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Abstract1—General Purpose Graphics Processing Units (GPGPUs) 

have been used in the last decade as accelerators in high 

demanding data processing applications, such as multimedia 

processing and high-performance computing. Nowadays, these 

devices are becoming popular even in safety-critical applications, 

such as autonomous and semi-autonomous vehicles. However, 

these devices can suffer the effects of transient faults, such as 

those produced by radiation effects. These effects can be 

represented in the system as Single Event Upsets (SEUs) and are 

able to generate intolerable application misbehaviors in safety-

critical environments. In this work, we extended the capabilities of 

an open-source VHDL GPGPU model (FlexGrip) in order to 

study and analyze in a much more detailed manner the effects of 

SEUs in some critical modules within a GPGPU. Simulation 

results showed that the scheduler controller has different levels of 

SEU sensibility depending on the affected location. Moreover, a 

reduced number of execution units, in the GPGPU can decrease 

the system reliability. 

Keywords—Fault simulation, Functional safety, GPGPUs, SEUs 

SEUs, Transient faults. 

I. INTRODUCTION 

In the last decade, GPGPUs have been used as accelerators 
in highly demanding data processing applications including 
multimedia processing and high-performance computing. 
Nowadays, these devices are increasingly adopted in several 
data-intensive safety-critical applications, such as autonomous 
and semi-autonomous cars [1]. These devices are manufactured 
employing aggressive technology scaling techniques in order to 
satisfy performance and energy requirements. Nevertheless, 
some studies have shown that these advanced semiconductor 
technologies are prone to suffer from external transient radiation 
effects [2-5]. These effects can be represented as Single Event 
Upsets (SEUs) and may generate intolerable misbehaviors in 
safety-critical environments.  

In real devices, the impact of SEU effects is analyzed 
through radiation experiments in special facilities using 
complex and expensive equipment. Other methods include 
programming environments to inject soft-errors in the 
application code [6]. However, in both cases, detailed structural 
information about the device architecture and implementation 
are, commonly, unknown and detailed analysis of the fault 
effects is complex to perform. Moreover, the injection tools are 
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helpful in targeting data-path modules, but these cannot inject 
faults in most control-path units. 

In both cases, results are employed to assess device 
reliability or to identify structural or application weaknesses. 
Moreover, results are also employed to design mitigation 
strategies [7]. Potential solutions may include acting on the 
program coding style and on the application algorithm [8]. 

A detailed analysis could be crucial to choose the most 
suitable countermeasures to achieve given reliability and can 
provide some guidelines in the application development. 
Moreover, it contributes to identifying critical modules and the 
incidence of faults on the application failure rate. 

Solutions to perform those analyses are based on fault 
injection via simulation on representative models at various 
abstraction levels. In the GPGPUs field, there are relatively few 
available models and fault injectors. Moreover, most of them 
are described using a high abstraction level [9-14] or a mix of 
them [15], thus foiling a complete and detailed analysis of SEU 
effects on complex units such as control-path modules. On the 
other hand, there are a few Register-Transfer-Level (RTL) 
behavioral GPGPU models, such as and FGPU [16] and 
FlexGrip [17], which can be used to analyze the SEU effects in 
these special-purpose modules. Unfortunately, FGPU was 
designed using a new microarchitecture and it is not closely 
related to commercial devices, thus limiting the analysis 
conclusions in real devices. On the other hand, FlexGrip 
implements a commercial microarchitecture with some 
technology dependency restrictions. Moreover, this model has a 
limited set of supported instructions, thus limiting the 
development of new applications which could support the 
detailed analysis mentioned above. 

In the work reported in this paper, we first performed a 
detailed analysis of the FlexGrip model in order to remove 
some of these limitations and bugs. Moreover, we developed a 
new release version which has no direct dependency on a 
technology platform and is able to execute an increased set of 
instruction formats compatible with commercial compilers.  

Using the new model, some representative applications were 
designed and used as benchmarks for SEU fault injection 
campaigns. Finally, results were analyzed describing the effect 
of SEUs in some critical data-path and control-path modules. 
Fault campaigns employed multiple application parameters and 
GPGPU configuration modes. 

The paper is organized as follows: Section II summarizes 
the FlexGrip model and the improvements introduced in its new 
version. Section III presents the fault injection methodology, the 



targeted modules, and the selected benchmarks. Section IV 
reports some experimental results, and Section V finally draws 
some conclusions and future works. 

II. FLEXGRIP GPGPU MODEL 

A. FlexGrip architecture 

FlexGrip is an open source soft-GPGPU model described in 
VHDL developed by the University of Massachusetts [17] 
employing the Nvidia’s G80 microarchitecture. This model is 
compatible with the CUDA programming environment under 
the 1.0 architecture. 27 instructions are supported by the model. 
The model was originally designed to be synthesized for Xilinx 
FPGAs platforms. 

This GPGPU model is based on a Streaming Multiprocessor 
(SM) including a memory system and two schedulers (Block 
and Warp). The block scheduler is employed to manage and 
distribute the block tasks among the SMs. The Warp scheduler 
is used to control the execution of the group of 32 threads tasks 
denoted as warp. Both schedulers employ a round-robin 
algorithm. The SM is composed of five pipeline stages (Fetch, 
Decode, Read, Execute and Write-back) to process warp 
instructions, see Fig. 1. The total number of execution units 
(Scalar Processors, or SPs) in the execution stage is selectable 
before synthesis and can be used to select the best performance 
and power consumption of the GPGPU. The SP 
programmability can be selected among 8, 16 and 32 cores. 

The procedure to execute a warp instruction on the SM 
starts when the warp scheduler selects one available warp and 
dispatch one instruction address to the fetch stage. The Fetch 
stage processes the address and finds the equivalent instruction. 
The Decode stage interprets the instruction formats and selects 
the required execution units and memory operands. The Read 
stage loads from the memory system the required operands. 
Then, the Execution stage processes the warp instructions 
employing parallel execution units and temporary registers for 
each thread. The Write-back stage stores the results in registers 
or memory locations. Finally, a new instruction is dispatched by 
the warp scheduler.  

This model includes a custom branch management unit for 
thread (intra-warp) divergence. This module is composed of a 
control unit and a divergence stack memory to store the 
addresses of warp convergence points. This model supports up 
to 32 levels of divergence.  

 

Fig 1. The general scheme of the SM in the FlexGrip model. Adapted from [17]. 

Although the FlexGrip model implements the NVIDIA’s 
G80 architecture, this architecture includes the micro-
architectural basics and modules which are still present in 
modern GPGPU architectures, such as basic thread and block 
management methods, integer execution units, memories 
hierarchy, intra-warp divergence, and pipeline stages. Besides, 
the supported instructions are basically executed in the same 
fashion on modern architectures, thus faulty analysis of this 
model may have similarities with modern GPGPU devices. 

B. Improvements in the FlexGrip GPGPU model 

The improvements we introduced in the model allow us to 
analyze transient fault effects on internal modules. Moreover, 
these modifications simplify and increase the flexibility of the 
model in the development of new applications. 

The original GPGPU model was designed to be 
implemented in a particular technology and execute a 
predefined set of applications. Nevertheless, a detailed analysis 
of each internal module showed some limitations. Moreover, 
the development of new applications revealed some restrictions 
in the supported instruction formats. The improvements we 
introduced can be divided into three groups: 

- Technology dependency 

- Instruction format support and  interconnection among sub-

modules 

- Compiler restrictions. 

1) Technology dependency 

FlexGrip was originally designed for FPGA implementation 
on specific technologies. Moreover, some internal modules 
were automatically described employing high-level compilation 
tools, such as Matlab and Vivado. However, these descriptions 
are not easily understandable and cannot be analyzed in an easy 
manner. 

We modified each module by removing any reference to 
specific technology libraries and compilation tools dependency 
and replacing them with equivalent generic descriptions. 
Moreover, the name of the signals and interconnections was 
clarified in order to simplify the analysis during the fault 
campaigns. In the end, 38.8% of the modules were corrected or 
modified in order to remove the technology dependency. The 
model can now be imported in model simulation environments, 
such as ModelSim. Moreover, this can be synthesized 
employing other technology libraries, such as the ASIC 
OpenCell [18] library. 

2) Instruction format support 

FlexGrip design was compiled employing some high-level 
Electronic design automation (EDA) tools and some unused 
instruction formats were removed. Thus, internal modules, such 
as intermediate registers, decoding logic, and interconnections 
were not fully described by optimizations in those tools. These 
optimizations reduce the model flexibility limiting the 
development of new applications. 

The previous behavior was checked during the development 
of custom applications employing the CUDA-toolkit 
environment. In the new applications, some instructions failed 
during execution. Exhaustive analysis and revisions were 
performed on the simulation traces. However, in some cases, the 
analyzed signals behavior showed that some supported 
instructions were only partially implemented. This restriction 
limits the transient fault analysis and its incidence under 
different applications. Moreover, those restrictions limit the 
model flexibility and its potential employability. 

The improvement reported here required a methodical 
revision of all supported assembly instructions (SASS) in 
FlexGrip and the addition or correction of the missing 
description to implement the instruction under the expected 
format. 

As the SASS op-code, i.e., the instruction formats for the 
GPGPU, has not been released by Nvidia, the op-code format of 
some instructions was decoded employing the CUDA 
compilation tools (NVCC and CUOBJDUMP) through design 



of multiple applications targeting the selected instruction in 
order to force the compiler to generate the expected instruction 
op-code. Then, the missing register, connections or incomplete 
modules were carefully corrected in order to support all the 
potential instruction format variations. After this process, the 27 
supported instructions were revised and 74 formats are 
supported.  

Table 1, 2 and 3 introduce the arithmetic and logic 
instructions, the data handling, and memory instructions and the 
control-flow instructions, respectively. In Table 1, 
COMP_TYPE refers to comparison type and it depends on the 
predicate flag generated by an arithmetic or logic operation. In 
Table 3, COND parameters refer to predicate conditions. g[] 
and c[0x1][] correspond to shared memory and constant 
memory locations, respectively. 

TABLE 1. SUPPORTED ARITHMETIC AND LOGIC SASS INSTRUCTIONS. 

Mnemonic Description The revised format in the improved version 
I2I Integer to integer 

conversion 

I2I.U32.U16/S16  RZ, RX(L|H) / g[].U16 

I2I.U32.S32 RZ, |RX| / -RX 

I2I.U32.U16.BEXT RZ, RX(L|H) / g[].U8 

I2I.S32.S16.BEXT RZ, RX(L|H) / g[].S8 

IMUL/ 

 
 

IMUL32/ 
 

IMUL32I 

Integer 

multiplication 

IMUL.U16.U16 RZ, RX(L|H) / g[].U16, RY(L|H) 

IMUL.S16.S16 RZ, RX(L|H) / g[].S16, RY(L|H) 
 

IMUL32.U16.U16 RZ, RX(L|H) / g[].U16, RY(L|H) 
 

IMUL32I.U16.U16 RZ, RX(L|H), Imm 

IMUL32I.S16.S16 RZ, RX(L|H), Imm 

SHL Shift left SHL RZ, RX, RY / Imm 
SHL RZ, g [], Imm 
SHL.U16 RZ(L|H), RX(L|H), Imm 

SHR Shift right SHR.S32 RZ, RX, RY / Imm 
SHR.S32 RZ, g [], Imm 
SHR.U16 / S16 RZ(L|H), RX(L|H), Imm 
SHR RZ, g[], Imm 
SHR RZ, RX, RY / Imm 

IADD/ 

 

 
 

IADD32/ 

 

 
 

IADD32I 

Integer add IADD RZ, RX / -RX, RY 

IADD RZ, g[], RX /  -RX 

IADD RZ, RX, c[0x1][] 
 

IADD32 RZ, RX, RY / -RY 

IADD32 RZ, g [0x..], RX / -RX 

IADD32.U16 RZ(L|H), RX(L|H), RY(L|H) / -RY(L|H) 
 

IADD32I RZ, RX / -RX, Imm 

IADD32I RZ, g[], Imm 

IMAD/ 

 

 
 

IMAD32/ 
 

IMAD32I 

Integer multiply 
and 
Add 

IMAD.U16/ S16  RZ, RX(L|H), RY(L|H), RW 
IMAD.U16/ S16 RZ, RX(L|H), c[0x1][], RY 
IMAD. RZ, RX(L|H), c[0x1][], RY 
 

IMAD32.U16 RZ, RXL|H, RYL|H, RZ 
 

IMAD32I.U16/ S16 RZ, RX(L|H), Imm, RZ 

LOP Bitwise logical 

Operation 

LOP.AND/OR/XOR/PASS_B RZ, RX/ g[], RY  
LOP.AND/OR/XOR/PASS_B RZ, RX, c[0x1] [] 

LOP.U16.AND/OR/XOR/PASS_B RZ(L|H), RX(L|H), 

RY(L|H) 

ISET Integer 
comparison 

ISET RZ, RX, RY / c[0x1][], COMP_TYPE 
ISET RZ, g[], RX, COMP_TYPE 
ISET.S32 RZ, RX, RY / c[0x1][], COMP_TYPE 

ISET.S32 RZ, g[], RX, COMP_TYPE 
 

TABLE 2. SUPPORTED DATA HANDLING AND MEMORY SASS INSTRUCTIONS. 
Mnemonic Description The revised format in the improved version 

MVC Load from constant 
memory 

MVC RX, c [0x1] [] 

GLD Load from global 
memory 

GLD.U32|U16|S16|U8|S8 RZ, global14[] 

GST Store to global 
Memory 

GST.U32|U16|S16|U8|S8 global14[], RX 

MOV/ 

 

 
 

MOV32 

Move register to 
register/load from 
shared memory 

 
 

MOV RZ, RX / g[] 
MOV.U16 RZ(L|H), RX(L|H) / g[].(U16|U8) 
 
 

MOV32 RZ, RX / g[] 
MOV32.U16 RZ(L|H), RX(L|H) 

MVI Move immediate to 
destination 

MVI RX, Imm 

R2G Store to shared 
Memory 

R2G.U32.U32 g [], RX 
R2G.U16.U16 g [], RXL|H 
R2G.U16.U8 g [], RX 

R2A Move general purpose 
register to address 

register 

R2A AX, RX 

A2R Move address register 
to general purpose 

register 

A2R RX, AX 

 

4.8% of the whole model description required an addition or 
modification in its description to execute the expected 
instruction formats and its variation. Finally, some bugs and 
unused interconnections were removed from the project 

hierarchy in order to clean the modules and remove any 
redundant logic which may create problems during the fault 
campaigns. 

TABLE 3. SUPPORTED CONTROL-FLOW SASS INSTRUCTIONS. 
Mnemonic Description The revised format in the improved version 

BRA Branch BRA CX.COND Imm 
BRA Imm 

BAR barrier 
synchronization 

BAR.ARV.WAIT b0, 0xFFF 

RET Return from kernel RET 
RET CX.COND 

SSY Set synchronization 
point 

SSY Imm 

NOP No operation NOP  

NOP.S 
 

3) Compiler restrictions 

FlexGrip is able to execute applications compiled employing 
the CUDA-toolkit by NVIDIA. Moreover, an SM 1.0 micro-
architectural compatibility must be selected. However, the 
CUDA compiler is protected and, as commented below, the op-
code of the instructions is not released. 

In multiple attempts to design new applications for FlexGrip 
we discovered several SASS instructions not supported by the 
model, so in order to maintain the compatibility with the 
CUDA-toolkit, a SASS checker tool was developed to check the 
supported SASS instruction formats, presented in Tables 1, 2 
and 3. This tool is able to identify and notify the user of those 
unsupported instructions formats in FlexGrip. Most of them are 
generated by the compiler when the kernel includes arithmetical 
operations (division, transcendental, and format conversions), 
control-flow instructions (call and return from subroutines, and 
conditional breaks) and S2R (special register to register 
movement) instructions. 

Additionally, a SASS parser tool was designed to directly 
write SASS assembly instructions and replace the unsupported 
ones. Using both tools, a new application can be designed, 
verified and corrected without the need of executing the 
instructions in the model, thus reducing the application time 
development. Sub-section III.C introduces three benchmarks 
developed for FlexGrip employing these tools. 

III. FAULT INJECTION METHODOLOGY 

In order to evaluate the effect of SEUs in the improved 
version of the FlexGrip model, we developed a fault injection 
tool employing the ModelSim framework. The injector tool was 
designed following the guidelines introduced in [19] regarding 
transient fault injection in behavioral models using the simulator 
commands. Additionally, the tool implements techniques to 
reduce the fault simulation time (multi-thread fault simulation 
and module de-rating factor (UDR) usage). Details about these 
techniques can be found in [20, 21]. 

The fault injector was developed employing a high-level 
language (Python) and is composed of a fault controller, a fault 
injector and a fault checker and classifier. The fault controller 
manages the fault campaign execution and it is able to start and 
finish the tool execution. 

Initially, the fault controller configures the program kernel 
parameters, loads the FlexGrip model into the ModelSim 
environment and the program instructions to be executed. The 
kernel parameters include the number of SP-Cores presented in 
the SM, the total number of blocks and threads in the task, the 
total number of blocks per SM and the file register size. 

Once the model is loaded in the simulator, the fault 
controller starts the fault injector and this loads and decodes the 
fault to be injected into the GPGPU model. The fault injector 
reads, from a fault list, the location and the injection time of the 



fault. Then, the injector translates those parameters into the 
equivalent commands for ModelSim. The tool is able to handle 
permanent and transient faults. For the purpose of this work, we 
employed the transient fault capabilities of the designed tool. 
One fault simulation is performed for each element in the fault 
list, once the fault is injected in the model. 

Finally, the fault checker and classifier waits for simulation 
termination and checks memory results and simulation time 
parameters in order to classify the effects of the fault in the 
system. This unit classifies the faults in four categories: Silent 
Data Corruption (SDC) when the SEU affects the memory 
results, Detected Unrecoverable Error (DUE) when the model 
is hanged by the SEU effect, Timeout when the SEU produces 
performance degradation in simulation time and Silent when the 
SEU does not generates any effect. 

A. Fault campaign description 

In SEU fault injection campaigns, two elements are 
considered: the SEU location and the SEU injection time. The 
SEU location depends on the fault universe and spans over the 
registers and memory elements employed by a benchmark 
during execution time on each targeted module. The fault 
universe was carefully checked and selected through a golden 
execution. The injection time for each fault is randomly chosen. 

A fault campaign starts with a golden simulation to define 
the reference execution time and the reference memory results. 
Then, the fault controller starts a loop in which this unit loads 
the fault list and the fault injector applies the equivalent 
command in the simulation model. The simulation time is 
selected as twice the reference execution time in order to allow 
the tool to detect timeout effects. Moreover, the model is 
instrumented with a memory generator which stores the 
memory results into a file for each simulation. The fault checker 
checks the presence of this file and performs the classification 
phase. Finally, a new fault is loaded for the fault list and the 
simulation loop starts again. The fault injection campaign 
finishes when the fault list is empty. 

The multi-thread fault injection approach is employed in the 
tool by dividing the fault list in chunks of faults. Each fault list 
is composed of the SEU fault location (signal name) and the 
SEU injection time.  

B. Targeted modules 

One Data-Path and two Control-Path modules were targeted 
during fault campaigns. Their characteristics are briefly 
described in the following: 

1) Data-path module 

File Registers: The 32 bit-size registers are employed as 
source and destination operands and addresses during a warp 
instruction execution. These registers are organized and 
distributed according to the total number of warps and blocks to 
be executed in an SM. 

2) Control Path modules 

SM Warp Scheduler: The warp scheduler manages the warp 
execution inside an SM. This unit is able to select an available 
warp, dispatch the warp instruction to the SM and check its 
execution. This module is composed of various memories and 
control logic. The internal warp memory is employed to store 
the status information of each warp execution. This information 
is updated after each instruction execution and is composed of 
the active thread mask (aTM), the actual program counter and 
some additional warp configuration parameters. 

Divergence Stack memory: This unit stores the divergence 
addresses generated by a divergent warp. A special-purpose 
memory stores the address, warp index and aTM to trace the 
number of executed threads on each divergence path. 

C. Benchmarks 

Three applications were developed for the improved version 
of FlexGrip to evaluate the SEU effects on the targeted 
modules. They are briefly described in the following. 

FFT: This typical signal processing application was 
implemented based on the Coley-Turkey algorithm [22]. In this 
application, the butterfly element was described employing the 
CUDA-C environment. Although the model does not provide 
support for division operations, they were replaced by a 
software approach based on logarithm methods using shift and 
logical displacements. 

Edge detection: This common image processing application 
is based on the Sobel algorithm and was programmed with a 
3x3 size dimensions stencil element. The stencil describes an 
image filter and it is applied to a 2-dimensions input. As 
described below for FFT, the division operations are 
implemented employing the same logarithmic approach. 

Vector add: This typical embarrassingly parallel application 
operates on two individual arrays and stores the result in a 
specified memory area. This program kernel is selected 
considering that most applications include execution segments 
with fully data-parallel operations. This application employs 
data-path modules and execution units to process the operations. 

IV. EXPERIMENTAL RESULTS 

The fault campaigns considered two different sets of 
parameters, the GPGPU model configuration, and the 
benchmark configuration. The GPGPU model was configured 
employing 8, 16 and 32 SP-cores. Moreover, the benchmarks 
were configured with two application threads per block (TPB) 

distributions: A 32 threads and B 64 threads. Benchmarks 
under each configuration are named as follow: benchmark 
name, thread configuration, SP-cores configuration. For 
example, VectorAdd with 32 TPB and 16 SP-Cores is named as 
V_32_16. 

A simplified version of the Mean Workload Between 
Failures (MWBF) metric introduced in [23] was employed to 
correlate the number of detected faults, the faults applied, the 
benchmark execution time, and the data processed for every 
benchmark. This metric represents the correctly executed 
workload on each application before experiencing a fault. Thus, 
a higher MWBF means higher fault reliability. It is worth noting 
that, DUE errors are not considered in the MWBF computation. 
The SM warp Scheduler was divided into two parts (memory, 
and logic). Table 3 reports the gathered results, expressed in 
terms of clock cycles. 

TABLE 3 MWBF RESULTS (PROCESSED BYTES PER CLOCK CYCLES) 
 FFT EDGE Vector Add 

Module 

    Config 

SP- 

Cores 

A B A B A B 

File 

register 

32 7.6 11.5 22.0 43.5 139.2 111.6 

16 5.6 6.8 16.4 34.3 79.7 83.9 

8 3.7 8.5 10.6 40.1 57.0 60.2 

Warp 

memory 

32 565.4 766.2 2,570.7 12,468.5 16,163.7 2,208.1 

16 1,695.9 33.6 974.1 220.7 2,165.9 585.0 

8 570.3 7.5 174.5 81.8 361.1 194.7 

Warp logic 

32 102.2 140.1 210.4 780.5 1,766.9 1,985.3 

16 34.3 85.6 285.4 186.9 970.7 1,083.9 

8 20.0 25.4 104.7 84.8 615.7 640.7 

Divergence 

Stack 

memory 

32 399.8 259.9 2,688.4 2,158.0 - - 

16 269.1 155.7 1,903.3 1,084.2 - - 

8 207.6 63.7 1,338.1 390.6 - - 
 



In the target modules, the SEU sensitivity depends on the 
SP-cores configuration. Thus, dropping the number of SP-cores 
reduces the reliability of the system. This behavior is constant 
for each module and kernel configuration. The file register is 
more reliable to SDC and timeout errors by increasing the TPB. 
In contrast, the divergence stack, the warp logic, and the warp 
memory seem to be more reliable with kernels configured with 
a lower number of TPB. A detailed analysis for each module is 
provided in the following sub-sections. 

A. Data-Path module results 

1) Register File Results 

27 multi-thread fault injection campaigns were performed 
injecting 34,816 faults for the FFT and Edge programs. For 
VectorAdd, 10,240 faults were injected in 32-SP cores and 
8,192 faults in the 16- and 8-SP cores configurations. The fault 
list was divided into ten parts and fault simulations were 
performed in parallel reducing the fault simulation time from 
about 150 hours to less than 16 hours. UDR factor also reduces 
the total amount of faults to inject in up to 95%. 

Results in Fig. 2 shows that FFT and Edge benchmarks 
present a similar behavior. In both cases, the error rate reduces 
by increasing the number of SP-cores and by increasing the 
number of TPB. In FFT, a slight increment in the SDC error-
rate is generated by increasing the TPB. This behavior can be 
explained through the relation of the model execution time and 
kernel configuration. In principle, data stored in active registers 
for long periods are more prone to SEU effects (case B) than 
registers with periodical write and read activity (case A).  

  

 

Fig. 2.  Register File results for FFT (a), VectorAdd (b) and Edge (c) kernels. 

In simulations, the A configuration models required longer 
execution time. However, the individual block execution time is 
lower than the time required by B configurations. Moreover, 
FFT in A configuration uses half of the registers of those 
employed in B configuration and employs them to process 
threads data, in different interval times, belonging to different 
blocks. In this case, the increment in TPB increases the SDC 
error rate, as it happens in the 32 and 16-SP cores 
configurations. 

Another factor affecting the error rate is the instruction type. 
FFT includes control-flow instructions depending on predicate 
conditions, which are generated evaluating register operands. 
Thus, some registers are included in control-flow operations. 
Those registers can be considered as control-flow critical 

registers (CFRs). If an SEU fault affects one of these CFRs, 
most of the effects are reflected as DUE. 

According to results, a higher number of CFRs is generated 
by decreasing the TPB. This can be explained considering the 
registers employed in the A configuration and the CFRs mapped 
among threads with the same address locations. During kernel 
execution, one register location will store, in different time 
intervals, data belonging to two CFRs, increasing the 
probability to generate a DUE. 

A different behavior is shown by the Vector_Add 
benchmark. An increment in the TPB corresponds to an 
increase in the SDC error rate. This trend is visible for all SP-
cores configurations and depends on the increased SEU 
sensibility due to the additional time required by the SM to 
dispatch other warps belonging to the same block. Moreover, 
the execution time to process an instruction under a large 
number of threads (B configuration) is the double of a block 
with fewer threads (A configuration). Additionally, SEU effects 
slightly increase by reducing the SP-core configuration. This 
behavior can be explained by the additional time employed by 
the scheduler to process one instruction, of each thread, with the 
limited number of SP cores. The number of SEU faults 
generating DUE and Time-Out effects is zero as this application 
does not use any control-flow instruction. 

In the Edge benchmark, we can observe an inverse 
relationship between the SDC error rate and the TPB. This 
behavior is visible in each SP-Core configuration. It can be 
explained noting that this kernel includes a large number of 
control-flow, divergence generation, and arithmetic-intense 
instructions. Regarding the DUE error rate, results also show an 
inverse relation between TPB and the error rate. This can be 
explained due to the SEU sensibility of CFRs. Results (Edge 
Detection and FFT) are similar to those shown in [19] for 
control-flow applications. 

B. Control-Path results 

1) Warp Scheduler results 

36 fault campaigns were performed targeting this module. 
The model flexibility allows us to divide the module into two 
parts for analysis purposes: the internal memories (Warp, State, 
and Predicate) and the sequential logic components in the 
module. Results are presented in Fig 3. 

At first glance, results contradict the criticality of this module in 
the GPGPU operation. Nevertheless, a deep analysis of its 
architectural organization and the role employed by the 
scheduler helps to clarify results meanings. 

The error rate in the sequential logic is caused by the SEU 
sensibility and criticality of the internal registers employed in 
processing and storing the warp information. Although the 
sequential logic corresponds to 14.3% of the elements in the 
scheduler controller, the percentage of DUE effects lies in a 
range between 85% and 92% in all kernels. It means that errors 
in those registers directly compromise kernel termination. 

The unexpectedly low fault error rate in the warp memory is 
caused by a loop existing between the scheduler and the SM 
pipelines stages. This loop helps to mask and reduce SEU 
effects in memory since affected information is presented 
simultaneously in the pipeline registers and in the targeted 
memory. After each instruction execution, this memory is 
written (refreshing the information) and correcting any SEU. 
Moreover, this special memory allows performing the write and 
read process in a few clock cycles, during a new instruction 
load, reducing the error propagation. SEU effect on the state and 
predicate memories is zero for the selected benchmarks. 

a) b) 

c) 



Results show that increasing the TPB raises the SDC and 
DUE error rate. The program, under the B Configuration, uses 
more memory locations and requires the execution of two warps 
to process one instruction including warp line exchange. This 
exchange generates a temporary short in the loop and the 
memory location cannot correct any SEU. 

  

  

   
Fig. 3.  Warp Scheduler results in warp memory (a, c and e) and sequential 
logic (b, d, and f) for FFT (a, c), VectorAdd (b, d) and Edge (e, f) benchmarks. 

A reduction in SP-Cores produces a direct increment in the 
error rate. It can be explained by the additional work performed 
by the scheduler (twice and four times) for thread execution in 
the 16 and 8 SP-Cores configurations. 

2) Divergence Stack memory 

Vector_Add program was not considered in the fault 
campaigns because this kernel does not use the Divergence 
Stack memory. Multi-thread fault campaigns with 50,688 faults 
were performed for the FFT and Edge benchmarks. Results are 
presented in Fig. 4. These show that the divergence stack 
memory does not generate a relevant contribution to the error 
rate by SEU effects. This behavior is explained by the partial 
usage during kernel execution. Each memory location (line) is 
employed for the time fraction of a divergence generation. 
Thus, each line has a different SEU sensibility. A detailed 
inspection to this unit, for both kernels, revealed that its usage is 
limited to less than two-thirds of the total simulation time. 
Moreover, each additional pushed line presents fewer activities 
generating a low SEU sensibility in this unit. 

The difference in terms of error rate between the two 
benchmarks is explained analyzing the instructions, its 
description, and the divergence paths length. Moreover, the 
number of synchronization point instructions (SSY) determines 
the usage of each memory location. Edge kernel uses seven 
independent SSY instructions with a short path length and 
seems to be reliable to SEU effects. In contrast, FFT includes 

two SSY instructions and long divergence paths. This long 
interval time between writing and reading seems to increase the 
SEU sensitivity. 

 
Fig.  4. Divergence stack result for FFT (left) and Edge (right) benchmarks.  

Regarding the DUE and SDC error rates, they depend on the 
affected location. The difference, for both applications, is 
mainly caused by the ability of the program counter and mask 
fields to generate hang conditions. An SEU in the program 
counter may generate Timeout or DUE errors. Similarly, the 
effect in the aTM may generate SDC, by inactive threads, or 
DUE effects, by threads missing the taken path. Finally, an SEU 
in the warp ID field generates Timeout effects. 

The model with A Configuration uses the same lines in the 
divergence stack, but these lines are employed in different time 
slots and the execution time per block is lower than that 
required in B Configuration. The additional time in B 
Configuration seems to be responsible for the increasing SEU 
sensitivity. A decrement in TPB could help to reduce, in more 
than twice, the SDC error rate. 

V. CONCLUSIONS 

We introduced an improved version of the open source 

GPGPU model FlexGrip. This detailed model description was 

crucial to explain the behavior observable in the control unit 

modules when are affected by transient faults. Although the 

FlexGrip model does not completely match the architecture of 

the most recent GPGPU devices, we still claim that the 

performed analysis may be valid for some of them as well. The 

new model version is technology independent. Moreover, each 

instruction was checked and the supported formats were listed. 

Additionally, further tools have been implemented to provide 

assistance in the development of new applications employing 

the CUDA environment. 

SP-cores customization in the model could be useful for area 

and energy optimization. However, according to Table 3, a 

lower number of SP-cores increases the SEU sensibility and 

reduces system reliability. We performed several fault injection 

campaigns to analyze the effects of SEUs in different modules 

within the GPGPU with different applications. The results 

showed that the behavior of the error rate (measured via the 

MWBF metric) when changing the configuration parameters 

depends on the application. Thanks to the availability of the 

FlexGrip model, we provided explanations about the observed 

phenomena.  

VI. FUTURE WORKS 

We are currently working to extend the analysis of the SEU 

effects to other modules within the GPGPU architecture 

employing different program kernel characteristics. 

We also plan to extend the instruction and hardware support 

of FlexGrip model following the SM 1.0 microarchitecture 

compatibility. Moreover, new execution units, such as floating 

point units are also potential extensions for the model. The 

a) 

c) 

e) 

b) 

d) 

f) 



support to different warp scheduler controller algorithms is also 

planned as future work. 
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