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Summary 

The spatial and temporal distribution of global map data is highly unequal, with large areas of the 

world suffering from a paucity of data. Volunteered geographic information (VGI) has been vaunted 

as a potential solution, but is also criticised for reinforcing rather than alleviating inequalities. Human-

machine workflows have been suggested to improve the speed and quality of VGI production for 

poorly mapped regions, but this ability is yet to be fully evaluated. This paper provides the first 

detailed evaluation of a human-machine workflow, testing its ability to produce high quality, timely 

data in remote regions often neglected by humanitarian mapping campaigns.  
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1.      Introduction 

1.1.   Mapping inequalities 

Globally an inequality in the coverage, currency and consistency of map data persists (Huck et al., 

2020). Higher income, technologically advanced countries benefit from highly detailed, up-to-date 

maps, whilst lower income, technologically disadvantaged countries face addressing humanitarian and 

developmental challenges with outdated, poor quality and inconsistent data (Scott and Rajabaford, 

2017). The reasons for this disparity are manifold and include historic control of data by past-colonial 

powers (Graham et al., 2014), the digital divides (Schradie, 2011) and the ability of higher income 

countries to afford maintenance and production of authoritative map data. Inequalities are not only 

observed between higher and lower income countries but within countries themselves. Urban areas are 

often advantaged by accurate, thematically-rich data due to their relatively higher affluence and ICT 

penetration compared to rural areas (Young et al., 2020). Despite the promise of advancements in 

digital mapping and the introduction of VGI to lower cost and skill barriers of map data production, it 

has been argued that these technologies can reinforce, rather than alleviate, many of these inequalities 

(Perkins, 2014). Consequently, populations without access to maps data are often left vulnerable to the 

impacts of humanitarian crises, with responses hampered by a lack of data on the location of affected 

populations and infrastructure required to plan responses.  

1.2.   Human-machine mapping workflows 

 

Human-machine mapping workflows, specifically the integration of machine learning (ML) into VGI 

workflows, have been suggested as a solution to alleviate inequalities in map data and overcome 

motivational and practical challenges of mapping in remote, rural areas (Huck et al., 2020; Vargaz-



Munoz et al., 2020). The integration of ML is said to improve existing volunteer engagement by 

reducing volunteer effort (Vargas-Munoz et al., 2020), helping to attract new types of volunteers 

(Huck et al., 2020) and increasing the quality and speed of data production (Vargas-Munoz et al., 

2020). Several human-machine mapping workflows have since been suggested (see Huck et al., 2020; 

Vargas-Munoz et al., 2020;  Bastani et al. 2019; Herfort et al., 2019), although the extent of ML 

integration varies between workflows.   

 

One particular approach, known as ‘Centaur VGI’ (Huck et al., 2020), suggests sharing mapping tasks 

between the machine and human volunteers throughout the mapping process, seeking to improve 

volunteer engagement, increase efficiency and improve the thematic and positional accuracy of data. 

The machine is tasked with identifying and classifying features, whilst the human is asked to verify the 

machine output, improving machine performance and ensuring all data uploaded is accurate and 

correct. An illustrated comparison of the Centaur VGI workflow and a traditional VGI workflow (e.g. 

OpenStreetMap (OSM) is given in Figure 1. 

 

 
Figure 1:  Labour division between the human volunteer and the machine in (A) a traditional VGI 

workflow (e.g. OpenStreetMap), and (B) the Centaur VGI workflow, reproduced from Huck et al. 

(2020). 

 

However, a thorough user evaluation of the Centaur VGI approach has yet to be undertaken, meaning 

the proposed benefits cannot be verified. The purpose of this research is therefore to evaluate the 

potential of the Centaur VGI approach to improve: 

● The thematic and geometric accuracy of resulting data. 

● Volunteer mapping efficiency. 

● Volunteer engagement. 

● The user experience of mapping platforms (particularly first time mappers). 

 

 



2.      Methods 

To evaluate the Centaur VGI workflow (Figure 1b) an online mapping platform was developed based 

on the workflow, which asked website users to decide if a machine proposed geometry was a building 

or not, and if necessary edit the geometry before uploading. The platform can then feedback user input 

to the machine, incrementally improving machine performance. The website was used by participants 

who provided insight into platform usability through ‘think-aloud’ commentary and questionnaire 

responses.  

 

2.1.   Implementation of the Centaur VGI workflow  

 

The Centaur VGI workflow (Figure 1b) was implemented using JavaScript and connected to the live 

OSM database via the OSM APIv3
1
  and the Overpass API

2
. Due to the focus upon user experience 

and engagement with the platform (and in order to keep costs down), we used a static database 

containing pre-generated machine-detected building geometries for the country of Uganda
3
, rather 

than a ‘live’ ML service generating building footprints concurrent with website use. This had no 

bearing on the user experience. Figure 2 outlines the interaction between website user and background 

website operations allowing the user to approve, edit or reject the machine generated geometries. An 

example of the mapping interface can be seen in Figure 3.  

 

 
Figure 2: Client(user)-server interaction for the Centaur VGI platform 
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Figure 3: Centaur VGI mapping(user) interface 

 

2.2.   Comparative platform 

 

A pre-existing VGI platform
4
 was used to compare the efficiency, engagement, repetitiveness and 

accuracy of the Centaur VGI platform. In contrast to the Centaur platform, the platform uses a 

traditional workflow, with a task manager assigning unmapped areas of land to volunteers, who then 

manually map them using the OSM iD editor
5
 (Figure 1a). Upon completion of mapping the area is 

marked as complete and the volunteer is given a new area to map.  

2.3.   Participant recruitment and demographics 

In total 34 participants were recruited to complete the evaluation. Participants were sought from the 

postgraduate, academic and alumni population of the University of Manchester and reflected a range 

of demographics. Participants ranged in age from 18 to 65 (Figure 4), mainly identified as women, and 

exhibited a variety of levels of prior experience in producing VGI and technical (computer and 

Internet) experience. The majority had previously taken part in at least one mapathon, which is largely 

as a result of high-profile mapathons run by this research group in recent years (Figure 5).  

                                                
4
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Figure 4: Participant ages 

 

 

Figure 5: Participant demographics (a) Identified gender (b) Technical experience (c) Experience 

producing VGI (d) Previous participation in a mapathon 



2.4.   Platform evaluation 

Each participant took part in a 1:1 mapping session conducted via Skype.  Each participant was asked 

to map as many buildings as possible in ten minutes using each platform, the order of which was 

randomised in order to mitigate bias. Whilst mapping participants were asked to ‘think-aloud’, 

explaining what they were doing and why; and commenting on their likes and dislikes in relation to 

each platform. After each ten minutes the total number of buildings mapped was recorded. Participants 

were then asked to complete a questionnaire which collected limited demographic data (age, gender 

and education), information on technical experience, experience with VGI and motivations for 

mapping and asked questions about individual and comparative platform usability (adapted from 

Ballatore et al., 2020). Participants were also asked to verbally provide further detailed information 

about their experience of each platform. Verbal comments made during and after each ten-minute 

mapping activity were recorded and transcribed prior to analysis.  

3.      Proposed analysis 

3.1.   Mapping rate and accuracy calculation 

To explore the ability of the Centaur VGI workflow to produce timely, high quality data the data 

produced using each platform will be evaluated by the calculation of a number of quantitative 

accuracy and efficiency measures:  

 

1) Statistical measures of the number of buildings produced per participant. 

2) Statistical measures of the rate of buildings mapped per participant.   

3) Total number of true and false positive buildings produced by all participants.  

4) Total number of true and false negative buildings produced by all participants.  

 

In the absence of ‘authoritative’ data with which to compare, measures 3 and 4 will be calculated 

based upon comparison with the same satellite imagery as was used by the participants
6
. 

3.2.   Questionnaire analysis  

In order to understand the ease of use of each platform, a usability score (Ballatore et al. (2020)) was 

generated for each platform based on each participant's response to the 15 usability questions asked in 

the questionnaire. Each question response scored as follows: “strongly agree” scored as 4,“agree” as 3, 

“neutral” as 2, “disagree” as 1 and “strongly disagree” as 0 (maximum score of 60).  Following this a 

number of statistical measures will be calculated based on individual platform usability scores.   

Usability scores will be compared between the platforms to investigate variations in perception of 

usability based on participant characteristics such as age, identified gender, technical experience, 

motivation and order of platform use. 

3.3.   Transcript analysis 

Verbatim transcripts will be categorised into 9 topics, classifying the type of verbalisation made 

(Action description (what they are doing), action explanation (why they are doing), description of 

observed feature(s), observation of the platform, opinion about the platform, platform redesign 

proposal, user experience, other (adapted from Hertzum et al. (2015)).The topics will then be further 

                                                
6
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categorised based on valence (positive or negative) to provide insight into the participants’ emotions 

whilst using the platform (Seo et al., 2015).  

4.      Conclusion 

By completing the outlined evaluation and analysis of the ‘Centaur VGI’ workflow, a detailed 

understanding of its ability to produce timely, high quality data in remote, rural regions can be gained. 

This is important, as such areas are typically overlooked by volunteer mappers and organisations. The 

evaluation will reveal the efficacy, accuracy and usability of the workflow in comparison to the 

familiar, traditional VGI workflow.  
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