
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse

of any copyrighted component of this work in other works.

An open source embedded-GPGPU model for the

accurate analysis and mitigation of SEU effects

B. Du, Josie E. Rodriguez Condia, M. Sonza Reorda, L. Sterpone
Politecnico di Torino, Torino, Italy

Abstract1—In this paper, we propose a new hardware and

synthesizable model of an embedded General Purpose Graphic

Processing Unit (GPGPUs) designed for analyzing and mitigating

radiation effects. Comparative SEU injection experiments

confirms the model effectiveness.

Keywords— SEU, General Purpose Graphics Processing Units

GPGPUs, Graphics Processors, Fault Injection.

I. INTRODUCTION

General Purpose Graphic Processing Units (GPGPUs) are
effective solutions in data-intensive applications, such as multi-
signal analysis, and video processing, thanks to their parallel
architecture. Nowadays, these devices are promising
alternatives for embedded real-time and safety-critical systems.
In the automotive field, these devices are commonly adapted in
sensor fusion systems and Advanced Driver-Assistance
Systems (ADAS) [1], which form specialized systems targeting
complex applications, including Automatic Parking and Cruise
Control, Pedestrian and Pattern Recognition, and Forward
Collision Warning.

New GPGPU technologies include more parallel execution
cores or streaming multiprocessors (SM) in NVIDIA’s
terminology increasing the performance and the throughput.
Nevertheless, these new devices employ the latest technology
scaling approaches. Moreover, it is well known that these
semiconductor technologies can be particularly affected by
radiation effects [2]. Radiation particles can affect the system
through transient faults, such as Single Event Upsets (SEUs) in
sequential logic or memory cells by corrupting the content of
the stored logic value. The SEUs may cause unexpected
behaviors and unacceptable erroneous operations in safety-
critical applications.

In the past, some mitigation techniques were proposed to
reduce the error effect including the adoption of special
software coding strategy and the algorithm implementation [3].
A detailed analysis is required to evaluate the radiation effect
in the application, such as error rate and effect on critical units,
and to select the most suitable countermeasures. Moreover,
these methods are also employed to provide guidelines for
effectively writing the application code, trading off
performance and reliability.

Fault injection on device models, at different abstraction
levels, are common solutions to support the effect analysis and
to select mitigation strategies. Nevertheless, in the GPGPU
field, there are some challenges. There are a few available
models of GPGPU, and most of them are described at a high

1 This work has been partially supported by the European Commission
through the Horizon 2020 RESCUE-ETN project under grant 722325.

level of abstraction [4-7], thus preventing a detailed analysis of
radiation effects. Moreover, there are a few synthesizable RTL
behavioral GPGPU models, which can be used to analyze the
SEU effects on different abstraction levels [8][9][10]. In [11]
the authors introduced a SEU fault simulation injection
methodology applied to a behavioral/RTL GPGPU device.
Moreover, the previous [12] and other works preformed
transient faults experiments and provided an initial overview of
the effects on data-path units of a GPGPU, such as the register
file and the pipeline registers. Conclusions show that the error
rate in these modules is directly related with the employed
benchmark and the parallelization level in the application (e.g.,
in terms of thread distribution).

On the other hand, radiation experiment is an alternative
technique to analysis the SEU effects. The main advantage of
this method is the usage of real devices in the experiments
instead of a representative model.

In [13][14] the authors presented results from radiation
experiments on GPGPUs showing that SEU effects, detected in
application results, depend on the affected module in the
GPGPU. Moreover, these effects are correlated with the
module usage by the benchmarks. Nevertheless, in these
approaches it is hard to provide convincing and detailed
explanations about the observed behaviors in particular
modules, since internal structure details and behavior of the
device are not fully available.

In this work, we introduce a set of improvements to the
original FlexGrip GPGPU model in order to make it suitable
for radiation effect analysis. Furthermore, we performed a
comparative fault injection experiment using the SASSIFI
approach [15] on a Nvidia Pascal with 256 CUDA cores
embedded in the Jetson TX2 embedded GPGPU kit. The
comparative analysis demonstrated the similarities of the
behaviors thus the effectiveness of our model for the study of
radiation induced SEU on GPGPU architectures.

II. BACKGROUND

FlexGrip is an open source model of a GPGPU described in
VHDL. This model was developed by the University of
Massachusetts and originally optimized targeting a Xilinx
FPGA [8]. The model implements the Nvidia G80 micro-
architecture and it is also compatible with Nvidia’s CUDA
environment under SM_1.0 compatibility. FlexGrip employs a
compiled CUDA-binary code (.SASS file) as program kernel.
27 instructions of either 32 or 64 bits are supported by
FlexGrip. The kernel configuration parameters, such as Grid
dimension, Block dimension and Blocks per core, and the
memory content in the constant memory and other GPGPU
configuration parameters, such as the number of registers per

thread and the number of blocks per SM core, should be
manually defined for each application before execution.

The micro-architecture is based on the Single Instruction
Multiple Thread (SIMT) paradigm and exploits a custom SM
core with a five-stages pipeline (Fetch, Decode, Read,
Execution/Control-flow and Write-back), as shown in Fig. 1.
Moreover, the SM employs a controller and a warp scheduler
unit for instruction thread management. In the SIMT
architecture, one instruction is fetched, decoded and distributed
to be executed on an independent processing unit, or Scalar
Processor (SP), in the SM. The Read and Write-back stages
load and store data operands from and to Register Files (RFs),
shared, global or constant memories.

Fig. 1. FlexGrip architecture: the SM.

The execution units (EU) in FlexGrip are able to process
only integer operations. Moreover, the number of EU in the
system also defines the Thread-level parallelism (TLP) of the
GPGPU. The model supports the configuration of 32, 16 and 8
SPs. A (branch unit) module, in parallel to the EU, is able to
support inter-warp branching at hardware level. This module
manages the control-flow operations in order to start or retake
the flow from conditional branches with multiple paths. This
unit also support up to 32 levels of nesting branching.

III. GPGPU MODEL FOR RADIATION-EFFECT ANALYSIS

A detailed analysis in the model and to each internal
module denoted some operational limitations. Thus, we
performed a set of improvements, which allow us to analyze
transient fault effects on internal modules. Moreover, these
improvements simplify and increase the flexibility of the model
for applications development and multi-technology
implementation. The improvements can be divided in four
categories: technology dependency, instruction format support,
compilation restrictions and hierarchical mapping.

FlexGrip was originally designed to be implemented on
specific FPGA technologies. Moreover, some internal modules
were automatically generated employing high level
compilation tools, such as Matlab and Xilinx Vivado. Thus,
multiple IP cores are included in multiple parts of the design.
Nevertheless, these codes are not easily understandable and
cannot be analyzed in an easy manner.

We modified each module by removing any reference or
dependency to specific technology libraries and compilation
tools and replacing them with equivalent generic
implementation. Moreover, the name of signals and
interconnections was clarified in order to simplify the analysis
during the fault injection campaigns. At the end, 38.8% of the

modules were corrected or modified for this purpose. The
model can now be imported in simulation environments, such
as ModelSim.

Considering the instruction format, FlexGrip was designed
to be compatible with the CUDA programing environment and
execute SASS instructions. Nevertheless, the use of high-level
Electronic Design Automation (EDA) tools during design and
its optimizations seems to be one of the factors for some
missing instruction formats. Thus, some internal parts in
modules, such as intermediate registers, decoding logic, and
interconnections were removed by the optimization.

The previous behavior was checked during the
development of custom applications employing the CUDA
environment. In these applications, some instructions failed
during execution. Exhaustive analysis and revisions were
performed on the simulation traces. However, in some cases,
the analyzed signals behavior showed that some supported
instructions were only partially implemented. This restriction
limits the transient fault analysis and its incidence under
different applications. Moreover, it reduces the model’s
flexibility and capability. The improvement reported here
required a methodical revision of all supported assembly
instructions (SASS) in the model and the addition or correction
of the missing implementation for the instructions under the
expected format. As a result, we identified a minimal subset of
instructions required to implement some basic applications, and
focused our work on fixing existing bugs, thus allowing a
complete support of these instructions.

As the SASS Instruction Set Architecture (ISA) has not
been released by Nvidia, the opcode format of some
instructions was decoded employing the CUDA compilation
tools (NVCC and CUOBJDUMP). Multiple applications were
designed targeting selected instructions in order to force the
compiler to generate the instruction opcodes. Then, all the
required changes (e.g., missing registers, connections or
incomplete modules) were introduced in order to fully support
the selected minimal set of instructions with all the potential
instruction format variations. After this process, the set
included 27 instructions and 74 formats.

The 4.8% of the whole model description required an
addition or modification in its implementation in order to be
able of execute the expected instruction formats and its
variations. Finally, some bugs and unused interconnections
were removed from the project hierarchy in order to clean the
modules and remove any redundant logic, which may create
problems during the fault campaigns.

The compilation has been extended to full CUDA
compatibility. FlexGrip is able to execute applications
compiled employing the CUDA-toolkit by Nvidia. Moreover, a
SM 1.0 micro-architectural compatibility must be selected.
However, the CUDA compiler is protected and, as commented
before, the opcode of the instructions is not released. In
multiple attempts to design new applications for FlexGrip we
discovered several SASS instructions not supported by the
model, so in order to maintain the compatibility with the
CUDA-toolkit, a SASS checker tool was developed to check
the supported SASS instruction formats. This tool is able to
identify and notify the user of those unsupported instructions
formats in FlexGrip. Additionally, a SASS parser tool was
designed to directly write SASS assembly instructions and

replace the unsupported ones. Using both tools, a new
application can be designed, verified and corrected without the
necessity of debugging the instructions in the model, thus
reducing the application development time. With this, we
implemented a version of FFT and Edge Detection algorithm
as benchmark applications.

Finally, the designed model has been implemented
considering layout constraints. Each module of the SM is
associated to a specific placement constraint file that allows the
effective mapping and placement on isolated areas on the
considered design. This will permit the adoption of
reconfiguration based SEU injection or effective bitstream
evaluation.

IV. COMPARATIVE FAULT INJECTION ANALYSIS

We performed two fault injection experiments in order to
evaluate the effects of SEU in the registers of GPGPUs. The
former has been implemented on the developed GPGPU
model. We developed a custom fault injector to identify and
analyze the SEU effects on specific internal modules of the
SM. This fault simulator is based on the ModelSim framework.
The latter, we adopted the SASSIFI fault injection approach
developed by Nvidia to perform the same type of fault injection
but executed on the Nvidia Pascal embedded GPGPU
embedded on the Jetson TX2 board.

The fault simulator was designed to perform a set of SEU
fault campaigns on the improved version of FlexGrip and
follows the fault injection methodology introduced in [11] and
to compare the fault injection experiments with the ones
performed using SASSIFI on the Pascal GPGPU. Moreover, it
includes a multi-thread approach [17] [18] and the utilization of
a de-rating factor (UDR) [19] of the targeted modules. The
UDR factor considers only the registers employed by an
application during execution time, thus reducing the total
amount of faults to be injected and the corresponding
simulation time in the fault campaign. The fault simulator
injects SEUs in memory cells or register signals by flipping its
value. For the purpose of this work, we use the SEU injector
capabilities in the fault injection campaigns. A fault simulation
starts with (compiling and) loading the GPGPU model in
ModelSim. In this process, the control manager loads the
GPGPU configuration, the application instructions and the
initial data memory values. The user provides the kernel
instructions and the model configuration before the fault
simulation starts. The fault list generated by the fault simulator
is also saved in a specific file in order to be used on the Pascal
with SASSIFI. Finally, a classifier sorts the fault effects in four
categories: Silent Data Corruption (SDC), Time-Out
(Performance Degradation), Hang (Detected Unrecoverable
Error (DUE)) and Masked (Silent). A SEU effect is classified
as SDC if there is a memory mismatch between the golden and
faulty results. A Time-Out happens when the fault simulation
time is greater than the golden simulation time. The fault
behavior is classified as DUE when the fault simulation is not
correctly finished or the GPGPU model cannot correctly
terminate its execution, additionally without results in the
global memory. Lastly, a Silent classification is used if there
are not mismatches in memory results or execution time. It is
worth noting that one simulation is performed for each
considered fault.

On the Pascal embedded GPGPU, we instrumented the
benchmark applications with the SASSIFI approach
considering the fault list generated by the fault simulator
targeting on the proposed model. Since the registers used by
the compiled applications on the Pascal were different from the
Flex Grip, we relocated them in order to achieve the same
statistic of the fault locations.

V. EXPERIMENTAL RESULTS

 We implemented three different applications. Vector_Add
kernel presents high data-intensive operations, thus each
operand should use the RF for temporary storage. On the other
hand, other two applications (FFT, Edge-Detection-Sobel) are
based on different combinations of multiple path execution
(divergence) and data operations. Each kernel program was
developed, compiled in CUDA-C with SM_1.0 and adapted to
the supported FlexGrip instruction set. The same CUDA-C
codes have been compiled with compatibility 3.0 for Pascal.
Table I introduces the major operation features of the selected
applications. Please note that the execution cycles of the Pascal
GPGPU, settled to execute the code on 32 cores, are around
15% shorter than FlexGrip benchmark code. This is due to two
aspects: the former is the optimized CUDA assembly obtained
by the 3.0 compiler versus the 1.0, the latter can be related to
the small difference of instruction set used for FlexGrip that
results in longer application code.

TABLE I. BENCHMARK APPLICATION CHARACTERISTICS ON FLEXGRIP AND

PASCAL GPGPUS.

Benchmark

Code

size

(Words)

.SASS

Instructions

Execution

time

(cycles)

Configuration

(SP cores)

FlexGrip

FFT 334 174 584,265 32

Edge Det. 712 373 688,305 32

VectorAdd 18 12 28,565 32

Pascal

FFT 282 136 496,452 32

Edge Det. 656 327 585,021 32

VectorAdd 16 10 25,534 32

During experiments, two main elements were considered:

the location and the injection time. The SEU location is
composed of the registers and memory elements employed by a
benchmark during its execution. The locations were carefully
checked and selected during the golden execution and were
used to instrument the SASSIFI fault injection on the Pascal
GPGPU. The SEU injection time considers the time intervals in
the kernel execution on FlexGrip. Those time intervals are
configuration, execution, global-memory storage and kernel
termination. The SEU injection range, by definition, does not
consider kernel configuration and memory storage but only
corresponds to the execution interval.

In the fault campaign, one SEU injection time (i.e., one
clock cycle) is selected randomly from the SEU injection range
for each SEU location. The fault campaigns were performed on
the targeted modules considering a TLP configuration of 32 SP
cores and two thread distribution configurations: Config. A
distributes every benchmark with 32 threads and two blocks
per grid; Config. B uses 64 threads per block and one block per
grid.

The fault injection results demonstrated similarity between
the FlexGrip GPGPU and the Pascal embedded GPGPU. The

FFT results show a slight increment in the SDC error rate when
increasing the number of threads per block in the benchmarks.
This behavior has a direct relation with the kernel execution
time for each configuration. In principle, the data stored in an
active register for a long time are more exposed to SEU effects
(Config. B) than registers with multiple write and read
activities (Config. A). In the experiments, the Config. A
required a longer execution time. Nevertheless, the effective
block execution time is lower than for Config. B. Moreover,
FFT in the Config. A uses half of the registers of the Config. B
and employs them to process threads, in different interval
times, belonging to different blocks.

0 20 40 60 80 100

B32-Pascal

A32-Pascal

B32-FlexG

A32-FlexG

Vector Add

Silent Time Out DUE SDC

0 20 40 60 80 100

B32-Pascal

A32-Pascal

B32-FlexG

A32-FlexG

Edge Detection

Silent Time Out DUE SDC

0 20 40 60 80 100

B32-Pascal

A32-Pascal

B32-FlexG

A32-FlexG

FFT

Silent Time Out DUE SDC

Fig. 2. SEU injection on FlexGrip model and Pascal embedded GPGPU.

VI. CONCLUSIONS AND FUTURE WORKS

 In this paper, we presented a hardware model of an
embedded GPGPU with an extended ISA architecture able to
provide compatible results with modern GPGPU architectures.
Despite the fact that the developed extended FlexGrip model
does not exactly match the architecture of the most recent
GPGPU devices we were able to demonstrate its similar
behavior regarding SEUs within user register resources. The
performed SEU fault injection experiments executed with the
simulation environment on the FlexGrip and with SASSIFI on
the Pascal GPGPU provide fully compatible results. Three
benchmark applications have been compiled with the
respective architecture.
 As future works, we plan to implement the enhanced
FlexGrip model on Flash-based FPGA in order to have a
similar technology behavior and study the influence of SETs
and SEUs during a radiation test campaign.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and

hardware implementation for visual perception system in

autonomous vehicle: A survey," Integration, vol. 59, pp. 148-

156, 2017/09/01/ 2017.

[2] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba,

"Impact of Scaling on Neutron-Induced Soft Error in SRAMs

From a 250 nm to a 22 nm Design Rule," IEEE Transactions

on Electron Devices, vol. 57, pp. 1527-1538, 2010.

[3] L. L. Pilla, P. Rech, F. Silvestri, C. Frost, P. O. A. Navaux, M.

S. Reorda, et al., "Software-Based Hardening Strategies for

Neutron Sensitive FFT Algorithms on GPUs," IEEE

Transactions on Nuclear Science, vol. 61, pp. 1874-1880, 2014.

[4] S. Collange, M. Daumas, D. Defour, and D. Parello, "Barra: A

Parallel Functional Simulator for GPGPU," in 2010 IEEE

International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems,

2010, pp. 351-360.

[5] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood,

"gem5-gpu: A Heterogeneous CPU-GPU Simulator," IEEE

Computer Architecture Letters, vol. 14, pp. 34-36, 2015.

[6] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M.

Aamodt, "Analyzing CUDA workloads using a detailed GPU

simulator," in Performance Analysis of Systems and Software,

2009. ISPASS 2009. IEEE International Symposium on, 2009,

pp. 163-174.

[7] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi,

"GPU-Qin: A methodology for evaluating the error resilience

of GPGPU applications," in 2014 IEEE International

Symposium on Performance Analysis of Systems and Software

(ISPASS), 2014, pp. 221-230.

[8] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft

GPGPU for FPGAs," in 2013 International Conference on

Field-Programmable Technology (FPT), 2013, pp. 230-237.

[9] M. A. Kadi, B. Janssen, and M. Huebner, "FGPU: An SIMT-

Architecture for FPGAs," presented at the Proceedings of the

2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, Monterey, California, USA, 2016.

[10] R. Balasubramanian, V. Gangadhar, Z. Guo, C. H. Ho, C.

Joseph, J. Menon, et al., "MIAOW - An open source RTL

implementation of a GPGPU," in 2015 IEEE Symposium in

Low-Power and High-Speed Chips (COOL CHIPS XVIII),

2015, pp. 1-3.

[11] W. Nedel, F. L. Kastensmidt, and J. R. Azambuja, "Evaluating

the effects of single event upsets in soft-core GPGPUs," in Test

Symposium, 2016 17th Latin-American, 2016, pp. 93-98.

[12] M. Gonçalves, M. Saquetti, F. Kastensmidt, and J. R.

Azambuja, "A low-level software-based fault tolerance

approach to detect SEUs in GPUs' register files,"

Microelectronics Reliability, vol. 76-77, pp. 665-669, 2017.

[13] P. Rech, G. Nazar, C. Frost, and L. Carro, "GPUs reliability

dependence on degree of parallelism," IEEE Transactions on

Nuclear Science, vol. 61, pp. 1755-1762, 2014.

[14] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, "Impact of

GPUs parallelism management on safety-critical and HPC

applications reliability," in Dependable Systems and Networks

(DSN), 2014 44th Annual IEEE/IFIP International Conference

on, 2014, pp. 455-466.

[15] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler and J.

Emer, "SASSIFI: An architecture-level fault injection tool for

GPU application resilience evaluation," 2017 IEEE

International Symposium on Performance Analysis of Systems

and Software (ISPASS), Santa Rosa, CA, 2017, pp. 249-258.

[16] J. Knudsen, "Nangate 45nm Open Cell Library," CDNLive,

EMEA, 2008.

[17] J. Guthoff and V. Sieh, "Combining software-implemented and

simulation-based fault injection into a single fault injection

method," in Twenty-Fifth International Symposium on Fault-

Tolerant Computing. Digest of Papers, 1995, pp. 196-206.

[18] H. Ziade, R. A. Ayoubi, and R. Velazco, "A survey on fault

injection techniques," Int. Arab J. Inf. Technol., vol. 1, pp. 171-

186, 2004.

[19] D. Alexandrescu, "Circuit and System Level Single-Event

Effects Modeling and Simulation," in Soft Errors in Modern

Electronic Systems, ed: Springer, 2011, pp. 103-140.

