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Abstract – This work proposes a comprehensive ISA extension to improve GPU reliability to transient effects. Three additional 

instructions are proposed, implemented, and combined with software-based datapath duplication. Modified program codes are 

compared to state-of-the-art software-based fault tolerance techniques in terms of execution time. The circuit area is evaluated 

against the original GPU architecture, and a fault injection campaign is performed to assess reliability. Results show that this 

comprehensive ISA extension improves performance and fault detection capabilities of software-based approaches at negligible 

costs in terms of circuit area. This work can help engineers in designing more efficient and resilient GPU architectures. 
  

1. Introduction 
  

Graphics Processing Units (GPUs) are specialized 

Integrated Circuits (IC) designed initially to efficiently 

manipulate computer graphics and image processing, taking 

advantage of Thread-Level Parallelism (TLP) to handle highly 

multi-threaded parallel applications. In the past years, GPUs 

evolved past computer graphics into general-purpose 

accelerators for High-Performance Computing (HPC), dealing 

with applications in a wider range of usages, such as oil 

exploration, bioinformatics, and deep learning, where finishing 

tasks under strict timing constraints is a must [1]. More 

recently, designers have been using GPU in safety-critical 

applications, such as avionics, self-driving vehicles, and 

medical, where result correctness is mandatory [2]. 

Faults on electronic components are mainly caused by 

energized particles from solar activity and cosmic rays, which 

can cause permanent or temporary effects. The probability of 

an energized particle causing an effect on an IC depends on a 

few factors, such as transistor density (denser ICs have more 

transistors upset by a single particle), operating frequency 

(higher operating frequencies lead to narrower latch windows), 

and threshold voltage (smaller threshold voltages require less 

energy transferred for an upset) [3, 4]. 

Among the most observed events caused by energized 

particles are Single Event Upsets (SEUs). An SEU, also known 

as a bit-flip, is a temporary non-destructive event that affects 

data storage elements, such as memories and registers. On an 

instruction-processing IC such as a GPU or a microprocessor, 

an SEU can cause mainly two effects: (i) a Silent Data 

Corruption (SDC), when the program code is correctly 

executed, but the result is incorrect, or (ii) a Detected 

Unrecoverable Error (DUE), when the program code is 

incorrectly stopped or enters an infinite loop. 

Newest GPUs are designed with cutting-edge technology 

that combines high transistor density, high operating 

frequency, and low threshold voltages, making them prone to 

experience radiation-induced transient effects [3, 4], up to the 

point where they can experience radiation effects on 

applications running at ground level [5]. The consequent SEU 

events on GPUs are critical to both HPC and safety-critical 

applications, as SDC effects directly affect the result 

correctness of safety-critical applications, and DUE effects 

directly affect the timing constraints of HPC applications. So, 

the use of effective fault tolerance techniques is mandatory. 

Fault tolerance techniques can be applied by means of 

software or hardware modifications. Software-based techniques 

require program code transformation, while hardware-based 

techniques require hardware modifications. Software-based 

approaches provide high detection rates at the cost of 

performance degradation. They insert additional instructions 

that must be executed by the processing system, therefore 

increasing execution runtime, and can be applied to any GPU 

architecture with an available program source-code [6]. 

Hardware-based approaches, on the other hand, can be applied 

with no performance degradation, as replicated hardware can 

be deployed in parallel with the original, and, as long as the 

critical path is not altered, the operating frequency can be 

maintained, but require access to GPU architecture description 

[7]. Recently, open-source GPUs have allowed developers to 

study the effects of radiation, as well as to design and evaluate 

fault tolerance techniques [8]. 

This work proposes a comprehensive ISA extension 

composed of three classes of resilient atomic instructions to 

improve software-based fault tolerance techniques. The first 

two classes, which include load and store instructions, target 

specifically SDC effects for safety-critical applications, while 

the third class, which includes set predicate instructions, targets 

DUE effects for HPC applications. The extension is developed 

to be deployed in tandem with software-based fault tolerance 

techniques, therefore taking advantage of both software- and 

hardware-based techniques benefits. 

The ISA extension is implemented and evaluated on an 

open-source GPU architecture based on the NVIDIA G80 

running five case-study applications. Implementation costs are 

evaluated in terms of circuit area and critical path delay of the 

modified GPU architecture and execution runtime and memory 

footprint of the transformed program codes. To assess 

reliability, a fault injection campaign is performed by 

simulation, and fault detection capabilities are compared to 

state-of-the-art software-based fault tolerance techniques. 

The main contribution of this work is to propose a 

comprehensive ISA extension to GPU architectures that 

specifically targets HPC and safety-critical applications. Even 

though ISA extensions have been proposed in the past, to the 

best of our knowledge, this is the first work in the literature to 

implement one and quantitatively assess its effectiveness in 

improving HPC and safety-critical applications‘ reliability. 

This work also contributes by discussing hardware 

modifications for reliability improvement in GPU architectures. 



 

2. Related Work 
  

The literature presents works to improve GPU 

architectures' reliability against radiation effects and improve 

the performance of classic software-based fault-tolerance 

techniques. The most straightforward way to protect GPUs is to 

run the entire program code twice, store its data, and compare 

the results. This approach can detect all errors at the 

performance cost of increasing execution time up to 150% [9, 

10]. Partial hardening can decrease this performance cost in 

exchange for less fault coverage by selectively duplicating 

instructions and registers based on their criticalities [11, 12]. 

Authors in [13] proposed to optimize instruction-level fault 

tolerance techniques by reducing the host notification 

frequency and enabling better instruction scheduling. The 

techniques focus on hardening instructions and keeping the 

ECC enabled to protect storage elements. They were able to 

improve resilience against SDC errors by up to 87%, with an 

average execution time increase of 36%. 

ISA extensions to improve software-based fault tolerance 

techniques were also proposed in [13], where a new XOR 

instruction is used to perform host notification by hardware. 

The authors propose to replace consistency checks with a 

signature register that is updated as each instruction executes, 

adding or subtracting its destination register values based on 

whether the instruction is an original or a duplicate. The 

technique includes an extra bit to the instruction formats to 

inform the hardware when the signature register must be 

updated. Experiments indicate that these ISA extensions could 

lower the average runtime overhead to 30%. Still, the proposed 

techniques focus on datapath protection and rely on the use of 

ECC to protect the memory structures, such as the register 

files. However, the use of ECC has been proved to increase the 

occurrence of DUE effects [9], which may not be acceptable in 

some fault-tolerant designs, especially when considering HPC 

applications and their timing constraints. 

The authors in [14] analyzed the sensitivity of GPU 

architectures to SDC and DUE effects. They demonstrated that 

unhardened memory access instructions make the application 

mainly susceptible to SDC errors to the point that, by 

hardening these instructions, they were able to achieve an 

average reduction in SDC effects of 97%. On the other hand, 

results showed that unhardened predicate setting instructions 

make the application mainly susceptible to DUE effects. By 

hardening these instructions, they were able to achieve a 100% 

reduction in errors caused by DUE effects. The authors also 

proposed software optimizations capable of reducing by 34% 

the average runtime overhead at the cost of a 1% SDC increase. 

This work proposes a comprehensive ISA extension to 

improve performance and fault detection capabilities of 

software-based fault-tolerance techniques against SDC and 

DUE effects. The proposed ISA extension is deployed in 

tandem with state-of-the-art software-based techniques, 

enabling developers to target SDC- and DUE-induced errors 

individually. The proposed improvements can be tailored for 

different scenarios, helping engineers in designing more 

efficient and resilient GPU architectures. 

3. Comprehensive ISA Extension 
 

We propose three additional instructions to the NVIDIA 

SASS 1.0 ISA as a comprehensive ISA extension. The new 

proposed instructions are resilient atomic ones, being able to 

check the consistency of read registers, notify the host in case 

of mismatch, and duplicate register write to the original 

register‘s replica in a single instruction. By doing so, this 

extended ISA is able to absorb multiple instructions into a 

single instruction execution and improve runtime overheads. 

As memory access and set predicate instructions are the 

main sources of SDC and DUE effects [14], respectively, our 

comprehensive ISA extension proposes two classes of resilient 

atomic instructions, tackling SDC effects with resilient atomic 

load and store instructions and DUE effects with resilient 

atomic set predicate instructions. By doing so, we intend to 

remove additional instructions required by software-based 

hardening techniques to (i) duplicate load, store, and set 

predicate instructions, (ii) perform regular consistency checks 

to compare original and replicated data, and (iii) notify the host 

in case of fault detection. 

When considering load and store instruction hardening by 

software-based techniques, for duplicating the original 

instructions, two separate individual instructions must go 

through the GPU pipeline, requiring two fetches, two decodes, 

up to four register file accesses, two executions, and two 

memory accesses. Additionally, for consistency checking, one 

extra instruction per instruction-used register must be fully 

executed by the GPU. Finally, a host notification procedure is 

required, where a branch instruction and a subroutine for 

writing predefined memory locations with a predefined value, 

alerting the host of a fault. Our proposed resilient atomic load 

and store, in a single instruction, can duplicate register access, 

check the read and the written values for consistency, and 

notify the host, performing a single fetch, decode, execution, 

and, most importantly, a single memory access. 

When considering the set predicate hardening performed 

by software-based instructions, the procedure is basically the 

same: it duplicates the original instruction, inserts consistency 

checks, and optionally notifies the host. Even though our 

proposed resilient atomic set predicate instructions do not spare 

memory access, they absorb the original instruction‘s replica, 

the consistency checks, and the eventual host notification, 

decreasing execution time overhead compared to state-of-the-

art software-based fault tolerance techniques. 

The implementation of these instructions requires software 

and hardware support. The software support has to be able to 

generate program code considering these new instructions and 

insert them in a context where software-based hardening 

techniques can duplicate portions of the code and effectively 

use the new instructions. The hardware must be able to execute 

these new instructions and notify the host in case of fault 

detection. In the following sections, we discuss the existing 

software-based techniques and how our ISA extension takes 

advantage of them, as well as the supporting hardware 

modifications required to support the new instructions. 

3.1. Software Support 



 

  

Software-based fault tolerance techniques detect faults by 

performing code transformations at different abstraction levels, 

from application code to assembly. The most common code 

transformation is to replicate a portion of the program code, 

regularly check it for consistency, and notify the user in case of 

a mismatch between the original code and its replica. 

When considering SDC faults, where the execution flow of 

the program is correct, the best portion of the code to be 

replicated is the datapath, which includes memory access 

instructions and all the logic that leads to writing its registers, 

leaving branch instructions unprotected. As an example, 

consider the store instruction ―store R0, offset [R1]‖, where R0 

is written to the memory address pointed by R1. In this case, 

the store instruction must be replicated and checked for 

consistency, while all instructions that form the logic cones that 

calculate the values of R0 and R1 must be simply replicated. 

For DUE faults, the same idea applies but considering set 

predicate instructions that write predicate registers used by 

conditional branch instructions. It is interesting to notice that, 

even though the controlpath and the datapath might share 

resources in the program code, there are usually portions of the 

program code that are exclusively used for either the datapath 

or the controlpath. Therefore, full replication of used registers 

and their operation instructions, as performed by previous 

works, can lead to unnecessary execution time overheads. 

To support our proposed comprehensive ISA extension, 

two code transformations must be supported: (1) replace load, 

store, and set predicate instructions by resilient atomic ones 

and (2) duplicate instructions that belong to logic cones that 

lead to load, store, and set predicate instructions. Their 

implementations are later discussed in Section 4.3. 
 

3.2. Hardware Support 
  

Modern GPUs consist of arrays of Streaming 

Multiprocessors (SMs) used as Single-Instruction Multiple-

Thread (SIMT) processors. Each SM has an individual pipeline 

with fetch, decode, read, execute, memory access, and write-

back stages, besides a warp scheduler and a deep memory 

hierarchy, which contains General-Purpose Register Files 

(GPRFs), Predicate Register Files (PRFs), shared memories, 

constant memories, global memories, caches, among other 

storage elements. 

Considering modern GPU architectures, the hardware 

support must be able to (i) decode new instructions, (ii) provide 

access to the register files and the different memory elements 

of the memory hierarchy, and (iii) effectively notify the host of 

fault detection. The first two items must be implemented across 

the pipeline, influencing the GPU‘s datapath and controlpath. 

The last item should be included in the GPU‘s exception 

circuitry. To maintain performance, hardware modification 

cannot increase critical path delays. 

Even though commercial GPUs have restricted descriptions 

of their IPs, recent open-source GPUs described in HDL allow 

designers to implement the required hardware support [8]. 

4. Implementation 

  

As a base GPU to implement our proposed comprehensive 

ISA extension, we chose the FlexGripPlus architecture [8]. 

FlexGripPlus is an open-source soft-core general-purpose GPU 

described in VHDL that implements the NVIDIA G80 

architecture and the SASS 1.0 ISA. The GPU is programmed in 

CUDA and supports 28 instructions. It runs the native NVIDIA 

G80 SASS code and accepts a set of kernel configuration 

parameters, such as grid and block dimension, blocks per core, 

and registers per thread. These parameters are manually 

defined before system operation. 

It follows the SIMT paradigm through 32 threads, denoted 

warp, which is fetched, decoded, and distributed to be 

processed in the Scalar Processors (SPs) at the Execute stage, 

configured to implement 32, 16 or 8 SPs. The Read and Write 

stages load/store data operands from/to the register files and 

shared, global, or constant memories. The GPRF is used to 

store data operands and addresses during the kernel execution. 

The PRF is used to store the result of logic-arithmetic or 

comparison instructions. The local memory is mainly 

employed to store data arrays, while the shared memory stores 

data operands that can be used among threads belonging to the 

same block, and the global memory stores the initial inputs and 

the final results of a program kernel. 

As case-study applications, we chose five case-study 

applications: matrix multiplication, Fast Fourier Transform 

(FFT), vector sum, bitonic sort, and edge detection. All case 

studies are simple applications but differ in their use of the 

GPU‘s controlpath and datapath. In terms of data flow and 

control flow characteristics, matrix multiplication, and vector 

sum are mostly data flow-oriented, with few conditional 

deviations. The FFT, bitonic sort, and edge detection 

applications are mostly control flow-oriented, with many 

conditional deviations. The matrix multiplication, FFT, vector 

sum, bitonic sort, and edge detection case-study applications 

have 64, 64, 256, 32, and 64 threads each, respectively. 

The following sections discuss the implementation of the 

three classes of resilient atomic instructions: raLoad (load 

instructions), raStore (store instructions), and raSetP (set 

predicate instructions). Discussions include ISA extension and 

instruction formats modification, hardware modifications to the 

FlexGripPlus architecture, and software modifications to the 

compilation flow to most effectively employ our proposed 

instructions with software-based hardening techniques. 
 

4.1. ISA Implementation 
  

The implementation of the resilient atomic instructions in 

the SASS 1.0 ISA poses two challenges: (1) to differentiate the 

resilient atomic opcodes from the original ones and (2) to 

allocate the addressing of the replicated register. As the new 

classes of instructions must perform the same functionalities as 

the original ones, used bits cannot be removed from the 

original instructions. Hence, we must use spare bits to improve 

the original instructions into becoming resilient atomic ones. 

To solve the first challenge, instead of creating new 

opcodes, we used a single extra bit. We then defined it as ‗0‘ 



 

for the original instructions and ‗1‘ for their resilient atomic 

versions. Even though this approach requires one extra bit, it is 

compatible with legacy code, as unused bits are set to ‗0‘. 

To address the second challenge, we must first consider 

the GPU register file and how instructions access it. 

FlexGripPlus can have up to 128 registers per thread, and load, 

store, and set predicate instructions can address up to 2 

registers in their instruction formats. So, to directly access the 

extra registers, all resilient atomic instructions would require 

14 spare bits. Unfortunately, they do not have as many spare 

bits: load and store have 12, and the set predicate has 7. Hence, 

two options arise: (1) to encode a subset of registers or (2) to 

encode an offset between registers and their replicas. 

The first option limits the scope of replicated registers but 

allows programmers to partially replicate instruction registers, 

as they are individually addressed. On the other hand, the 

limited scope of replicated registers might force the software 

transformation to reallocate registers accordingly. The second 

option is less costly bitwise, as all replicated registers share the 

same address offset, but forces the hardware to calculate the 

effective address and the software transformation to allocate 

replicated registers with the same offset. Also, programmers 

must either harden all registers in a instruction or none. 

Due to the number of available bits, our implementation 

used the first option for the resilient atomic load and store 

instructions (1 for opcode, 5 for the first replica, and 6 for the 

second replica) and the second option for the resilient atomic 

set predicate instructions (1 for opcode and 6 for offset). 
 

4.2. Hardware Implementation 
  

Hardware modifications have been made to the Decode, 

Read, and Write pipeline stages. We have also implemented an 

additional hardware exception for host notification. 

The Decode stage has three source registers (src1, src2, 

and src3) and one destination register (dest1). The load and 

store instructions use a single source register (src1), and the set 

predicate instructions use two source registers (src1 and 

src2). Thus, for the implementation of raLoad and raStore, we 

used src2 as source register replica, and for raSetP we 

used src3. Because the Decode stage did not originally support 

a second destination register, we implemented it through dest2. 

We also implemented supporting control flags for the correct 

execution of the proposed instructions. 

The Read and Write stages were adapted to consider an 

additional source operand for the new resilient instructions. For 

the raStore and raLoad, the additional source is directly the 

register address, but for the raSetP, it is an offset that must be 

added to the original register addresses to find their replicas. 

Global memory addresses from the memory access instructions 

are calculated by a specific module, which was adapted to read 

a second value from the register file (src2) and check it for 

consistency. The raSetP was adapted to calculate the replicated 

registers‘ addresses and check them for consistency. The 

raLoad was modified to copy the data loaded from memory to 

both dest1 and dest2 operands. Finally, we added an extra 

hardware exception for host notification. 

 To evaluate how the hardware modifications impact the 

FlexGripPlus architecture, we synthesized the original design 

and three modified versions of the FlexGripPlus architecture: 

(i) ISAset, with modifications for raSetP, (ii) ISAls, with 

modifications for raLoad and raStore, and (iii) ISAsetls, with 

modifications for the complete ISA extension. We performed 

the synthesis with 8 SP cores, a 15 nm cell library [15], and a 

500 MHz constraint, and evaluated circuit area, number of 

logic cells, power, and critical path delay. 

Table I shows the synthesis reports for all three modified 

architectures. When considering the hardware implementation 

for the complete ISA extension, the circuit area showed an 

overhead of 0.179%, while the number of logic cells increased 

by 0.369%. Reduced versions of architecture ISAset and ISAls 

showed lower overheads, with a higher overhead caused by the 

raSetP due to a more expensive circuitry to calculate replicated 

addresses. Power measurements showed an increase in 0.125%, 

being ISAset and ISAls equally responsible for it. Finally, and 

most importantly, the critical path delay showed negligible 

improvements in less than 0.01% for all architectures. 

The impacts of the hardware modifications to support the 

proposed ISA extension in terms of circuit area, logic cell 

number, power, and critical path delay show that the discussed 

hardware implementations can be done without imposing 

significant performance penalties. 
 

4.3. Software Implementation 
  

The case-study applications were written in CUDA and 

compiled with the NVIDIA NVCC compiler. The compilation 

process created CUDA binaries, from which the assembly code 

was extracted with the cuobjdump tool from the CUDA toolkit. 

The assembly was then translated to bytecode, which can be 

directly loaded into FlexGripPlus‘ program memory. To 

automatically apply software-based hardening techniques to the 

case-study applications, we improved the Post-Compiling 

Hardening Tool (PCHT) [16] to provide the previously 

discussed software-support. We input the assembly codes to 

PCHT, which then automatically applied the code 

transformations and generated hardened assembly codes. 

We generated six hardened versions for each case-study 

application, divided into two classes: software-based hardening 

techniques and software-based hardening techniques with ISA 

extension. Each class protects memory access instructions 

(Memory), targeting SDC effects, set predicate instructions 

(Set Predicate), targeting DUE effects, and both (All). 

Table I – Hardware implementation overhead 
 

  

  

Original Design 
  Hardware overhead (%) 

  ISAset ISAls ISAsetls 

Area (mm²) 196,338 
 

0.047 0.030 0.179 

Cells (#) 377,798 
 

0.152 0.031 0.369 

Power (mW) 95.074   0.053 0.056 0.125 

Delay (ns) 1.99205 
 

-0.002 -0.001 -0.008 

 



 

Fig. 1 shows code transformations examples for each 

hardened version. The original code (black) contains add, load, 

set predicate, conditional branch, and store instructions. For the 

software-based technique class, add and load instructions are 

replicated (green) over original registers‘ copies R1’ and R2’ to 

maintain consistency between register duplications. The store 

instructions should only be duplicated in case of memory 

replication. Set predicate instructions are inserted (blue) for 

consistency checking after memory access instructions 

(Memory), after set predicate instructions (Set Predicate), or 

after both (All). Finally, host notification is performed by a 

conditional branch instruction (yellow). For the ISA extension, 

the add instruction replication is maintained. The remaining 

load, store, and set predicate registers and their respective 

consistency checks are replaced (red) by raLoad and raStore 

(Memory), raSetP (Set Predicate), or both (All) instructions. 

The ISA extension also absorbs the host notification. 

Table II shows the execution time for the original 

applications, and their overhead for the hardened versions. The 

software-based overheads (SW) show average increases of 

94% for SDC detection (Memory), 85% for DUE detection 

(Set Predicate), and 104% for both (All). When using our 

proposed ISA extensions, these same values drop to 45%, 41%, 

and 54%, respectively, showing a decrease in execution time 

overhead around 50%. Data also show that data flow-oriented 

applications, such as FFT and matrix multiplication, presented 

few overheads than control flow-oriented ones when targeting 

set predicate instructions for DUE effects. The vector sum 

application does not have predicate registers. The edge 

detection application uses all predicate registers. Thus, it 

cannot be hardened purely by software-based techniques. 
  

5. Evaluation 
  

The fault injection campaign was automatically performed 

through simulation at RTL in the ModelSim simulator. Faults 

were injected into original and hardened versions of the case-

study applications. For each application version, we injected 

10,000 faults, one per program execution, adding up to 280,000 

simulations. Faults have been randomly distributed among 

original application-used registers from the GPRF, as unused 

and replicated registers were not sensitive to faults, achieving a 

1% statistical error considering a 95% confidence level [17]. 

Tables III and IV show the number of SDC and DUE 

effects in the original applications and the hardened version 

percentage reductions. For SDC effects, data show an average 

error reduction of 88.6% and 95.4%, respectively, for software-

based techniques and ISA extension, when the memory access 

instructions were protected (Memory). For DUE effects, data 

show an average error reduction of 99.9% and 100%, 

respectively, for software-based technique and ISA extension, 

when set predicate instructions were hardened (Set Predicate). 

When targeting both, both versions achieved 100% fault 

detection for all applications but the FFT. Such results indicate 

that fault detection capabilities of software-based hardening 

techniques can be improved with our proposed ISA extension.  

The software-based hardening techniques with our 

proposed ISA could not detect all errors for all applications. 

This happens mainly because our proposed ISA performs 

consistency checks before accessing the memory, and therefore 

there is a small window in which a fault can affect the memory. 

 

Table II: Execution time overhead 
 

Application Original (µs)  
Hardening technique overhead (%) 

  
Memory Set Predicate All 

FFT 964  
SW 93.1 88.7 103.2 

 
ISA 56.3 24.5 65.6 

Matrix Mult. 320  
SW 95.9 87.1 104.9 

 
ISA 41.9 9.3 46.9 

Vector Sum 141  
SW 105.2 – – 

 
ISA 45.3 – – 

Bitonic Sort 824  
SW 83.2 79.0 104.4 

 
ISA 30.3 55.9 36.6 

Edge Detect. 1,096  
SW – – – 

 
ISA 49.5 75.1 66.1 

 

    Software-based   Software-based + ISA Extension 

Original Code Memory Set Predicate All   Memory Set Predicate All 

1: ADD R1,R1,1  ADD R1,R1,1  ADD R1,R1,1  ADD R1,R1,1  
 

ADD R1,R1,1  ADD R1,R1,1  ADD R1,R1,1  

2:   ADD R1',R1',1 ADD R1',R1',1 ADD R1',R1',1   ADD R1',R1',1 ADD R1',R1',1 ADD R1',R1',1 

3: LOAD R2,[R1] LOAD R2,[R1] LOAD R2,[R1] LOAD R2,[R1] 
 

raLOAD R2,R2',[R1,R1'] LOAD R2,[R1] raLOAD R2,R2',[R1,R1'] 

4: 
 

LOAD R2’,[R1’] LOAD R2’,[R1’] LOAD R2’,[R1’] 
  

LOAD R2’,[R1’] 
 

5:   @!PE SETP PE,R1,R1'   @!PE SETP PE,R1,R1’         

6: SETP P0,R2,R3  SETP P0,R2,R3  SETP P0,R2,R3  SETP P0,R2,R3  
 

SETP P0,R2,R3  raSETP P0,R2,R3,offset raSETP P0,R2,R3,offset 

7: 
  

@!PE SETP PE,R2,R2'   @!PE SETP PE,R2,R2' 
    

8:     @!PE SETP PE,R3,R3'   @!PE SETP PE,R3,R3'         

9: @P0 BRA 1  @P0 BRA 1  @P0 BRA 1  @P0 BRA 1    @P0 BRA 1  @P0 BRA 1  @P0 BRA 1  

10: STORE [R4],R1 STORE [R4],R1 STORE [R4],R1 STORE [R4],R1 
 

raSTORE [R4,R4'],R1,R1' STORE [R4],R1 raSTORE [R4,R4'],R1,R1' 

11: 
 

@!PE SETP PE,R1,R1’ 
 

@!PE SETP PE,R1,R1’ 
    

12:   @!PE SETP PE,R4,R4’   @!PE SETP PE,R4,R4'         

13:   @PE BRA ERROR @PE BRA ERROR @PE BRA ERROR         
 

Fig. 1.  Program code transformation by software-based techniques and software-based techniques with proposed ISA extension. 

 



 

6. Conclusions and Future Work 
  

This work presented a new comprehensive ISA extension 

to the NVIDIA SASS 1.0 ISA to improve GPU reliability 

against transient effects. We proposed and discussed in detail 

three additional instructions, targeting memory access, and set 

predicate instructions to mitigate SDC and DUE effects. The 

implementation considered software and hardware support to 

address ISA, hardware, and software improvements to the 

FlexGripPlus open-source GPU. The proposed resilient atomic 

instructions were then incorporated into software-based 

hardening techniques and automatically applied to five case-

study applications. Finally, a fault injection campaign was 

performed by simulating 280,000 faults at RTL. 

Hardware synthesis results showed no performance 

degradation and less than 1% area and power overheads for the 

modified architectures. Execution runtime overheads showed a 

decrease in around 50% compared to state-of-the-art software-

based techniques. For hardening the matrix multiplication 

against DUE effects, our proposed ISA required a 9% increase 

in execution time. Fault injection results showed that our 

proposed ISA extension could improve overall software-based 

fault detection, especially when considering DUE effects. 

In the future, we intend to improve our hardware 

implementations and add reliability-specific hardware modules 

to decrease overheads in fault-tolerant GPUs further. 
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Table III: SDC Reduction 
 

Application SDC Effects  
Hardening technique (%) 

  
Memory Set Predicate All 

FFT 1,452  
SW 89.1 39.9 100.0 

 
ISA 84.9 17.5 96.1 

Matrix Mult. 3,461  
SW 100.0 - 4.6 100.0 

 
ISA 100.0 - 5.6 100.0 

Vector Sum 3,164  
SW 100.0 – – 

 
ISA 100.0 – – 

Bitonic Sort 1,739  
SW 61.1 87.5 100.0 

 
ISA 92.6 71.4 100.0 

Edge Detect. 258  
SW – – – 

 
ISA 99.6 80.2 100.0 

 

Table IV: DUE reduction 
 

Application DUE Effects  
Hardening technique (%) 

  
Memory Set Predicate All 

FFT 2,321  
SW 30.1 100.0 99.9 

 
ISA 32.3 100.0 100.0 

Matrix Mult. 1,755  
SW 0.2 99.9 99.8 

 
ISA 4.0 100.0 100.0 

Vector Sum 1  
SW 100.0 – – 

 
ISA 100.0 – – 

Bitonic Sort 1,368  
SW 1.9 99.9 99.9 

 
ISA 5.3 100.0 100.0 

Edge Detect. 1,952  
SW – – – 

 
ISA  12.7 99.9  99.9  

 


