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Abstract1—In this paper, we propose a new hardware and 

synthesizable model of an embedded General Purpose Graphic 

Processing Unit (GPGPUs) designed for analyzing and mitigating 

radiation effects. Comparative SEU injection experiments 

confirms the model effectiveness. 
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I.  INTRODUCTION  

General Purpose Graphic Processing Units (GPGPUs) are 
effective solutions in data-intensive applications, such as multi-
signal analysis, and video processing, thanks to their parallel 
architecture. Nowadays, these devices are promising 
alternatives for embedded real-time and safety-critical systems. 
In the automotive field, these devices are commonly adapted in 
sensor fusion systems and Advanced Driver-Assistance 
Systems (ADAS) [1], which form specialized systems targeting 
complex applications, including Automatic Parking and Cruise 
Control, Pedestrian and Pattern Recognition, and Forward 
Collision Warning. 

New GPGPU technologies include more parallel execution 
cores or streaming multiprocessors (SM) in NVIDIA’s 
terminology increasing the performance and the throughput. 
Nevertheless, these new devices employ the latest technology 
scaling approaches. Moreover, it is well known that these 
semiconductor technologies can be particularly affected by 
radiation effects [2]. Radiation particles can affect the system 
through transient faults, such as Single Event Upsets (SEUs) in 
sequential logic or memory cells by corrupting the content of 
the stored logic value. The SEUs may cause unexpected 
behaviors and unacceptable erroneous operations in safety-
critical applications. 

In the past, some mitigation techniques were proposed to 
reduce the error effect including the adoption of special 
software coding strategy and the algorithm implementation [3]. 
A detailed analysis is required to evaluate the radiation effect 
in the application, such as error rate and effect on critical units, 
and to select the most suitable countermeasures. Moreover, 
these methods are also employed to provide guidelines for 
effectively writing the application code, trading off 
performance and reliability. 

Fault injection on device models, at different abstraction 
levels, are common solutions to support the effect analysis and 
to select mitigation strategies. Nevertheless, in the GPGPU 
field, there are some challenges. There are a few available 
models of GPGPU, and most of them are described at a high 
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level of abstraction [4-7], thus preventing a detailed analysis of 
radiation effects. Moreover, there are a few synthesizable RTL 
behavioral GPGPU models, which can be used to analyze the 
SEU effects on different abstraction levels [8][9][10]. In [11] 
the authors introduced a SEU fault simulation injection 
methodology applied to a behavioral/RTL GPGPU device. 
Moreover, the previous [12] and other works preformed 
transient faults experiments and provided an initial overview of 
the effects on data-path units of a GPGPU, such as the register 
file and the pipeline registers. Conclusions show that the error 
rate in these modules is directly related with the employed 
benchmark and the parallelization level in the application (e.g., 
in terms of thread distribution). 

On the other hand, radiation experiment is an alternative 
technique to analysis the SEU effects. The main advantage of 
this method is the usage of real devices in the experiments 
instead of a representative model. 

In [13][14] the authors presented results from radiation 
experiments on GPGPUs showing that SEU effects, detected in 
application results, depend on the affected module in the 
GPGPU. Moreover, these effects are correlated with the 
module usage by the benchmarks. Nevertheless, in these 
approaches it is hard to provide convincing and detailed 
explanations about the observed behaviors in particular 
modules, since internal structure details and behavior of the 
device are not fully available. 

In this work, we introduce a set of improvements to the 
original FlexGrip GPGPU model in order to make it suitable 
for radiation effect analysis. Furthermore, we performed a 
comparative fault injection experiment using the SASSIFI 
approach [15] on a Nvidia Pascal with 256 CUDA cores 
embedded in the Jetson TX2 embedded GPGPU kit. The 
comparative analysis demonstrated the similarities of the 
behaviors thus the effectiveness of our model for the study of 
radiation induced SEU on GPGPU architectures.  

II. BACKGROUND 

FlexGrip is an open source model of a GPGPU described in 
VHDL. This model was developed by the University of 
Massachusetts and originally optimized targeting a Xilinx 
FPGA [8]. The model implements the Nvidia G80 micro-
architecture and it is also compatible with Nvidia’s CUDA 
environment under SM_1.0 compatibility. FlexGrip employs a 
compiled CUDA-binary code (.SASS file) as program kernel. 
27 instructions of either 32 or 64 bits are supported by 
FlexGrip. The kernel configuration parameters, such as Grid 
dimension, Block dimension and Blocks per core, and the 
memory content in the constant memory and other GPGPU  
configuration parameters, such as the number of registers per 



thread and the number of blocks per SM core, should be 
manually defined for each application before execution. 

The micro-architecture is based on the Single Instruction 
Multiple Thread (SIMT) paradigm and exploits a custom SM 
core with a five-stages pipeline (Fetch, Decode, Read, 
Execution/Control-flow and Write-back), as shown in Fig. 1. 
Moreover, the SM employs a controller and a warp scheduler 
unit for instruction thread management. In the SIMT 
architecture, one instruction is fetched, decoded and distributed 
to be executed on an independent processing unit, or Scalar 
Processor (SP), in the SM. The Read and Write-back stages 
load and store data operands from and to Register Files (RFs), 
shared, global or constant memories.  

 

 
Fig. 1.  FlexGrip architecture: the SM. 

The execution units (EU) in FlexGrip are able to process 
only integer operations. Moreover, the number of EU in the 
system also defines the Thread-level parallelism (TLP) of the 
GPGPU. The model supports the configuration of 32, 16 and 8 
SPs. A (branch unit) module, in parallel to the EU, is able to 
support inter-warp branching at hardware level. This module 
manages the control-flow operations in order to start or retake 
the flow from conditional branches with multiple paths. This 
unit also support up to 32 levels of nesting branching. 

III. GPGPU MODEL FOR RADIATION-EFFECT ANALYSIS 

A detailed analysis in the model and to each internal 
module denoted some operational limitations. Thus, we 
performed a set of improvements, which allow us to analyze 
transient fault effects on internal modules. Moreover, these 
improvements simplify and increase the flexibility of the model 
for applications development and multi-technology 
implementation. The improvements can be divided in four 
categories: technology dependency, instruction format support, 
compilation restrictions and hierarchical mapping. 

FlexGrip was originally designed to be implemented on 
specific FPGA technologies. Moreover, some internal modules 
were automatically generated employing high level 
compilation tools, such as Matlab and Xilinx Vivado. Thus, 
multiple IP cores are included in multiple parts of the design. 
Nevertheless, these codes are not easily understandable and 
cannot be analyzed in an easy manner. 

We modified each module by removing any reference or 
dependency to specific technology libraries and compilation 
tools and replacing them with equivalent generic 
implementation. Moreover, the name of signals and 
interconnections was clarified in order to simplify the analysis 
during the fault injection campaigns. At the end, 38.8% of the 

modules were corrected or modified for this purpose. The 
model can now be imported in simulation environments, such 
as ModelSim. 

Considering the instruction format, FlexGrip was designed 
to be compatible with the CUDA programing environment and 
execute SASS instructions. Nevertheless, the use of high-level 
Electronic Design Automation (EDA) tools during design and 
its optimizations seems to be one of the factors for some 
missing instruction formats. Thus, some internal parts in 
modules, such as intermediate registers, decoding logic, and 
interconnections were removed by the optimization. 

The previous behavior was checked during the 
development of custom applications employing the CUDA 
environment. In these applications, some instructions failed 
during execution. Exhaustive analysis and revisions were 
performed on the simulation traces. However, in some cases, 
the analyzed signals behavior showed that some supported 
instructions were only partially implemented. This restriction 
limits the transient fault analysis and its incidence under 
different applications. Moreover, it reduces the model’s 
flexibility and capability. The improvement reported here 
required a methodical revision of all supported assembly 
instructions (SASS) in the model and the addition or correction 
of the missing implementation for the instructions under the 
expected format. As a result, we identified a minimal subset of 
instructions required to implement some basic applications, and 
focused our work on fixing existing bugs, thus allowing a 
complete support of these instructions. 

As the SASS Instruction Set Architecture (ISA) has not 
been released by Nvidia, the opcode format of some 
instructions was decoded employing the CUDA compilation 
tools (NVCC and CUOBJDUMP). Multiple applications were 
designed targeting selected instructions in order to force the 
compiler to generate the instruction opcodes. Then, all the 
required changes (e.g., missing registers, connections or 
incomplete modules) were introduced in order to fully support 
the selected minimal set of instructions with all the potential 
instruction format variations. After this process, the set 
included 27 instructions and 74 formats. 

The 4.8% of the whole model description required an 
addition or modification in its implementation in order to be 
able of execute the expected instruction formats and its 
variations. Finally, some bugs and unused interconnections 
were removed from the project hierarchy in order to clean the 
modules and remove any redundant logic, which may create 
problems during the fault campaigns. 

The compilation has been extended to full CUDA 
compatibility. FlexGrip is able to execute applications 
compiled employing the CUDA-toolkit by Nvidia. Moreover, a 
SM 1.0 micro-architectural compatibility must be selected. 
However, the CUDA compiler is protected and, as commented 
before, the opcode of the instructions is not released. In 
multiple attempts to design new applications for FlexGrip we 
discovered several SASS instructions not supported by the 
model, so in order to maintain the compatibility with the 
CUDA-toolkit, a SASS checker tool was developed to check 
the supported SASS instruction formats. This tool is able to 
identify and notify the user of those unsupported instructions 
formats in FlexGrip. Additionally, a SASS parser tool was 
designed to directly write SASS assembly instructions and 



replace the unsupported ones. Using both tools, a new 
application can be designed, verified and corrected without the 
necessity of debugging the instructions in the model, thus 
reducing the application development time. With this, we 
implemented a version of FFT and Edge Detection algorithm 
as benchmark applications. 

Finally, the designed model has been implemented 
considering layout constraints. Each module of the SM is 
associated to a specific placement constraint file that allows the 
effective mapping and placement on isolated areas on the 
considered design. This will permit the adoption of 
reconfiguration based SEU injection or effective bitstream 
evaluation.  

IV. COMPARATIVE FAULT INJECTION ANALYSIS 

We performed two fault injection experiments in order to 
evaluate the effects of SEU in the registers of GPGPUs. The 
former has been implemented on the developed GPGPU 
model. We developed a custom fault injector to identify and 
analyze the SEU effects on specific internal modules of the 
SM. This fault simulator is based on the ModelSim framework. 
The latter, we adopted the SASSIFI fault injection approach 
developed by Nvidia to perform the same type of fault injection 
but executed on the Nvidia Pascal embedded GPGPU 
embedded on the Jetson TX2 board. 

The fault simulator was designed to perform a set of SEU 
fault campaigns on the improved version of FlexGrip and 
follows the fault injection methodology introduced in [11] and 
to compare the fault injection experiments with the ones 
performed using SASSIFI on the Pascal GPGPU. Moreover, it 
includes a multi-thread approach [17] [18] and the utilization of 
a de-rating factor (UDR) [19] of the targeted modules. The 
UDR factor considers only the registers employed by an 
application during execution time, thus reducing the total 
amount of faults to be injected and the corresponding 
simulation time in the fault campaign. The fault simulator 
injects SEUs in memory cells or register signals by flipping its 
value. For the purpose of this work, we use the SEU injector 
capabilities in the fault injection campaigns. A fault simulation 
starts with (compiling and) loading the GPGPU model in 
ModelSim. In this process, the control manager loads the 
GPGPU configuration, the application instructions and the 
initial data memory values. The user provides the kernel 
instructions and the model configuration before the fault 
simulation starts. The fault list generated by the fault simulator 
is also saved in a specific file in order to be used on the Pascal 
with SASSIFI. Finally, a classifier sorts the fault effects in four 
categories: Silent Data Corruption (SDC), Time-Out 
(Performance Degradation), Hang (Detected Unrecoverable 
Error (DUE)) and Masked (Silent). A SEU effect is classified 
as SDC if there is a memory mismatch between the golden and 
faulty results. A Time-Out happens when the fault simulation 
time is greater than the golden simulation time. The fault 
behavior is classified as DUE when the fault simulation is not 
correctly finished or the GPGPU model cannot correctly 
terminate its execution, additionally without results in the 
global memory. Lastly, a Silent classification is used if there 
are not mismatches in memory results or execution time. It is 
worth noting that one simulation is performed for each 
considered fault. 

On the Pascal embedded GPGPU, we instrumented the 
benchmark applications with the SASSIFI approach 
considering the fault list generated by the fault simulator 
targeting on the proposed model. Since the registers used by 
the compiled applications on the Pascal were different from the 
Flex Grip, we relocated them in order to achieve the same 
statistic of the fault locations. 

V. EXPERIMENTAL RESULTS 

 We implemented three different applications. Vector_Add 
kernel presents high data-intensive operations, thus each 
operand should use the RF for temporary storage. On the other 
hand, other two applications (FFT, Edge-Detection-Sobel) are 
based on different combinations of multiple path execution 
(divergence) and data operations. Each kernel program was 
developed, compiled in CUDA-C with SM_1.0 and adapted to 
the supported FlexGrip instruction set. The same CUDA-C 
codes have been compiled with compatibility 3.0 for Pascal. 
Table I introduces the major operation features of the selected 
applications. Please note that the execution cycles of the Pascal 
GPGPU, settled to execute the code on 32 cores, are around 
15% shorter than FlexGrip benchmark code. This is due to two 
aspects: the former is the optimized CUDA assembly obtained 
by the 3.0 compiler versus the 1.0, the latter can be related to 
the small difference of instruction set used for FlexGrip that 
results in longer application code. 
 

TABLE I. BENCHMARK APPLICATION CHARACTERISTICS ON FLEXGRIP AND 

PASCAL GPGPUS. 

 

Benchmark 

Code 

size 

(Words) 

.SASS 

Instructions 

Execution 

time 

(cycles) 

Configuration 

(SP cores) 

 
FlexGrip 

FFT 334 174 584,265 32 

Edge Det. 712 373 688,305 32 

VectorAdd 18 12 28,565 32 

 

Pascal 

FFT 282 136 496,452 32 

Edge Det. 656 327 585,021 32 

VectorAdd 16 10 25,534 32 

 
During experiments, two main elements were considered: 

the location and the injection time. The SEU location is 
composed of the registers and memory elements employed by a 
benchmark during its execution. The locations were carefully 
checked and selected during the golden execution and were 
used to instrument the SASSIFI fault injection on the Pascal 
GPGPU. The SEU injection time considers the time intervals in 
the kernel execution on FlexGrip. Those time intervals are 
configuration, execution, global-memory storage and kernel 
termination. The SEU injection range, by definition, does not 
consider kernel configuration and memory storage but only 
corresponds to the execution interval. 

In the fault campaign, one SEU injection time (i.e., one 
clock cycle) is selected randomly from the SEU injection range 
for each SEU location. The fault campaigns were performed on 
the targeted modules considering a TLP configuration of 32 SP 
cores and two thread distribution configurations: Config. A 
distributes every benchmark with 32 threads and two blocks 
per grid; Config. B uses 64 threads per block and one block per 
grid. 

The fault injection results demonstrated similarity between 
the FlexGrip GPGPU and the Pascal embedded GPGPU. The 



FFT results show a slight increment in the SDC error rate when 
increasing the number of threads per block in the benchmarks. 
This behavior has a direct relation with the kernel execution 
time for each configuration. In principle, the data stored in an 
active register for a long time are more exposed to SEU effects 
(Config. B) than registers with multiple write and read 
activities (Config. A). In the experiments, the Config. A 
required a longer execution time. Nevertheless, the effective 
block execution time is lower than for Config. B. Moreover, 
FFT in the Config. A uses half of the registers of the Config. B 
and employs them to process threads, in different interval 
times, belonging to different blocks. 

0 20 40 60 80 100

B32-Pascal

A32-Pascal

B32-FlexG

A32-FlexG

Vector Add

Silent Time Out DUE SDC

0 20 40 60 80 100

B32-Pascal

A32-Pascal

B32-FlexG

A32-FlexG

Edge Detection

Silent Time Out DUE SDC  

0 20 40 60 80 100

B32-Pascal

A32-Pascal

B32-FlexG

A32-FlexG

FFT

Silent Time Out DUE SDC  

Fig. 2.  SEU injection on FlexGrip model and Pascal embedded GPGPU. 

VI.  CONCLUSIONS AND FUTURE WORKS 

 In this paper, we presented a hardware model of an 
embedded GPGPU with an extended ISA architecture able to 
provide compatible results with modern GPGPU architectures. 
Despite the fact that the developed extended FlexGrip model 
does not exactly match the architecture of the most recent 
GPGPU devices we were able to demonstrate its similar 
behavior regarding SEUs within user register resources. The 
performed SEU fault injection experiments executed with the 
simulation environment on the FlexGrip and with SASSIFI on 
the Pascal GPGPU provide fully compatible results. Three 
benchmark applications have been compiled with the 
respective architecture.  
 As future works, we plan to implement the enhanced 
FlexGrip model on Flash-based FPGA in order to have a 
similar technology behavior and study the influence of SETs 
and SEUs during a radiation test campaign.  
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