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Goal 

• To propose methods for  
testing General Purpose GPU (GPGPU)  
during the operational phase  
for possible permanent faults. 
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Introduction 

• Acceleration cards for 2D graphics 

• First GPU (Nvidia GeForce 256) defined as 
a single-chip processor with integrated transform, lighting, triangle 
setup/clipping, and rendering engines that is capable of processing a 
minimum of 10 million polygons per second. 

• General Purpose GPU as GPU expends in other 
applications for high performance parallel computing 
capability 

 AI, Image/Video Processing (VR/AR), Autonomous Driving … 
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The Reliability Issue 

• Design Verification (Requirement, Specification, Standards) 

• Manufacturer Test (post-silicon verification, burn-in test) 

• In-Field Test (Power-On Self Test, BIST) 

• Fault Tolerant Design 

• Physical: shielding 

• Hardware: resource replication 

• Software: temporal redundancy, check-point recovery 
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Reliability Evaluation of Embedded GPGPUs  
for Safety Critical Applications* 

• soft error sensitiveness of a typical parallel algorithm, executed with 
different GPGPUs cache configurations.  

• the same algorithm, executed with different threads distribution. 

• Cooley-Tukey implementation for Fast Fourier Transform (FFT)  

5 *D. Sabena, L. Sterpone, L. Carro and P. Rech, "Reliability Evaluation of Embedded GPGPUs for Safety Critical 

Applications," in IEEE Transactions on Nuclear Science, vol. 61, no. 6, pp. 3123-3129, Dec. 2014. 

Test Program  Configuration 

FFT_32 2 thread blocks, 32 threads per block,  

block scheduler not activated, 

thread scheduler not activated 

FFT_64 2 thread blocks, 64 threads per block,  

block scheduler not activated, 

thread scheduler activated 

FFT_64_NOL1 Same as FFT_64, L1 cache disabled 



Cooley-Tukey FFT Implementation 

• common FFT implementation for embedded applications 

• allows to reduce algorithm complexity from O(N2) to O(N*log2N) 
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• At each stage a FFT 
butterfly unit  combines the 
results of two smaller 
Discrete Fourier Transforms 
(DFTs) into a large DFT 



Experimental Setup 

• DUT:  CARMA DevKit features a Qseven NVIDIA Tegra 3 with a Quad-
core ARM A9 CPU and the NVIDIA Quadro® 1000M GPGPU with 2 SM of 
48 SP each for a total of 96 CUDA cores 
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GPGPU Fermi architecture
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Experimental Results 
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• VESUVIO neutron facility at ISIS, Rutherford Appleton Laboratories 
(RAL), Didcot, UK 
• The available flux was of about 3.89∙104 n/(cm2∙s) 

• at room temperature 

• beam was focused on a spot with a diameter of 2 cm plus 1 cm of penumbra 

GPU fully loaded 



Experimental Results 
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• The cross section was measured 
dividing the number of observed 
error per second by the average 
neutron flux 

• disabling the L1 caches reduces the 
cross section of the algorithm of 38%, 
while the performance overhead is not 
so relevant (about 4.5%) 

• FFT_32 has a 25% higher cross section 
than FFT_64.  
In FF_64, the number of instantiated 
thread (i.e. 64) imposes the thread 
scheduler to continuously swap the 
active threads, causing data in the L1 
cache refresh frequently. 



A New Simulation-based Fault Injection 
Approach for the Evaluation of  
Transient Errors in GPGPUs * 

• Develop a transient error simulation tool for the early evaluation of 
transient errors in applications on GPGPU 

 

10 *S. Azimi, B. Du, and L. Sterpone. "A New Simulation-Based Fault Injection Approach for the Evaluation of Transient 

Errors in GPGPUs." International Conference on Architecture of Computing Systems. Springer, Cham, 2016. 
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GPGPU-Sim* 
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• a cycle-level GPU performance simulator that focuses on "GPU computing" 

*A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong and T. M. Aamodt, "Analyzing CUDA workloads using a detailed GPU 

simulator," 2009 IEEE International Symposium on Performance Analysis of Systems and Software, Boston, MA, 2009. 



FlexGrip*: A soft GPGPU 

• HDL implementation based on Nvidia G80 architecture 

 

12 * K. Andryc, M. Merchant and R. Tessier, "FlexGrip: A soft GPGPU for FPGAs," 2013 International Conference on Field-Programmable Technology (FPT), 

Kyoto, 2013, pp. 230-237. 

for FPGAs 



Proposed Flow 

13 

Fault 

Location 

Manager 

FlexGrip 

HDL Impl. 

Netlist 

to PDD 
GPGPU PDD 

Present. 

Propagation 

Paths 

SET 

Analyzer 
SEU/SEMU 

Fault List 

SW App. 

Fault 

Injection 

Manager 

GPGPU-

Sim 

Fault 

Class. 



Experimental Setup 

• Synthesized SM architecture 

 ~50K gates, ~1.5M logical paths 

 Implemented using Microsemi ProASIC3 gate library 

• SET analysis 

 Eight different types from 100ps to 1ns 

 1,000 random injections for each type 

• Applications (input data 16 x 16)  

 Matrix multiplication  

 FFT  

 Sobel filter 
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Experimental Result 
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Experimental Result 
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In-Field GPGPU Test with Software-Based Self-
Test Techniques* 

• Analyze the effects of permanent faults in the GPGPU operation 

 

 

 

 

 

18 * B. Du, Josie E. Rodriguez Condia, M. Sonza Reorda, L. Sterpone, accepted in IOLTS2018 



In-Field GPGPU Test with Software-Based Self-
Test Techniques* 

• Develop effective SBST techniques for testing 
permanent faults 
 based on architectural or structural description of 

modules (Self-test program) 

 at-speed and in-field 

 non-intrusive 

 flexibility 

 cost 

19 * B. Du, Josie E. Rodriguez Condia, M. Sonza Reorda, L. Sterpone, accepted in IOLTS2018 



FlexGrip*: A soft GPGPU 

• HDL implementation based on Nvidia G80 architecture 

 

20 * K. Andryc, M. Merchant and R. Tessier, "FlexGrip: A soft GPGPU for FPGAs," 2013 International Conference on Field-Programmable Technology (FPT), 

Kyoto, 2013, pp. 230-237. 

for FPGAs 



Warp Unit (Thread Scheduler) in FlexGrip 

• Execution units in the pipeline are similar to normal processor and well 
addressed in literatures for testing such as Adder, Multiplier etc. 

• In charge of wrap and thread scheduling, synchronization 
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Proposed Methods 
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• M1 based on creating divergence paths among threads and detect by 
checking timing information 
 targets the permanent faults affecting the ID field of the warp pool line 

 faults affecting the bits in warp PC by extra comparisons  

• M2 inserts extra global memory access instructions in divergence 
paths and detect by checking timing information and/or global 
memory checking 
 slower global memory access could enlarge timing difference for easing fault 

detection effort 

 faults causing “stuck” thread could be easily detected by memory checking 

• M3 writes thread signature to global memory and detect by memory 
checking only 
 does not depend on availability of performance monitor resources 

 



Proposed Methods 
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j ← 0                 ► Initialize divergence control var. 

…                                                                                      ► Normal app. Execution 

Sig_per_thread[] ← 0                                                       ► Initialize signature                      (M3) 

for i ϵ {set of ThreadId in SM} do                                  ► Evaluate for every ThreadID 

     if i == j then                                                                  ► If ThreadID Matches 

          Divergence_path_GroupA();                                              ► Divergence path Group A  

            NOP ► Not operation instruction 

          Thread_Store_in_memory(); ► Memory results store                   (M2) 

          Sig_per_thread[i] ← Sig_per_thread[i]+1            ► Set signature                                (M3) 

          Sig_store_in_memory();                                        ► Store signature                            (M3) 

     else    

          Divergence_path_GroupB ();                                                ► Divergence path Group B  

j←j+1                                                                        ► Move to next ThreadID 



Experimental Setup 

• FlexGrip 

 Removed FPGA (Xilinx Virtex6) library dependency 

 Replaced with generic VHDL implementations 

 Synthesized with OpenCell library using Synopsys Design Compiler 

 RegisterFile/Memory components are kept back as behavioral model 

 Post-Synthesis netlist is extracted 

• Fault injection campaign 

 targets on warp pool memory lines (2048 sites) and interface connection with 
other modules (478 sites) 

 stuck-at faults 

 test program based on VectorAdd sample program 

 FlexGrip configured to with one grid, 256 blocks and 24 threads per wrap 
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Experimental Results 

 

 

 

25 

VectorAdd M1 M2 M3 

Total Faults 2,048 2,048 2,048 2,048 

Testable Faults 984 984 984 984 

Detected Faults 624 728 984 984 

Hang 440 613 616 616 

Memory 

Mismatch 
184 115 112 368 

Performance 

Degradation  
0 0 256 0 

Testable Fault 

Coverage (%) 
63.41 73.98 100 100 

Fault Coverage (%) 30.46 35.54 48.04 48.04 



Conclusions 

• The key idea is to generate divergence paths of thread execution and 
use performance variation among the threads and/or memory write of 
signature in global memory for testing and detecting permanent 
faults in thread scheduler. 

• M3 is effective even with only final memory checking. 

• SBST method is applicable for testing GPGPU and could achieve high 
fault coverage. 

• Other modules? Multiple Streaming Multiprocessors? Block 
Scheduler? 

• Other faults? Transient faults? Online testing? 

• Mitigation Techniques? 
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Ongoing Activities 

• FlexGrip Modifications 

 Extension of currently supported instructions 

 Extension of functionalities (e.g. Multiple SMP) 

• SBST targeting on other modules 

• Embedded GPGPU 

 Timing, performance, reliability 

 Nvidia Jetson 

 HLS on Xilinx FPGA, OpenCL support 

• GPGPU acceleration of testing (analysis) automation 
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Thank You For Your Attention! 

• Questions? 

 

 

 

 

 

 

 

• email: boyang.du@polito.it 
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