two landscape types: the most homogeneous LT19 and the least
homogeneous LT7.
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