

Improving GPU register file reliability with a comprehensive ISA extension

M.M. Gonçalves, J.E. Rodriguez Condia, M. Sonza Reorda, L. Sterpone, J.R. Azambuja

Abstract – This work proposes a comprehensive ISA extension to improve GPU reliability to transient effects. Three additional

instructions are proposed, implemented, and combined with software-based datapath duplication. Modified program codes are

compared to state-of-the-art software-based fault tolerance techniques in terms of execution time. The circuit area is evaluated

against the original GPU architecture, and a fault injection campaign is performed to assess reliability. Results show that this

comprehensive ISA extension improves performance and fault detection capabilities of software-based approaches at negligible

costs in terms of circuit area. This work can help engineers in designing more efficient and resilient GPU architectures.

1. Introduction

Graphics Processing Units (GPUs) are specialized

Integrated Circuits (IC) designed initially to efficiently

manipulate computer graphics and image processing, taking

advantage of Thread-Level Parallelism (TLP) to handle highly

multi-threaded parallel applications. In the past years, GPUs

evolved past computer graphics into general-purpose

accelerators for High-Performance Computing (HPC), dealing

with applications in a wider range of usages, such as oil

exploration, bioinformatics, and deep learning, where finishing

tasks under strict timing constraints is a must [1]. More

recently, designers have been using GPU in safety-critical

applications, such as avionics, self-driving vehicles, and

medical, where result correctness is mandatory [2].

Faults on electronic components are mainly caused by

energized particles from solar activity and cosmic rays, which

can cause permanent or temporary effects. The probability of

an energized particle causing an effect on an IC depends on a

few factors, such as transistor density (denser ICs have more

transistors upset by a single particle), operating frequency

(higher operating frequencies lead to narrower latch windows),

and threshold voltage (smaller threshold voltages require less

energy transferred for an upset) [3, 4].

Among the most observed events caused by energized

particles are Single Event Upsets (SEUs). An SEU, also known

as a bit-flip, is a temporary non-destructive event that affects

data storage elements, such as memories and registers. On an

instruction-processing IC such as a GPU or a microprocessor,

an SEU can cause mainly two effects: (i) a Silent Data

Corruption (SDC), when the program code is correctly

executed, but the result is incorrect, or (ii) a Detected

Unrecoverable Error (DUE), when the program code is

incorrectly stopped or enters an infinite loop.

Newest GPUs are designed with cutting-edge technology

that combines high transistor density, high operating

frequency, and low threshold voltages, making them prone to

experience radiation-induced transient effects [3, 4], up to the

point where they can experience radiation effects on

applications running at ground level [5]. The consequent SEU

events on GPUs are critical to both HPC and safety-critical

applications, as SDC effects directly affect the result

correctness of safety-critical applications, and DUE effects

directly affect the timing constraints of HPC applications. So,

the use of effective fault tolerance techniques is mandatory.

Fault tolerance techniques can be applied by means of

software or hardware modifications. Software-based techniques

require program code transformation, while hardware-based

techniques require hardware modifications. Software-based

approaches provide high detection rates at the cost of

performance degradation. They insert additional instructions

that must be executed by the processing system, therefore

increasing execution runtime, and can be applied to any GPU

architecture with an available program source-code [6].

Hardware-based approaches, on the other hand, can be applied

with no performance degradation, as replicated hardware can

be deployed in parallel with the original, and, as long as the

critical path is not altered, the operating frequency can be

maintained, but require access to GPU architecture description

[7]. Recently, open-source GPUs have allowed developers to

study the effects of radiation, as well as to design and evaluate

fault tolerance techniques [8].

This work proposes a comprehensive ISA extension

composed of three classes of resilient atomic instructions to

improve software-based fault tolerance techniques. The first

two classes, which include load and store instructions, target

specifically SDC effects for safety-critical applications, while

the third class, which includes set predicate instructions, targets

DUE effects for HPC applications. The extension is developed

to be deployed in tandem with software-based fault tolerance

techniques, therefore taking advantage of both software- and

hardware-based techniques benefits.

The ISA extension is implemented and evaluated on an

open-source GPU architecture based on the NVIDIA G80

running five case-study applications. Implementation costs are

evaluated in terms of circuit area and critical path delay of the

modified GPU architecture and execution runtime and memory

footprint of the transformed program codes. To assess

reliability, a fault injection campaign is performed by

simulation, and fault detection capabilities are compared to

state-of-the-art software-based fault tolerance techniques.

The main contribution of this work is to propose a

comprehensive ISA extension to GPU architectures that

specifically targets HPC and safety-critical applications. Even

though ISA extensions have been proposed in the past, to the

best of our knowledge, this is the first work in the literature to

implement one and quantitatively assess its effectiveness in

improving HPC and safety-critical applications‘ reliability.

This work also contributes by discussing hardware

modifications for reliability improvement in GPU architectures.

2. Related Work

The literature presents works to improve GPU

architectures' reliability against radiation effects and improve

the performance of classic software-based fault-tolerance

techniques. The most straightforward way to protect GPUs is to

run the entire program code twice, store its data, and compare

the results. This approach can detect all errors at the

performance cost of increasing execution time up to 150% [9,

10]. Partial hardening can decrease this performance cost in

exchange for less fault coverage by selectively duplicating

instructions and registers based on their criticalities [11, 12].

Authors in [13] proposed to optimize instruction-level fault

tolerance techniques by reducing the host notification

frequency and enabling better instruction scheduling. The

techniques focus on hardening instructions and keeping the

ECC enabled to protect storage elements. They were able to

improve resilience against SDC errors by up to 87%, with an

average execution time increase of 36%.

ISA extensions to improve software-based fault tolerance

techniques were also proposed in [13], where a new XOR

instruction is used to perform host notification by hardware.

The authors propose to replace consistency checks with a

signature register that is updated as each instruction executes,

adding or subtracting its destination register values based on

whether the instruction is an original or a duplicate. The

technique includes an extra bit to the instruction formats to

inform the hardware when the signature register must be

updated. Experiments indicate that these ISA extensions could

lower the average runtime overhead to 30%. Still, the proposed

techniques focus on datapath protection and rely on the use of

ECC to protect the memory structures, such as the register

files. However, the use of ECC has been proved to increase the

occurrence of DUE effects [9], which may not be acceptable in

some fault-tolerant designs, especially when considering HPC

applications and their timing constraints.

The authors in [14] analyzed the sensitivity of GPU

architectures to SDC and DUE effects. They demonstrated that

unhardened memory access instructions make the application

mainly susceptible to SDC errors to the point that, by

hardening these instructions, they were able to achieve an

average reduction in SDC effects of 97%. On the other hand,

results showed that unhardened predicate setting instructions

make the application mainly susceptible to DUE effects. By

hardening these instructions, they were able to achieve a 100%

reduction in errors caused by DUE effects. The authors also

proposed software optimizations capable of reducing by 34%

the average runtime overhead at the cost of a 1% SDC increase.

This work proposes a comprehensive ISA extension to

improve performance and fault detection capabilities of

software-based fault-tolerance techniques against SDC and

DUE effects. The proposed ISA extension is deployed in

tandem with state-of-the-art software-based techniques,

enabling developers to target SDC- and DUE-induced errors

individually. The proposed improvements can be tailored for

different scenarios, helping engineers in designing more

efficient and resilient GPU architectures.

3. Comprehensive ISA Extension

We propose three additional instructions to the NVIDIA

SASS 1.0 ISA as a comprehensive ISA extension. The new

proposed instructions are resilient atomic ones, being able to

check the consistency of read registers, notify the host in case

of mismatch, and duplicate register write to the original

register‘s replica in a single instruction. By doing so, this

extended ISA is able to absorb multiple instructions into a

single instruction execution and improve runtime overheads.

As memory access and set predicate instructions are the

main sources of SDC and DUE effects [14], respectively, our

comprehensive ISA extension proposes two classes of resilient

atomic instructions, tackling SDC effects with resilient atomic

load and store instructions and DUE effects with resilient

atomic set predicate instructions. By doing so, we intend to

remove additional instructions required by software-based

hardening techniques to (i) duplicate load, store, and set

predicate instructions, (ii) perform regular consistency checks

to compare original and replicated data, and (iii) notify the host

in case of fault detection.

When considering load and store instruction hardening by

software-based techniques, for duplicating the original

instructions, two separate individual instructions must go

through the GPU pipeline, requiring two fetches, two decodes,

up to four register file accesses, two executions, and two

memory accesses. Additionally, for consistency checking, one

extra instruction per instruction-used register must be fully

executed by the GPU. Finally, a host notification procedure is

required, where a branch instruction and a subroutine for

writing predefined memory locations with a predefined value,

alerting the host of a fault. Our proposed resilient atomic load

and store, in a single instruction, can duplicate register access,

check the read and the written values for consistency, and

notify the host, performing a single fetch, decode, execution,

and, most importantly, a single memory access.

When considering the set predicate hardening performed

by software-based instructions, the procedure is basically the

same: it duplicates the original instruction, inserts consistency

checks, and optionally notifies the host. Even though our

proposed resilient atomic set predicate instructions do not spare

memory access, they absorb the original instruction‘s replica,

the consistency checks, and the eventual host notification,

decreasing execution time overhead compared to state-of-the-

art software-based fault tolerance techniques.

The implementation of these instructions requires software

and hardware support. The software support has to be able to

generate program code considering these new instructions and

insert them in a context where software-based hardening

techniques can duplicate portions of the code and effectively

use the new instructions. The hardware must be able to execute

these new instructions and notify the host in case of fault

detection. In the following sections, we discuss the existing

software-based techniques and how our ISA extension takes

advantage of them, as well as the supporting hardware

modifications required to support the new instructions.

3.1. Software Support

Software-based fault tolerance techniques detect faults by

performing code transformations at different abstraction levels,

from application code to assembly. The most common code

transformation is to replicate a portion of the program code,

regularly check it for consistency, and notify the user in case of

a mismatch between the original code and its replica.

When considering SDC faults, where the execution flow of

the program is correct, the best portion of the code to be

replicated is the datapath, which includes memory access

instructions and all the logic that leads to writing its registers,

leaving branch instructions unprotected. As an example,

consider the store instruction ―store R0, offset [R1]‖, where R0

is written to the memory address pointed by R1. In this case,

the store instruction must be replicated and checked for

consistency, while all instructions that form the logic cones that

calculate the values of R0 and R1 must be simply replicated.

For DUE faults, the same idea applies but considering set

predicate instructions that write predicate registers used by

conditional branch instructions. It is interesting to notice that,

even though the controlpath and the datapath might share

resources in the program code, there are usually portions of the

program code that are exclusively used for either the datapath

or the controlpath. Therefore, full replication of used registers

and their operation instructions, as performed by previous

works, can lead to unnecessary execution time overheads.

To support our proposed comprehensive ISA extension,

two code transformations must be supported: (1) replace load,

store, and set predicate instructions by resilient atomic ones

and (2) duplicate instructions that belong to logic cones that

lead to load, store, and set predicate instructions. Their

implementations are later discussed in Section 4.3.

3.2. Hardware Support

Modern GPUs consist of arrays of Streaming

Multiprocessors (SMs) used as Single-Instruction Multiple-

Thread (SIMT) processors. Each SM has an individual pipeline

with fetch, decode, read, execute, memory access, and write-

back stages, besides a warp scheduler and a deep memory

hierarchy, which contains General-Purpose Register Files

(GPRFs), Predicate Register Files (PRFs), shared memories,

constant memories, global memories, caches, among other

storage elements.

Considering modern GPU architectures, the hardware

support must be able to (i) decode new instructions, (ii) provide

access to the register files and the different memory elements

of the memory hierarchy, and (iii) effectively notify the host of

fault detection. The first two items must be implemented across

the pipeline, influencing the GPU‘s datapath and controlpath.

The last item should be included in the GPU‘s exception

circuitry. To maintain performance, hardware modification

cannot increase critical path delays.

Even though commercial GPUs have restricted descriptions

of their IPs, recent open-source GPUs described in HDL allow

designers to implement the required hardware support [8].

4. Implementation

As a base GPU to implement our proposed comprehensive

ISA extension, we chose the FlexGripPlus architecture [8].

FlexGripPlus is an open-source soft-core general-purpose GPU

described in VHDL that implements the NVIDIA G80

architecture and the SASS 1.0 ISA. The GPU is programmed in

CUDA and supports 28 instructions. It runs the native NVIDIA

G80 SASS code and accepts a set of kernel configuration

parameters, such as grid and block dimension, blocks per core,

and registers per thread. These parameters are manually

defined before system operation.

It follows the SIMT paradigm through 32 threads, denoted

warp, which is fetched, decoded, and distributed to be

processed in the Scalar Processors (SPs) at the Execute stage,

configured to implement 32, 16 or 8 SPs. The Read and Write

stages load/store data operands from/to the register files and

shared, global, or constant memories. The GPRF is used to

store data operands and addresses during the kernel execution.

The PRF is used to store the result of logic-arithmetic or

comparison instructions. The local memory is mainly

employed to store data arrays, while the shared memory stores

data operands that can be used among threads belonging to the

same block, and the global memory stores the initial inputs and

the final results of a program kernel.

As case-study applications, we chose five case-study

applications: matrix multiplication, Fast Fourier Transform

(FFT), vector sum, bitonic sort, and edge detection. All case

studies are simple applications but differ in their use of the

GPU‘s controlpath and datapath. In terms of data flow and

control flow characteristics, matrix multiplication, and vector

sum are mostly data flow-oriented, with few conditional

deviations. The FFT, bitonic sort, and edge detection

applications are mostly control flow-oriented, with many

conditional deviations. The matrix multiplication, FFT, vector

sum, bitonic sort, and edge detection case-study applications

have 64, 64, 256, 32, and 64 threads each, respectively.

The following sections discuss the implementation of the

three classes of resilient atomic instructions: raLoad (load

instructions), raStore (store instructions), and raSetP (set

predicate instructions). Discussions include ISA extension and

instruction formats modification, hardware modifications to the

FlexGripPlus architecture, and software modifications to the

compilation flow to most effectively employ our proposed

instructions with software-based hardening techniques.

4.1. ISA Implementation

The implementation of the resilient atomic instructions in

the SASS 1.0 ISA poses two challenges: (1) to differentiate the

resilient atomic opcodes from the original ones and (2) to

allocate the addressing of the replicated register. As the new

classes of instructions must perform the same functionalities as

the original ones, used bits cannot be removed from the

original instructions. Hence, we must use spare bits to improve

the original instructions into becoming resilient atomic ones.

To solve the first challenge, instead of creating new

opcodes, we used a single extra bit. We then defined it as ‗0‘

for the original instructions and ‗1‘ for their resilient atomic

versions. Even though this approach requires one extra bit, it is

compatible with legacy code, as unused bits are set to ‗0‘.

To address the second challenge, we must first consider

the GPU register file and how instructions access it.

FlexGripPlus can have up to 128 registers per thread, and load,

store, and set predicate instructions can address up to 2

registers in their instruction formats. So, to directly access the

extra registers, all resilient atomic instructions would require

14 spare bits. Unfortunately, they do not have as many spare

bits: load and store have 12, and the set predicate has 7. Hence,

two options arise: (1) to encode a subset of registers or (2) to

encode an offset between registers and their replicas.

The first option limits the scope of replicated registers but

allows programmers to partially replicate instruction registers,

as they are individually addressed. On the other hand, the

limited scope of replicated registers might force the software

transformation to reallocate registers accordingly. The second

option is less costly bitwise, as all replicated registers share the

same address offset, but forces the hardware to calculate the

effective address and the software transformation to allocate

replicated registers with the same offset. Also, programmers

must either harden all registers in a instruction or none.

Due to the number of available bits, our implementation

used the first option for the resilient atomic load and store

instructions (1 for opcode, 5 for the first replica, and 6 for the

second replica) and the second option for the resilient atomic

set predicate instructions (1 for opcode and 6 for offset).

4.2. Hardware Implementation

Hardware modifications have been made to the Decode,

Read, and Write pipeline stages. We have also implemented an

additional hardware exception for host notification.

The Decode stage has three source registers (src1, src2,

and src3) and one destination register (dest1). The load and

store instructions use a single source register (src1), and the set

predicate instructions use two source registers (src1 and

src2). Thus, for the implementation of raLoad and raStore, we

used src2 as source register replica, and for raSetP we

used src3. Because the Decode stage did not originally support

a second destination register, we implemented it through dest2.

We also implemented supporting control flags for the correct

execution of the proposed instructions.

The Read and Write stages were adapted to consider an

additional source operand for the new resilient instructions. For

the raStore and raLoad, the additional source is directly the

register address, but for the raSetP, it is an offset that must be

added to the original register addresses to find their replicas.

Global memory addresses from the memory access instructions

are calculated by a specific module, which was adapted to read

a second value from the register file (src2) and check it for

consistency. The raSetP was adapted to calculate the replicated

registers‘ addresses and check them for consistency. The

raLoad was modified to copy the data loaded from memory to

both dest1 and dest2 operands. Finally, we added an extra

hardware exception for host notification.

 To evaluate how the hardware modifications impact the

FlexGripPlus architecture, we synthesized the original design

and three modified versions of the FlexGripPlus architecture:

(i) ISAset, with modifications for raSetP, (ii) ISAls, with

modifications for raLoad and raStore, and (iii) ISAsetls, with

modifications for the complete ISA extension. We performed

the synthesis with 8 SP cores, a 15 nm cell library [15], and a

500 MHz constraint, and evaluated circuit area, number of

logic cells, power, and critical path delay.

Table I shows the synthesis reports for all three modified

architectures. When considering the hardware implementation

for the complete ISA extension, the circuit area showed an

overhead of 0.179%, while the number of logic cells increased

by 0.369%. Reduced versions of architecture ISAset and ISAls

showed lower overheads, with a higher overhead caused by the

raSetP due to a more expensive circuitry to calculate replicated

addresses. Power measurements showed an increase in 0.125%,

being ISAset and ISAls equally responsible for it. Finally, and

most importantly, the critical path delay showed negligible

improvements in less than 0.01% for all architectures.

The impacts of the hardware modifications to support the

proposed ISA extension in terms of circuit area, logic cell

number, power, and critical path delay show that the discussed

hardware implementations can be done without imposing

significant performance penalties.

4.3. Software Implementation

The case-study applications were written in CUDA and

compiled with the NVIDIA NVCC compiler. The compilation

process created CUDA binaries, from which the assembly code

was extracted with the cuobjdump tool from the CUDA toolkit.

The assembly was then translated to bytecode, which can be

directly loaded into FlexGripPlus‘ program memory. To

automatically apply software-based hardening techniques to the

case-study applications, we improved the Post-Compiling

Hardening Tool (PCHT) [16] to provide the previously

discussed software-support. We input the assembly codes to

PCHT, which then automatically applied the code

transformations and generated hardened assembly codes.

We generated six hardened versions for each case-study

application, divided into two classes: software-based hardening

techniques and software-based hardening techniques with ISA

extension. Each class protects memory access instructions

(Memory), targeting SDC effects, set predicate instructions

(Set Predicate), targeting DUE effects, and both (All).

Table I – Hardware implementation overhead

Original Design
 Hardware overhead (%)

 ISAset ISAls ISAsetls

Area (mm²) 196,338

0.047 0.030 0.179

Cells (#) 377,798

0.152 0.031 0.369

Power (mW) 95.074 0.053 0.056 0.125

Delay (ns) 1.99205

-0.002 -0.001 -0.008

Fig. 1 shows code transformations examples for each

hardened version. The original code (black) contains add, load,

set predicate, conditional branch, and store instructions. For the

software-based technique class, add and load instructions are

replicated (green) over original registers‘ copies R1’ and R2’ to

maintain consistency between register duplications. The store

instructions should only be duplicated in case of memory

replication. Set predicate instructions are inserted (blue) for

consistency checking after memory access instructions

(Memory), after set predicate instructions (Set Predicate), or

after both (All). Finally, host notification is performed by a

conditional branch instruction (yellow). For the ISA extension,

the add instruction replication is maintained. The remaining

load, store, and set predicate registers and their respective

consistency checks are replaced (red) by raLoad and raStore

(Memory), raSetP (Set Predicate), or both (All) instructions.

The ISA extension also absorbs the host notification.

Table II shows the execution time for the original

applications, and their overhead for the hardened versions. The

software-based overheads (SW) show average increases of

94% for SDC detection (Memory), 85% for DUE detection

(Set Predicate), and 104% for both (All). When using our

proposed ISA extensions, these same values drop to 45%, 41%,

and 54%, respectively, showing a decrease in execution time

overhead around 50%. Data also show that data flow-oriented

applications, such as FFT and matrix multiplication, presented

few overheads than control flow-oriented ones when targeting

set predicate instructions for DUE effects. The vector sum

application does not have predicate registers. The edge

detection application uses all predicate registers. Thus, it

cannot be hardened purely by software-based techniques.

5. Evaluation

The fault injection campaign was automatically performed

through simulation at RTL in the ModelSim simulator. Faults

were injected into original and hardened versions of the case-

study applications. For each application version, we injected

10,000 faults, one per program execution, adding up to 280,000

simulations. Faults have been randomly distributed among

original application-used registers from the GPRF, as unused

and replicated registers were not sensitive to faults, achieving a

1% statistical error considering a 95% confidence level [17].

Tables III and IV show the number of SDC and DUE

effects in the original applications and the hardened version

percentage reductions. For SDC effects, data show an average

error reduction of 88.6% and 95.4%, respectively, for software-

based techniques and ISA extension, when the memory access

instructions were protected (Memory). For DUE effects, data

show an average error reduction of 99.9% and 100%,

respectively, for software-based technique and ISA extension,

when set predicate instructions were hardened (Set Predicate).

When targeting both, both versions achieved 100% fault

detection for all applications but the FFT. Such results indicate

that fault detection capabilities of software-based hardening

techniques can be improved with our proposed ISA extension.

The software-based hardening techniques with our

proposed ISA could not detect all errors for all applications.

This happens mainly because our proposed ISA performs

consistency checks before accessing the memory, and therefore

there is a small window in which a fault can affect the memory.

Table II: Execution time overhead

Application Original (µs)
Hardening technique overhead (%)

Memory Set Predicate All

FFT 964
SW 93.1 88.7 103.2

ISA 56.3 24.5 65.6

Matrix Mult. 320
SW 95.9 87.1 104.9

ISA 41.9 9.3 46.9

Vector Sum 141
SW 105.2 – –

ISA 45.3 – –

Bitonic Sort 824
SW 83.2 79.0 104.4

ISA 30.3 55.9 36.6

Edge Detect. 1,096
SW – – –

ISA 49.5 75.1 66.1

 Software-based Software-based + ISA Extension

Original Code Memory Set Predicate All Memory Set Predicate All

1: ADD R1,R1,1 ADD R1,R1,1 ADD R1,R1,1 ADD R1,R1,1

ADD R1,R1,1 ADD R1,R1,1 ADD R1,R1,1

2: ADD R1',R1',1 ADD R1',R1',1 ADD R1',R1',1 ADD R1',R1',1 ADD R1',R1',1 ADD R1',R1',1

3: LOAD R2,[R1] LOAD R2,[R1] LOAD R2,[R1] LOAD R2,[R1]

raLOAD R2,R2',[R1,R1'] LOAD R2,[R1] raLOAD R2,R2',[R1,R1']

4:

LOAD R2’,[R1’] LOAD R2’,[R1’] LOAD R2’,[R1’]

LOAD R2’,[R1’]

5: @!PE SETP PE,R1,R1' @!PE SETP PE,R1,R1’

6: SETP P0,R2,R3 SETP P0,R2,R3 SETP P0,R2,R3 SETP P0,R2,R3

SETP P0,R2,R3 raSETP P0,R2,R3,offset raSETP P0,R2,R3,offset

7:

@!PE SETP PE,R2,R2' @!PE SETP PE,R2,R2'

8: @!PE SETP PE,R3,R3' @!PE SETP PE,R3,R3'

9: @P0 BRA 1 @P0 BRA 1 @P0 BRA 1 @P0 BRA 1 @P0 BRA 1 @P0 BRA 1 @P0 BRA 1

10: STORE [R4],R1 STORE [R4],R1 STORE [R4],R1 STORE [R4],R1

raSTORE [R4,R4'],R1,R1' STORE [R4],R1 raSTORE [R4,R4'],R1,R1'

11:

@!PE SETP PE,R1,R1’

@!PE SETP PE,R1,R1’

12: @!PE SETP PE,R4,R4’ @!PE SETP PE,R4,R4'

13: @PE BRA ERROR @PE BRA ERROR @PE BRA ERROR

Fig. 1. Program code transformation by software-based techniques and software-based techniques with proposed ISA extension.

6. Conclusions and Future Work

This work presented a new comprehensive ISA extension

to the NVIDIA SASS 1.0 ISA to improve GPU reliability

against transient effects. We proposed and discussed in detail

three additional instructions, targeting memory access, and set

predicate instructions to mitigate SDC and DUE effects. The

implementation considered software and hardware support to

address ISA, hardware, and software improvements to the

FlexGripPlus open-source GPU. The proposed resilient atomic

instructions were then incorporated into software-based

hardening techniques and automatically applied to five case-

study applications. Finally, a fault injection campaign was

performed by simulating 280,000 faults at RTL.

Hardware synthesis results showed no performance

degradation and less than 1% area and power overheads for the

modified architectures. Execution runtime overheads showed a

decrease in around 50% compared to state-of-the-art software-

based techniques. For hardening the matrix multiplication

against DUE effects, our proposed ISA required a 9% increase

in execution time. Fault injection results showed that our

proposed ISA extension could improve overall software-based

fault detection, especially when considering DUE effects.

In the future, we intend to improve our hardware

implementations and add reliability-specific hardware modules

to decrease overheads in fault-tolerant GPUs further.

7. Acknowledgments

This work has been partially supported by the European

Commission through the Horizon 2020 RESCUE-ETN project

under grant 722325, Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior (CAPES) – Finance Code 001,

CNPq, and FAPERGS.

References

[1] M. Snir et al., ―Addressing failures in exascale computing,‖ High

Performance Computing Applications, vol. 28, no. 2, pp. 129–

173, 2014.

[2] M. Bojarski et al.,―End to end learning for self-driving cars,‖

arXiv preprint arXiv:1604.07316, 2016.

[3] C. Slayman, ―Soft errors—past history and recent discoveries,‖

in 2010 IEEE International Integrated Reliability Workshop

Final Report. IEEE, 2010, pp. 25–30.

[4] A. Dixit and A. Wood, ―The impact of new technology on soft

error rates,‖ in 2011 Int. Reliability Physics Symp.. IEEE, 2011,

pp. 5B–4.

[5] P. Rech et al., ―An efficient and experimentally tuned software-

based hardening strategy for matrix multiplication on gpus,‖

IEEE Trans. on Nuclear Science, vol. 60, pp. 2797–2804, 2013.

[6] M. Gonçalves et al.,―A low-level software-based fault tolerance

approach to detect seus in gpus‘ register files,‖ Microelectronics

Reliability, vol. 76, pp. 665–669, 2017.

[7] J. R. Azambuja et al., ―Evaluating neutron induced see in

srambased fpga protected by hardware-and software-based fault

tolerant techniques,‖ IEEE Trans. on Nuclear Science, vol. 60,

no. 6, pp. 4243–4250, 2013.

[8] J. E. R. Condia et al., ―Flexgripplus: An improved gpgpu model

to support reliability analysis,‖ Microelectronics Reliability, vol.

109, p. 1-14, 2020.

[9] L. L. Pilla et al., ―Software-based hardening strategies for

neutron sensitive fft algorithms on gpus,‖ IEEE Trans. on

Nuclear Science, vol. 61, no. 4, pp. 1874–1880, 2014.

[10] M. Dimitrov, M. Mantor, and H. Zhou, ―Understanding software

approaches for gpgpu reliability,‖ in Proc. of Workshop. on

General Purpose Processing on GPU, 2009, pp. 94–104.

[11] A. Sundaram et al., ―Efficient fault tolerance in multi-media

applications through selective instruction replication,‖ in

Proceedings of Workshop on Radiation effects and fault

tolerance in nanometer technologies, 2008, pp. 339–346.

[12] M. Goncalves et al., ―Selective fault tolerance for register files of

graphics processing units,‖ IEEE Trans. on Nuclear Science, vol.

66, no. 7, pp. 1449–1456, 2019.

[13] A. Mahmoud et al., ―Optimizing software-directed instruction

replication for gpu error detection,‖ in Int. Conf. for HPC,

Networking, Storage and Analysis. IEEE, 2018, pp. 842–853.

[14] M. M. Goncalves et al., ―Evaluating software-based hardening

techniques for general-purpose registers on a gpgpu,‖ in 2020

IEEE Latin-American Test Symp. IEEE, 2020, pp. 1–6.

[15] M. Martins et al., ―Open cell library in 15nm freepdk

technology,‖ in Proc. of the Int. Symp. on Physical Design, 2015,

pp. 171–178.

[16] J. R. Azambuja et al., ―Detecting sees in microprocessors through

a non-intrusive hybrid technique,‖ IEEE Trans. on Nuclear

Science, vol. 58, no. 3, pp. 993–1000, 2011.

[17] R. Leveugle et al., ―Statistical fault injection: Quantified error

and confidence,‖ in Proc. Design, Automation & Test in Europe

Conference & Exhibition. IEEE, 2009, pp. 502–506.

Table III: SDC Reduction

Application SDC Effects
Hardening technique (%)

Memory Set Predicate All

FFT 1,452
SW 89.1 39.9 100.0

ISA 84.9 17.5 96.1

Matrix Mult. 3,461
SW 100.0 - 4.6 100.0

ISA 100.0 - 5.6 100.0

Vector Sum 3,164
SW 100.0 – –

ISA 100.0 – –

Bitonic Sort 1,739
SW 61.1 87.5 100.0

ISA 92.6 71.4 100.0

Edge Detect. 258
SW – – –

ISA 99.6 80.2 100.0

Table IV: DUE reduction

Application DUE Effects
Hardening technique (%)

Memory Set Predicate All

FFT 2,321
SW 30.1 100.0 99.9

ISA 32.3 100.0 100.0

Matrix Mult. 1,755
SW 0.2 99.9 99.8

ISA 4.0 100.0 100.0

Vector Sum 1
SW 100.0 – –

ISA 100.0 – –

Bitonic Sort 1,368
SW 1.9 99.9 99.9

ISA 5.3 100.0 100.0

Edge Detect. 1,952
SW – – –

ISA 12.7 99.9 99.9

