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Summary 

The statistical study of spatial clusters is an important part of the exploratory data analysis toolbox. 

Spatial autocorrelation and hotspot statistics are now routinely used to better understand the 

arrangement of variables on maps. Spatial clusters, however, are often not internally homogeneous, 

but may exhibit interesting spatial heterogeneities. In this contribution, approaches to explore 

irregular spatial clusters are applied to a recent mapped index of food deserts. Both approaches are 

based on hotspot and heteroscedasticity measures, but one of the methods additionally uses 

eigenvector filtering. The results show that the latter contributes to the disclosure and understanding 

of spatial cluster irregularities. 
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1. Introduction 

 

Spatial analysis has entered the mainstream of data analytics. Popular methods include measures of 

spatial autocorrelation (Anselin, 1995), hotspot statistics (Ord and Getis, 1995), spatial 

heteroscedasticity measures (Ord and Getis, 2012; Westerholt et al., 2018), analysing flows (Liu et al, 

2015; Tao et al, 2019), and user-generated data (Westerholt et al, 2015; Westerholt et al, 2016). Such 

methods allow to detect spatial repulsion (negative) and clustering (positive spatial autocorrelation) in 

high (hotspots) or low attribute values (coldspots). Common diagnostics of disclosed spatial 

structures include the Moran scatterplot (Anselin, 1996), local spatial statistics (Anselin, 1995), and 

evaluations of the defensibility of spatial weights (Getis and Aldstadt, 2002). Possible spatial 

irregularities within clusters, however, are often not investigated in detail. This abstract proposes 

exploratory diagnostics for irregular clusters. The application of spatial amplifier filtering 

(Westerholt, 2021) is compared with the joint use of hotspot statistics and LOSH (Ord and Getis, 

2012), as proposed by Aldstadt et al. (2012) for analysing internal spatial cluster heterogeneities. 

 

2. Materials and Methods 

 

The dataset used is the e-food desert index (EFDI), which considers traditional dimensions of food 

deserts together with the provision of home delivery services (Newing and Videira, 2020; Videira et 

al., 2020). The EFDI is linked to Lower Super Output Areas (LSOAs) and is a numerical composite 

combining twelve indicators covering four domains. The region considered is the West Midlands 

Metropolitan County, from which a total of 1613 LSOAs are examined. One approach applied in the 

remainder uses the hotspot method 𝐺𝑖
∗—a measure of local spatial attribute value concentration—and 

LOSH—a measure of spatial heteroskedasticity based on local spatially weighted variance 

estimations—both of which are applied to raw attribute data as proposed by Aldstadt et al. (2012). 

The alternative approach is also based on 𝐺𝑖
∗, but applies LOSH to spatially pre-filtered attributes. 

Positive spatial autocorrelation and spatial randomness are removed from the data via an initial 

regression step that uses the eigenvalues of the spatial weights matrix associated with positively 
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autocorrelated and random structures. What remains are residuals in which locally occurring negative 

spatial autocorrelation is strongly emphasised (Westerholt, 2021). This remaining variation associated 

with negative spatial autocorrelation is of a systematic, fluctuating nature revealing heterogeneities 

associated with measurement error, unfavourable spatial units, endogenous effects like competition, 

or exogenous effects such as differently structured covariates (Griffith, 2006). The latter effects are 

interesting as they may reveal additional insights into internal cluster heterogeneities beyond mere 

random fluctuations. In addition, the filtering process is reversed to also map positive spatial 

autocorrelation and see where the strongest clusters are located. Second-order, binary spatial weights 

based on queen’s contiguity are used in all spatial analyses outlined, which are implemented using the 

R-based spdep package (Bivand et al., 2019). 

 

   

  (a)  The raw EFDI indicators.  (b)  𝐺𝑖
∗ cold and hotspots of the EFDI indicators. 

   

  (c)  Filtered positive spatial autocorrelation.  (d)  Filtered negative spatial autocorrelation. 

   

  (e)  Heterogeneous clusters (𝐺𝑖
∗ and LOSH).  (f)  Heterogeneous clusters (pre-filtered). 

Figure 1 Maps of the raw, filtered, and analysed EFDI indicators.  
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3. Results and Discussion 

 

Figures 1a and 1b visualise the mapped EFDI index and the respective cold and hotspots. The most 

prominent hotspots are located around Birmingham and along an axis connecting West Bromwich 

with Wolverhampton and Walsall. Coldspots are located around Coventry and in the more rural areas, 

which are generally less socio-economically deprived than the city cores hence showing better 

healthy food accessibility. We shall take a closer look at the results of both the positive and the 

negative filter in conjunction with LOSH and 𝐺𝑖
∗ and at the outcomes of the unfiltered approach. 

 

The characterisation of irregular clusters with LOSH and 𝐺𝑖
∗ applied to raw data (Aldstadt et al., 

2012) often identifies boundaries instead of internal cluster fluctuations (Figure 1e). Most of the areas 

identified in this way are located either between stronger and less pronounced parts of the elongated 

central axis, or at the edges of cold/hotspots. These results are not entirely unexpected given the 

nature of the methodology used. LOSH identifies areas where the strongest residuals above locally 

estimated means accumulate, which, in an urban context with spatial regimes, naturally occurs at 

cluster boundaries. However, this means that this approach is prone to overlooking intra-cluster 

irregularities, unless the latter stand out strongly. Moreover, it is not possible to distinguish between 

intrinsic variations in the intensity of the phenomenon under study and possible interesting anomalies 

such as local outliers or extrinsic confounders. Therefore, this approach should be used to identify 

interesting cluster boundaries rather than to characterise internal cluster irregularities. 

 

Using the two types of filters (Westerholt, 2021) in combination with LOSH and 𝐺𝑖
∗ reveals 

additional structures beyond those described in the previous paragraph. Controlling for negative 

autocorrelation and randomness through filtering, we see that areas in the north-western parts of 

Birmingham and in Wolverhampton appear particularly spatially clustered when outliers and local 

anomalies are removed (Figure 1c). In contrast, using the filter that enhances negative spatial 

autocorrelation identifies areas where local irregularities exist beyond smooth neighbourhood effects 

(Figure 1d). To better understand what this means, consider the area of Marston Green north of 

Birmingham International Airport, which is highlighted in the combined map in Figure 1f. Closer 

inspection reveals that this area shows small-scale diverse characteristics regarding the Index of 

Multiple Deprivation and also with respect to the Internet User Classification in terms of propensity 

to order food online (both not shown in the map). The approach presented may thus allow to disclose 

spatially varying interactions of constitutive subcomponents of the EFDI. The negative filtering 

approach in combination with 𝐺𝑖
∗ and LOSH therefore seems promising to better understand the 

spatial details of (possibly unknown) subcomponents and how these play into observed data and 

indicators. It may thus contribute to a better understanding of how and why different revealed clusters 

differentiate. 

 

4. Conclusions 

 

This abstract briefly and exploratorily compares two approaches to characterise spatial clusters. One 

approach is based on a hotspot statistic in combination with the LOSH method to quantify spatial 

heteroscedasticity. The other approach additionally uses two variants of Moran eigenvector filtering 

to distinguish different types of spatial variation in cluster characterisation. The results show that the 

first of the two approaches is better suited to identify potentially interesting cluster boundaries where 

contrasts feature particularly strong. The second approach is of special interest in terms of the 

negative spatial autocorrelation amplifier, which allows to reveal clusters that may be affected by 

local anomalies or, like in the present case of the EFDI index, by possible subcomponents with a 

spatial structuring different from the finally observed data. Future research should explore better 

explanations of the negative amplifier results, which are more difficult to read and interpret than 

positively autocorrelated (i.e. clustered) results due to their negatively spatially autocorrelated nature. 
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