
An extended GPGPU model to support detailed

reliability analysis

Josie E. Rodriguez Condia†, Matteo Sonza Reorda‡,

Politecnico di Torino, Dept. of Control and Computer Engineering, Torino, Italy

{†josie.rodriguez, ‡matteo.sonzareorda}@polito.it

Abstract1—General Purpose Graphics Processing Units (GPGPUs)

have been used in the last decade as accelerators in high

demanding data processing applications, such as multimedia

processing and high-performance computing. Nowadays, these

devices are becoming popular even in safety-critical applications,

such as autonomous and semi-autonomous vehicles. However,

these devices can suffer the effects of transient faults, such as

those produced by radiation effects. These effects can be

represented in the system as Single Event Upsets (SEUs) and are

able to generate intolerable application misbehaviors in safety-

critical environments. In this work, we extended the capabilities of

an open-source VHDL GPGPU model (FlexGrip) in order to

study and analyze in a much more detailed manner the effects of

SEUs in some critical modules within a GPGPU. Simulation

results showed that the scheduler controller has different levels of

SEU sensibility depending on the affected location. Moreover, a

reduced number of execution units, in the GPGPU can decrease

the system reliability.

Keywords—Fault simulation, Functional safety, GPGPUs, SEUs

SEUs, Transient faults.

I. INTRODUCTION

In the last decade, GPGPUs have been used as accelerators
in highly demanding data processing applications including
multimedia processing and high-performance computing.
Nowadays, these devices are increasingly adopted in several
data-intensive safety-critical applications, such as autonomous
and semi-autonomous cars [1]. These devices are manufactured
employing aggressive technology scaling techniques in order to
satisfy performance and energy requirements. Nevertheless,
some studies have shown that these advanced semiconductor
technologies are prone to suffer from external transient radiation
effects [2-5]. These effects can be represented as Single Event
Upsets (SEUs) and may generate intolerable misbehaviors in
safety-critical environments.

In real devices, the impact of SEU effects is analyzed
through radiation experiments in special facilities using
complex and expensive equipment. Other methods include
programming environments to inject soft-errors in the
application code [6]. However, in both cases, detailed structural
information about the device architecture and implementation
are, commonly, unknown and detailed analysis of the fault
effects is complex to perform. Moreover, the injection tools are

1 This work has been partially supported by the European Commission through

the Horizon 2020 RESCUE-ETN project under grant 72232.

helpful in targeting data-path modules, but these cannot inject
faults in most control-path units.

In both cases, results are employed to assess device
reliability or to identify structural or application weaknesses.
Moreover, results are also employed to design mitigation
strategies [7]. Potential solutions may include acting on the
program coding style and on the application algorithm [8].

A detailed analysis could be crucial to choose the most
suitable countermeasures to achieve given reliability and can
provide some guidelines in the application development.
Moreover, it contributes to identifying critical modules and the
incidence of faults on the application failure rate.

Solutions to perform those analyses are based on fault
injection via simulation on representative models at various
abstraction levels. In the GPGPUs field, there are relatively few
available models and fault injectors. Moreover, most of them
are described using a high abstraction level [9-14] or a mix of
them [15], thus foiling a complete and detailed analysis of SEU
effects on complex units such as control-path modules. On the
other hand, there are a few Register-Transfer-Level (RTL)
behavioral GPGPU models, such as and FGPU [16] and
FlexGrip [17], which can be used to analyze the SEU effects in
these special-purpose modules. Unfortunately, FGPU was
designed using a new microarchitecture and it is not closely
related to commercial devices, thus limiting the analysis
conclusions in real devices. On the other hand, FlexGrip
implements a commercial microarchitecture with some
technology dependency restrictions. Moreover, this model has a
limited set of supported instructions, thus limiting the
development of new applications which could support the
detailed analysis mentioned above.

In the work reported in this paper, we first performed a
detailed analysis of the FlexGrip model in order to remove
some of these limitations and bugs. Moreover, we developed a
new release version which has no direct dependency on a
technology platform and is able to execute an increased set of
instruction formats compatible with commercial compilers.

Using the new model, some representative applications were
designed and used as benchmarks for SEU fault injection
campaigns. Finally, results were analyzed describing the effect
of SEUs in some critical data-path and control-path modules.
Fault campaigns employed multiple application parameters and
GPGPU configuration modes.

The paper is organized as follows: Section II summarizes
the FlexGrip model and the improvements introduced in its new
version. Section III presents the fault injection methodology, the

targeted modules, and the selected benchmarks. Section IV
reports some experimental results, and Section V finally draws
some conclusions and future works.

II. FLEXGRIP GPGPU MODEL

A. FlexGrip architecture

FlexGrip is an open source soft-GPGPU model described in
VHDL developed by the University of Massachusetts [17]
employing the Nvidia’s G80 microarchitecture. This model is
compatible with the CUDA programming environment under
the 1.0 architecture. 27 instructions are supported by the model.
The model was originally designed to be synthesized for Xilinx
FPGAs platforms.

This GPGPU model is based on a Streaming Multiprocessor
(SM) including a memory system and two schedulers (Block
and Warp). The block scheduler is employed to manage and
distribute the block tasks among the SMs. The Warp scheduler
is used to control the execution of the group of 32 threads tasks
denoted as warp. Both schedulers employ a round-robin
algorithm. The SM is composed of five pipeline stages (Fetch,
Decode, Read, Execute and Write-back) to process warp
instructions, see Fig. 1. The total number of execution units
(Scalar Processors, or SPs) in the execution stage is selectable
before synthesis and can be used to select the best performance
and power consumption of the GPGPU. The SP
programmability can be selected among 8, 16 and 32 cores.

The procedure to execute a warp instruction on the SM
starts when the warp scheduler selects one available warp and
dispatch one instruction address to the fetch stage. The Fetch
stage processes the address and finds the equivalent instruction.
The Decode stage interprets the instruction formats and selects
the required execution units and memory operands. The Read
stage loads from the memory system the required operands.
Then, the Execution stage processes the warp instructions
employing parallel execution units and temporary registers for
each thread. The Write-back stage stores the results in registers
or memory locations. Finally, a new instruction is dispatched by
the warp scheduler.

This model includes a custom branch management unit for
thread (intra-warp) divergence. This module is composed of a
control unit and a divergence stack memory to store the
addresses of warp convergence points. This model supports up
to 32 levels of divergence.

Fig 1. The general scheme of the SM in the FlexGrip model. Adapted from [17].

Although the FlexGrip model implements the NVIDIA’s
G80 architecture, this architecture includes the micro-
architectural basics and modules which are still present in
modern GPGPU architectures, such as basic thread and block
management methods, integer execution units, memories
hierarchy, intra-warp divergence, and pipeline stages. Besides,
the supported instructions are basically executed in the same
fashion on modern architectures, thus faulty analysis of this
model may have similarities with modern GPGPU devices.

B. Improvements in the FlexGrip GPGPU model

The improvements we introduced in the model allow us to
analyze transient fault effects on internal modules. Moreover,
these modifications simplify and increase the flexibility of the
model in the development of new applications.

The original GPGPU model was designed to be
implemented in a particular technology and execute a
predefined set of applications. Nevertheless, a detailed analysis
of each internal module showed some limitations. Moreover,
the development of new applications revealed some restrictions
in the supported instruction formats. The improvements we
introduced can be divided into three groups:

- Technology dependency

- Instruction format support and interconnection among sub-

modules

- Compiler restrictions.

1) Technology dependency

FlexGrip was originally designed for FPGA implementation
on specific technologies. Moreover, some internal modules
were automatically described employing high-level compilation
tools, such as Matlab and Vivado. However, these descriptions
are not easily understandable and cannot be analyzed in an easy
manner.

We modified each module by removing any reference to
specific technology libraries and compilation tools dependency
and replacing them with equivalent generic descriptions.
Moreover, the name of the signals and interconnections was
clarified in order to simplify the analysis during the fault
campaigns. In the end, 38.8% of the modules were corrected or
modified in order to remove the technology dependency. The
model can now be imported in model simulation environments,
such as ModelSim. Moreover, this can be synthesized
employing other technology libraries, such as the ASIC
OpenCell [18] library.

2) Instruction format support

FlexGrip design was compiled employing some high-level
Electronic design automation (EDA) tools and some unused
instruction formats were removed. Thus, internal modules, such
as intermediate registers, decoding logic, and interconnections
were not fully described by optimizations in those tools. These
optimizations reduce the model flexibility limiting the
development of new applications.

The previous behavior was checked during the development
of custom applications employing the CUDA-toolkit
environment. In the new applications, some instructions failed
during execution. Exhaustive analysis and revisions were
performed on the simulation traces. However, in some cases, the
analyzed signals behavior showed that some supported
instructions were only partially implemented. This restriction
limits the transient fault analysis and its incidence under
different applications. Moreover, those restrictions limit the
model flexibility and its potential employability.

The improvement reported here required a methodical
revision of all supported assembly instructions (SASS) in
FlexGrip and the addition or correction of the missing
description to implement the instruction under the expected
format.

As the SASS op-code, i.e., the instruction formats for the
GPGPU, has not been released by Nvidia, the op-code format of
some instructions was decoded employing the CUDA
compilation tools (NVCC and CUOBJDUMP) through design

of multiple applications targeting the selected instruction in
order to force the compiler to generate the expected instruction
op-code. Then, the missing register, connections or incomplete
modules were carefully corrected in order to support all the
potential instruction format variations. After this process, the 27
supported instructions were revised and 74 formats are
supported.

Table 1, 2 and 3 introduce the arithmetic and logic
instructions, the data handling, and memory instructions and the
control-flow instructions, respectively. In Table 1,
COMP_TYPE refers to comparison type and it depends on the
predicate flag generated by an arithmetic or logic operation. In
Table 3, COND parameters refer to predicate conditions. g[]
and c[0x1][] correspond to shared memory and constant
memory locations, respectively.

TABLE 1. SUPPORTED ARITHMETIC AND LOGIC SASS INSTRUCTIONS.

Mnemonic Description The revised format in the improved version
I2I Integer to integer

conversion

I2I.U32.U16/S16 RZ, RX(L|H) / g[].U16

I2I.U32.S32 RZ, |RX| / -RX

I2I.U32.U16.BEXT RZ, RX(L|H) / g[].U8

I2I.S32.S16.BEXT RZ, RX(L|H) / g[].S8

IMUL/

IMUL32/

IMUL32I

Integer

multiplication

IMUL.U16.U16 RZ, RX(L|H) / g[].U16, RY(L|H)

IMUL.S16.S16 RZ, RX(L|H) / g[].S16, RY(L|H)

IMUL32.U16.U16 RZ, RX(L|H) / g[].U16, RY(L|H)

IMUL32I.U16.U16 RZ, RX(L|H), Imm

IMUL32I.S16.S16 RZ, RX(L|H), Imm

SHL Shift left SHL RZ, RX, RY / Imm
SHL RZ, g [], Imm
SHL.U16 RZ(L|H), RX(L|H), Imm

SHR Shift right SHR.S32 RZ, RX, RY / Imm
SHR.S32 RZ, g [], Imm
SHR.U16 / S16 RZ(L|H), RX(L|H), Imm
SHR RZ, g[], Imm
SHR RZ, RX, RY / Imm

IADD/

IADD32/

IADD32I

Integer add IADD RZ, RX / -RX, RY

IADD RZ, g[], RX / -RX

IADD RZ, RX, c[0x1][]

IADD32 RZ, RX, RY / -RY

IADD32 RZ, g [0x..], RX / -RX

IADD32.U16 RZ(L|H), RX(L|H), RY(L|H) / -RY(L|H)

IADD32I RZ, RX / -RX, Imm

IADD32I RZ, g[], Imm

IMAD/

IMAD32/

IMAD32I

Integer multiply
and
Add

IMAD.U16/ S16 RZ, RX(L|H), RY(L|H), RW
IMAD.U16/ S16 RZ, RX(L|H), c[0x1][], RY
IMAD. RZ, RX(L|H), c[0x1][], RY

IMAD32.U16 RZ, RXL|H, RYL|H, RZ

IMAD32I.U16/ S16 RZ, RX(L|H), Imm, RZ

LOP Bitwise logical

Operation

LOP.AND/OR/XOR/PASS_B RZ, RX/ g[], RY
LOP.AND/OR/XOR/PASS_B RZ, RX, c[0x1] []

LOP.U16.AND/OR/XOR/PASS_B RZ(L|H), RX(L|H),

RY(L|H)

ISET Integer
comparison

ISET RZ, RX, RY / c[0x1][], COMP_TYPE
ISET RZ, g[], RX, COMP_TYPE
ISET.S32 RZ, RX, RY / c[0x1][], COMP_TYPE

ISET.S32 RZ, g[], RX, COMP_TYPE

TABLE 2. SUPPORTED DATA HANDLING AND MEMORY SASS INSTRUCTIONS.
Mnemonic Description The revised format in the improved version

MVC Load from constant
memory

MVC RX, c [0x1] []

GLD Load from global
memory

GLD.U32|U16|S16|U8|S8 RZ, global14[]

GST Store to global
Memory

GST.U32|U16|S16|U8|S8 global14[], RX

MOV/

MOV32

Move register to
register/load from
shared memory

MOV RZ, RX / g[]
MOV.U16 RZ(L|H), RX(L|H) / g[].(U16|U8)

MOV32 RZ, RX / g[]
MOV32.U16 RZ(L|H), RX(L|H)

MVI Move immediate to
destination

MVI RX, Imm

R2G Store to shared
Memory

R2G.U32.U32 g [], RX
R2G.U16.U16 g [], RXL|H
R2G.U16.U8 g [], RX

R2A Move general purpose
register to address

register

R2A AX, RX

A2R Move address register
to general purpose

register

A2R RX, AX

4.8% of the whole model description required an addition or
modification in its description to execute the expected
instruction formats and its variation. Finally, some bugs and
unused interconnections were removed from the project

hierarchy in order to clean the modules and remove any
redundant logic which may create problems during the fault
campaigns.

TABLE 3. SUPPORTED CONTROL-FLOW SASS INSTRUCTIONS.
Mnemonic Description The revised format in the improved version

BRA Branch BRA CX.COND Imm
BRA Imm

BAR barrier
synchronization

BAR.ARV.WAIT b0, 0xFFF

RET Return from kernel RET
RET CX.COND

SSY Set synchronization
point

SSY Imm

NOP No operation NOP

NOP.S

3) Compiler restrictions

FlexGrip is able to execute applications compiled employing
the CUDA-toolkit by NVIDIA. Moreover, an SM 1.0 micro-
architectural compatibility must be selected. However, the
CUDA compiler is protected and, as commented below, the op-
code of the instructions is not released.

In multiple attempts to design new applications for FlexGrip
we discovered several SASS instructions not supported by the
model, so in order to maintain the compatibility with the
CUDA-toolkit, a SASS checker tool was developed to check the
supported SASS instruction formats, presented in Tables 1, 2
and 3. This tool is able to identify and notify the user of those
unsupported instructions formats in FlexGrip. Most of them are
generated by the compiler when the kernel includes arithmetical
operations (division, transcendental, and format conversions),
control-flow instructions (call and return from subroutines, and
conditional breaks) and S2R (special register to register
movement) instructions.

Additionally, a SASS parser tool was designed to directly
write SASS assembly instructions and replace the unsupported
ones. Using both tools, a new application can be designed,
verified and corrected without the need of executing the
instructions in the model, thus reducing the application time
development. Sub-section III.C introduces three benchmarks
developed for FlexGrip employing these tools.

III. FAULT INJECTION METHODOLOGY

In order to evaluate the effect of SEUs in the improved
version of the FlexGrip model, we developed a fault injection
tool employing the ModelSim framework. The injector tool was
designed following the guidelines introduced in [19] regarding
transient fault injection in behavioral models using the simulator
commands. Additionally, the tool implements techniques to
reduce the fault simulation time (multi-thread fault simulation
and module de-rating factor (UDR) usage). Details about these
techniques can be found in [20, 21].

The fault injector was developed employing a high-level
language (Python) and is composed of a fault controller, a fault
injector and a fault checker and classifier. The fault controller
manages the fault campaign execution and it is able to start and
finish the tool execution.

Initially, the fault controller configures the program kernel
parameters, loads the FlexGrip model into the ModelSim
environment and the program instructions to be executed. The
kernel parameters include the number of SP-Cores presented in
the SM, the total number of blocks and threads in the task, the
total number of blocks per SM and the file register size.

Once the model is loaded in the simulator, the fault
controller starts the fault injector and this loads and decodes the
fault to be injected into the GPGPU model. The fault injector
reads, from a fault list, the location and the injection time of the

fault. Then, the injector translates those parameters into the
equivalent commands for ModelSim. The tool is able to handle
permanent and transient faults. For the purpose of this work, we
employed the transient fault capabilities of the designed tool.
One fault simulation is performed for each element in the fault
list, once the fault is injected in the model.

Finally, the fault checker and classifier waits for simulation
termination and checks memory results and simulation time
parameters in order to classify the effects of the fault in the
system. This unit classifies the faults in four categories: Silent
Data Corruption (SDC) when the SEU affects the memory
results, Detected Unrecoverable Error (DUE) when the model
is hanged by the SEU effect, Timeout when the SEU produces
performance degradation in simulation time and Silent when the
SEU does not generates any effect.

A. Fault campaign description

In SEU fault injection campaigns, two elements are
considered: the SEU location and the SEU injection time. The
SEU location depends on the fault universe and spans over the
registers and memory elements employed by a benchmark
during execution time on each targeted module. The fault
universe was carefully checked and selected through a golden
execution. The injection time for each fault is randomly chosen.

A fault campaign starts with a golden simulation to define
the reference execution time and the reference memory results.
Then, the fault controller starts a loop in which this unit loads
the fault list and the fault injector applies the equivalent
command in the simulation model. The simulation time is
selected as twice the reference execution time in order to allow
the tool to detect timeout effects. Moreover, the model is
instrumented with a memory generator which stores the
memory results into a file for each simulation. The fault checker
checks the presence of this file and performs the classification
phase. Finally, a new fault is loaded for the fault list and the
simulation loop starts again. The fault injection campaign
finishes when the fault list is empty.

The multi-thread fault injection approach is employed in the
tool by dividing the fault list in chunks of faults. Each fault list
is composed of the SEU fault location (signal name) and the
SEU injection time.

B. Targeted modules

One Data-Path and two Control-Path modules were targeted
during fault campaigns. Their characteristics are briefly
described in the following:

1) Data-path module

File Registers: The 32 bit-size registers are employed as
source and destination operands and addresses during a warp
instruction execution. These registers are organized and
distributed according to the total number of warps and blocks to
be executed in an SM.

2) Control Path modules

SM Warp Scheduler: The warp scheduler manages the warp
execution inside an SM. This unit is able to select an available
warp, dispatch the warp instruction to the SM and check its
execution. This module is composed of various memories and
control logic. The internal warp memory is employed to store
the status information of each warp execution. This information
is updated after each instruction execution and is composed of
the active thread mask (aTM), the actual program counter and
some additional warp configuration parameters.

Divergence Stack memory: This unit stores the divergence
addresses generated by a divergent warp. A special-purpose
memory stores the address, warp index and aTM to trace the
number of executed threads on each divergence path.

C. Benchmarks

Three applications were developed for the improved version
of FlexGrip to evaluate the SEU effects on the targeted
modules. They are briefly described in the following.

FFT: This typical signal processing application was
implemented based on the Coley-Turkey algorithm [22]. In this
application, the butterfly element was described employing the
CUDA-C environment. Although the model does not provide
support for division operations, they were replaced by a
software approach based on logarithm methods using shift and
logical displacements.

Edge detection: This common image processing application
is based on the Sobel algorithm and was programmed with a
3x3 size dimensions stencil element. The stencil describes an
image filter and it is applied to a 2-dimensions input. As
described below for FFT, the division operations are
implemented employing the same logarithmic approach.

Vector add: This typical embarrassingly parallel application
operates on two individual arrays and stores the result in a
specified memory area. This program kernel is selected
considering that most applications include execution segments
with fully data-parallel operations. This application employs
data-path modules and execution units to process the operations.

IV. EXPERIMENTAL RESULTS

The fault campaigns considered two different sets of
parameters, the GPGPU model configuration, and the
benchmark configuration. The GPGPU model was configured
employing 8, 16 and 32 SP-cores. Moreover, the benchmarks
were configured with two application threads per block (TPB)

distributions: A 32 threads and B 64 threads. Benchmarks
under each configuration are named as follow: benchmark
name, thread configuration, SP-cores configuration. For
example, VectorAdd with 32 TPB and 16 SP-Cores is named as
V_32_16.

A simplified version of the Mean Workload Between
Failures (MWBF) metric introduced in [23] was employed to
correlate the number of detected faults, the faults applied, the
benchmark execution time, and the data processed for every
benchmark. This metric represents the correctly executed
workload on each application before experiencing a fault. Thus,
a higher MWBF means higher fault reliability. It is worth noting
that, DUE errors are not considered in the MWBF computation.
The SM warp Scheduler was divided into two parts (memory,
and logic). Table 3 reports the gathered results, expressed in
terms of clock cycles.

TABLE 3 MWBF RESULTS (PROCESSED BYTES PER CLOCK CYCLES)
 FFT EDGE Vector Add

Module

 Config

SP-

Cores

A B A B A B

File

register

32 7.6 11.5 22.0 43.5 139.2 111.6

16 5.6 6.8 16.4 34.3 79.7 83.9

8 3.7 8.5 10.6 40.1 57.0 60.2

Warp

memory

32 565.4 766.2 2,570.7 12,468.5 16,163.7 2,208.1

16 1,695.9 33.6 974.1 220.7 2,165.9 585.0

8 570.3 7.5 174.5 81.8 361.1 194.7

Warp logic

32 102.2 140.1 210.4 780.5 1,766.9 1,985.3

16 34.3 85.6 285.4 186.9 970.7 1,083.9

8 20.0 25.4 104.7 84.8 615.7 640.7

Divergence

Stack

memory

32 399.8 259.9 2,688.4 2,158.0 - -

16 269.1 155.7 1,903.3 1,084.2 - -

8 207.6 63.7 1,338.1 390.6 - -

In the target modules, the SEU sensitivity depends on the
SP-cores configuration. Thus, dropping the number of SP-cores
reduces the reliability of the system. This behavior is constant
for each module and kernel configuration. The file register is
more reliable to SDC and timeout errors by increasing the TPB.
In contrast, the divergence stack, the warp logic, and the warp
memory seem to be more reliable with kernels configured with
a lower number of TPB. A detailed analysis for each module is
provided in the following sub-sections.

A. Data-Path module results

1) Register File Results

27 multi-thread fault injection campaigns were performed
injecting 34,816 faults for the FFT and Edge programs. For
VectorAdd, 10,240 faults were injected in 32-SP cores and
8,192 faults in the 16- and 8-SP cores configurations. The fault
list was divided into ten parts and fault simulations were
performed in parallel reducing the fault simulation time from
about 150 hours to less than 16 hours. UDR factor also reduces
the total amount of faults to inject in up to 95%.

Results in Fig. 2 shows that FFT and Edge benchmarks
present a similar behavior. In both cases, the error rate reduces
by increasing the number of SP-cores and by increasing the
number of TPB. In FFT, a slight increment in the SDC error-
rate is generated by increasing the TPB. This behavior can be
explained through the relation of the model execution time and
kernel configuration. In principle, data stored in active registers
for long periods are more prone to SEU effects (case B) than
registers with periodical write and read activity (case A).

Fig. 2. Register File results for FFT (a), VectorAdd (b) and Edge (c) kernels.

In simulations, the A configuration models required longer
execution time. However, the individual block execution time is
lower than the time required by B configurations. Moreover,
FFT in A configuration uses half of the registers of those
employed in B configuration and employs them to process
threads data, in different interval times, belonging to different
blocks. In this case, the increment in TPB increases the SDC
error rate, as it happens in the 32 and 16-SP cores
configurations.

Another factor affecting the error rate is the instruction type.
FFT includes control-flow instructions depending on predicate
conditions, which are generated evaluating register operands.
Thus, some registers are included in control-flow operations.
Those registers can be considered as control-flow critical

registers (CFRs). If an SEU fault affects one of these CFRs,
most of the effects are reflected as DUE.

According to results, a higher number of CFRs is generated
by decreasing the TPB. This can be explained considering the
registers employed in the A configuration and the CFRs mapped
among threads with the same address locations. During kernel
execution, one register location will store, in different time
intervals, data belonging to two CFRs, increasing the
probability to generate a DUE.

A different behavior is shown by the Vector_Add
benchmark. An increment in the TPB corresponds to an
increase in the SDC error rate. This trend is visible for all SP-
cores configurations and depends on the increased SEU
sensibility due to the additional time required by the SM to
dispatch other warps belonging to the same block. Moreover,
the execution time to process an instruction under a large
number of threads (B configuration) is the double of a block
with fewer threads (A configuration). Additionally, SEU effects
slightly increase by reducing the SP-core configuration. This
behavior can be explained by the additional time employed by
the scheduler to process one instruction, of each thread, with the
limited number of SP cores. The number of SEU faults
generating DUE and Time-Out effects is zero as this application
does not use any control-flow instruction.

In the Edge benchmark, we can observe an inverse
relationship between the SDC error rate and the TPB. This
behavior is visible in each SP-Core configuration. It can be
explained noting that this kernel includes a large number of
control-flow, divergence generation, and arithmetic-intense
instructions. Regarding the DUE error rate, results also show an
inverse relation between TPB and the error rate. This can be
explained due to the SEU sensibility of CFRs. Results (Edge
Detection and FFT) are similar to those shown in [19] for
control-flow applications.

B. Control-Path results

1) Warp Scheduler results

36 fault campaigns were performed targeting this module.
The model flexibility allows us to divide the module into two
parts for analysis purposes: the internal memories (Warp, State,
and Predicate) and the sequential logic components in the
module. Results are presented in Fig 3.

At first glance, results contradict the criticality of this module in
the GPGPU operation. Nevertheless, a deep analysis of its
architectural organization and the role employed by the
scheduler helps to clarify results meanings.

The error rate in the sequential logic is caused by the SEU
sensibility and criticality of the internal registers employed in
processing and storing the warp information. Although the
sequential logic corresponds to 14.3% of the elements in the
scheduler controller, the percentage of DUE effects lies in a
range between 85% and 92% in all kernels. It means that errors
in those registers directly compromise kernel termination.

The unexpectedly low fault error rate in the warp memory is
caused by a loop existing between the scheduler and the SM
pipelines stages. This loop helps to mask and reduce SEU
effects in memory since affected information is presented
simultaneously in the pipeline registers and in the targeted
memory. After each instruction execution, this memory is
written (refreshing the information) and correcting any SEU.
Moreover, this special memory allows performing the write and
read process in a few clock cycles, during a new instruction
load, reducing the error propagation. SEU effect on the state and
predicate memories is zero for the selected benchmarks.

a) b)

c)

Results show that increasing the TPB raises the SDC and
DUE error rate. The program, under the B Configuration, uses
more memory locations and requires the execution of two warps
to process one instruction including warp line exchange. This
exchange generates a temporary short in the loop and the
memory location cannot correct any SEU.

Fig. 3. Warp Scheduler results in warp memory (a, c and e) and sequential
logic (b, d, and f) for FFT (a, c), VectorAdd (b, d) and Edge (e, f) benchmarks.

A reduction in SP-Cores produces a direct increment in the
error rate. It can be explained by the additional work performed
by the scheduler (twice and four times) for thread execution in
the 16 and 8 SP-Cores configurations.

2) Divergence Stack memory

Vector_Add program was not considered in the fault
campaigns because this kernel does not use the Divergence
Stack memory. Multi-thread fault campaigns with 50,688 faults
were performed for the FFT and Edge benchmarks. Results are
presented in Fig. 4. These show that the divergence stack
memory does not generate a relevant contribution to the error
rate by SEU effects. This behavior is explained by the partial
usage during kernel execution. Each memory location (line) is
employed for the time fraction of a divergence generation.
Thus, each line has a different SEU sensibility. A detailed
inspection to this unit, for both kernels, revealed that its usage is
limited to less than two-thirds of the total simulation time.
Moreover, each additional pushed line presents fewer activities
generating a low SEU sensibility in this unit.

The difference in terms of error rate between the two
benchmarks is explained analyzing the instructions, its
description, and the divergence paths length. Moreover, the
number of synchronization point instructions (SSY) determines
the usage of each memory location. Edge kernel uses seven
independent SSY instructions with a short path length and
seems to be reliable to SEU effects. In contrast, FFT includes

two SSY instructions and long divergence paths. This long
interval time between writing and reading seems to increase the
SEU sensitivity.

Fig. 4. Divergence stack result for FFT (left) and Edge (right) benchmarks.

Regarding the DUE and SDC error rates, they depend on the
affected location. The difference, for both applications, is
mainly caused by the ability of the program counter and mask
fields to generate hang conditions. An SEU in the program
counter may generate Timeout or DUE errors. Similarly, the
effect in the aTM may generate SDC, by inactive threads, or
DUE effects, by threads missing the taken path. Finally, an SEU
in the warp ID field generates Timeout effects.

The model with A Configuration uses the same lines in the
divergence stack, but these lines are employed in different time
slots and the execution time per block is lower than that
required in B Configuration. The additional time in B
Configuration seems to be responsible for the increasing SEU
sensitivity. A decrement in TPB could help to reduce, in more
than twice, the SDC error rate.

V. CONCLUSIONS

We introduced an improved version of the open source

GPGPU model FlexGrip. This detailed model description was

crucial to explain the behavior observable in the control unit

modules when are affected by transient faults. Although the

FlexGrip model does not completely match the architecture of

the most recent GPGPU devices, we still claim that the

performed analysis may be valid for some of them as well. The

new model version is technology independent. Moreover, each

instruction was checked and the supported formats were listed.

Additionally, further tools have been implemented to provide

assistance in the development of new applications employing

the CUDA environment.

SP-cores customization in the model could be useful for area

and energy optimization. However, according to Table 3, a

lower number of SP-cores increases the SEU sensibility and

reduces system reliability. We performed several fault injection

campaigns to analyze the effects of SEUs in different modules

within the GPGPU with different applications. The results

showed that the behavior of the error rate (measured via the

MWBF metric) when changing the configuration parameters

depends on the application. Thanks to the availability of the

FlexGrip model, we provided explanations about the observed

phenomena.

VI. FUTURE WORKS

We are currently working to extend the analysis of the SEU

effects to other modules within the GPGPU architecture

employing different program kernel characteristics.

We also plan to extend the instruction and hardware support

of FlexGrip model following the SM 1.0 microarchitecture

compatibility. Moreover, new execution units, such as floating

point units are also potential extensions for the model. The

a)

c)

e)

b)

d)

f)

support to different warp scheduler controller algorithms is also

planned as future work.

REFERENCES

[1] W. Shi, M. B. Alawieh, X. Li, and H. Yu, "Algorithm and hardware

implementation for visual perception system in autonomous vehicle: A
survey," Integration, vol. 59, pp. 148-156, 2017/09/01/ 2017.

[2] S. Hamdioui, D. Gizopoulos, G. Guido, M. Nicolaidis, A. Grasset, and

P. Bonnot, "Reliability challenges of real-time systems in forthcoming
technology nodes," in 2013 Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2013, pp. 129-134.

[3] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, et al., "Memory errors in modern systems: The good, the bad,

and the ugly," ACM SIGARCH Computer Architecture News, vol. 43,

pp. 297-310, 2015.
[4] H. L. Hughes and J. M. Benedetto, "Radiation effects and hardening of

MOS technology: devices and circuits," IEEE Transactions on Nuclear

Science, vol. 50, pp. 500-521, 2003.
[5] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, "Impact of

Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a

22 nm Design Rule," IEEE Transactions on Electron Devices, vol. 57,
pp. 1527-1538, 2010.

[6] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,

"SASSIFI: An architecture-level fault injection tool for GPU application

resilience evaluation," in 2017 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2017, pp. 249-

258.
[7] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang, S.

Gurumurthi, et al., "GPGPUs: How to combine high computational

power with high reliability," in 2014 Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2014, pp. 1-9.

[8] L. L. Pilla, P. Rech, F. Silvestri, C. Frost, P. O. A. Navaux, M. Sonza

Reorda, et al., "Software-Based Hardening Strategies for Neutron
Sensitive FFT Algorithms on GPUs," IEEE Transactions on Nuclear

Science, vol. 61, pp. 1874-1880, 2014.

[9] S. Collange, M. Daumas, D. Defour, and D. Parello, "Barra: A Parallel
Functional Simulator for GPGPU," in 2010 IEEE International

Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, 2010, pp. 351-360.
[10] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, "gem5-

gpu: A Heterogeneous CPU-GPU Simulator," IEEE Computer
Architecture Letters, vol. 14, pp. 34-36, 2015.

[11] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,

"Analyzing CUDA workloads using a detailed GPU simulator," in

Performance Analysis of Systems and Software, 2009. ISPASS 2009.

IEEE International Symposium on, 2009, pp. 163-174.

[12] A. Vallero, D. Gizopoulos, and S. Di Carlo, "SIFI: AMD southern
islands GPU microarchitectural level fault injector," in 2017 IEEE 23rd

International Symposium on On-Line Testing and Robust System Design

(IOLTS), 2017, pp. 138-144.
[13] N. Farazmand, R. Ubal, and D. Kaeli, "Statistical fault injection-based

AVF analysis of a GPU architecture," Proceedings of SELSE, vol. 12,

2012.
[14] S. Tselonis and D. Gizopoulos, "GUFI: A framework for GPUs

reliability assessment," in 2016 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2016, pp. 90-
100.

[15] R. Balasubramanian, V. Gangadhar, Z. Guo, C. H. Ho, C. Joseph, J.

Menon, et al., "MIAOW - An open source RTL implementation of a
GPGPU," in 2015 IEEE Symposium in Low-Power and High-Speed

Chips (COOL CHIPS XVIII), 2015, pp. 1-3.

[16] M. A. Kadi, B. Janssen, and M. Huebner, "FGPU: An SIMT-
Architecture for FPGAs," presented at the Proceedings of the 2016

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, Monterey, California, USA, 2016.
[17] K. Andryc, M. Merchant, and R. Tessier, "FlexGrip: A soft GPGPU for

FPGAs," in 2013 International Conference on Field-Programmable

Technology (FPT), 2013, pp. 230-237.
[18] J. Knudsen, "Nangate 45nm Open Cell Library," CDNLive, EMEA,

2008.

[19] W. Nedel, F. L. Kastensmidt, and J. R. Azambuja, "Evaluating the
effects of single event upsets in soft-core GPGPUs," in Test Symposium

(LATS), 2016 17th Latin-American, 2016, pp. 93-98.

[20] H. Ziade, R. A. Ayoubi, and R. Velazco, "A survey on fault injection
techniques," Int. Arab J. Inf. Technol., vol. 1, pp. 171-186, 2004.

[21] D. Alexandrescu, "Circuit and System Level Single-Event Effects

Modeling and Simulation," in Soft Errors in Modern Electronic Systems,
ed: Springer, 2011, pp. 103-140.

[22] J. W. Cooley, P. A. W. Lewis, and P. D. Welch, "The Fast Fourier

Transform and Its Applications," IEEE Transactions on Education, vol.
12, pp. 27-34, 1969.

[23] T. Santini, P. Rech, G. Nazar, L. Carro, and F. R. Wagner, "Reducing

embedded software radiation-induced failures through cache memories,"
in 2014 19th IEEE European Test Symposium (ETS), 2014, pp. 1-6.

