
On the Functional Test of
the GPGPU Scheduler

E. Rodriguez Condia, B. Du,
M. Sonza Reorda, L. Sterpone

Goal

• To propose methods for
testing General Purpose GPU (GPGPU)
during the operational phase
for possible permanent faults.

2

Introduction

• Acceleration cards for 2D graphics

• First GPU (Nvidia GeForce 256) defined as
a single-chip processor with integrated transform, lighting, triangle
setup/clipping, and rendering engines that is capable of processing a
minimum of 10 million polygons per second.

• General Purpose GPU as GPU expends in other
applications for high performance parallel computing
capability

 AI, Image/Video Processing (VR/AR), Autonomous Driving …

3

The Reliability Issue

• Design Verification (Requirement, Specification, Standards)

• Manufacturer Test (post-silicon verification, burn-in test)

• In-Field Test (Power-On Self Test, BIST)

• Fault Tolerant Design

• Physical: shielding

• Hardware: resource replication

• Software: temporal redundancy, check-point recovery

4

Reliability Evaluation of Embedded GPGPUs
for Safety Critical Applications*

• soft error sensitiveness of a typical parallel algorithm, executed with
different GPGPUs cache configurations.

• the same algorithm, executed with different threads distribution.

• Cooley-Tukey implementation for Fast Fourier Transform (FFT)

5 *D. Sabena, L. Sterpone, L. Carro and P. Rech, "Reliability Evaluation of Embedded GPGPUs for Safety Critical

Applications," in IEEE Transactions on Nuclear Science, vol. 61, no. 6, pp. 3123-3129, Dec. 2014.

Test Program Configuration

FFT_32 2 thread blocks, 32 threads per block,

block scheduler not activated,

thread scheduler not activated

FFT_64 2 thread blocks, 64 threads per block,

block scheduler not activated,

thread scheduler activated

FFT_64_NOL1 Same as FFT_64, L1 cache disabled

Cooley-Tukey FFT Implementation

• common FFT implementation for embedded applications

• allows to reduce algorithm complexity from O(N2) to O(N*log2N)

6

2 point DFT

2 point DFT

2 point DFT

2 point DFT

Combine a 2
points DFT

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

Combine a 2
points DFT

Combine a 4
points DFT

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

In
-o

rd
e

r
O

u
tp

u
t

d
at

a

N
o

t
In

-o
rd

e
r

O
u

tp
u

t
d

at
a

tStage 1 Stage 2 Stage 3

4 parallel tasks 2 parallel tasks 1 tasks

• At each stage a FFT
butterfly unit combines the
results of two smaller
Discrete Fourier Transforms
(DFTs) into a large DFT

Experimental Setup

• DUT: CARMA DevKit features a Qseven NVIDIA Tegra 3 with a Quad-
core ARM A9 CPU and the NVIDIA Quadro® 1000M GPGPU with 2 SM of
48 SP each for a total of 96 CUDA cores

7

GPGPU Fermi architecture

SM 1

Global memory

L2 cache

SM 1
SM 1SM 1

SP SP SP

SP SP SP

Shared Memory & L1 cache

Registers

Th
re

ad
 B

lo
ck

s
Sc

h
ed

u
le

r

0.433

0.527

0.452

0,0

0,1

0,2

0,3

0,4

0,5

0,6

FFT_64 FFT_32 FFT_64_NOL1

G
P

U
 K

e
r
n

e
l

T
im

e
 [

s
]

Experimental Results

8
0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

5.00E-03

5.50E-03

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Er
ro

rs
 /

 s
ec

Stage ID

Error rate per FFT Stage

FFT_64

FFT_32

FFT_64_NOL1
4.00*10-3

2.00*10-3

5.50*10-3

5.00*10-3

4.50*10-3

3.50*10-3

3.00*10-3

2.50*10-3

1.50*10-3

1.00*10-3

5.00*10-4

0.00

• VESUVIO neutron facility at ISIS, Rutherford Appleton Laboratories
(RAL), Didcot, UK
• The available flux was of about 3.89∙104 n/(cm2∙s)

• at room temperature

• beam was focused on a spot with a diameter of 2 cm plus 1 cm of penumbra

GPU fully loaded

Experimental Results

9

• The cross section was measured
dividing the number of observed
error per second by the average
neutron flux

• disabling the L1 caches reduces the
cross section of the algorithm of 38%,
while the performance overhead is not
so relevant (about 4.5%)

• FFT_32 has a 25% higher cross section
than FFT_64.
In FF_64, the number of instantiated
thread (i.e. 64) imposes the thread
scheduler to continuously swap the
active threads, causing data in the L1
cache refresh frequently.

A New Simulation-based Fault Injection
Approach for the Evaluation of
Transient Errors in GPGPUs *

• Develop a transient error simulation tool for the early evaluation of
transient errors in applications on GPGPU

10 *S. Azimi, B. Du, and L. Sterpone. "A New Simulation-Based Fault Injection Approach for the Evaluation of Transient

Errors in GPGPUs." International Conference on Architecture of Computing Systems. Springer, Cham, 2016.

x

y

(a)

R
e
g
is

te
r

(c)

(b)

GPGPU-Sim*

11

• a cycle-level GPU performance simulator that focuses on "GPU computing"

*A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong and T. M. Aamodt, "Analyzing CUDA workloads using a detailed GPU

simulator," 2009 IEEE International Symposium on Performance Analysis of Systems and Software, Boston, MA, 2009.

FlexGrip*: A soft GPGPU

• HDL implementation based on Nvidia G80 architecture

12 * K. Andryc, M. Merchant and R. Tessier, "FlexGrip: A soft GPGPU for FPGAs," 2013 International Conference on Field-Programmable Technology (FPT),

Kyoto, 2013, pp. 230-237.

for FPGAs

Proposed Flow

13

Fault

Location

Manager

FlexGrip

HDL Impl.

Netlist

to PDD
GPGPU PDD

Present.

Propagation

Paths

SET

Analyzer
SEU/SEMU

Fault List

SW App.

Fault

Injection

Manager

GPGPU-

Sim

Fault

Class.

Experimental Setup

• Synthesized SM architecture

 ~50K gates, ~1.5M logical paths

 Implemented using Microsemi ProASIC3 gate library

• SET analysis

 Eight different types from 100ps to 1ns

 1,000 random injections for each type

• Applications (input data 16 x 16)

 Matrix multiplication

 FFT

 Sobel filter

14

Experimental Result

15 SET pulse length [ns]

0	

5	

10	

15	

20	

25	

30	

35	

40	

0,1	 0,3	 0,45	 0,5	 0,55	 0,6	 0,7	 0,8	 1	

Matrix	Plain	

FFT	Plain	

Sobel	Plain	

Matrix	ABFT	

FFT	ABFT	

Sobel	ABFT	W
ro

n
g
 R

e
su

lt
 [

%
]

Experimental Result

16

0	

0,5	

1	

1,5	

2	

2,5	

3	

3,5	

4	

4,5	

5	

0,1	 0,3	 0,45	 0,5	 0,55	 0,6	 0,7	 0,8	 1	

Matrix	Plain	

FFT	Plain	

Sobel	Plain	

Matrix	ABFT	

FFT	ABFT	

Sobel	ABFT	

T
im

e
 O

u
t

[%
]

SET pulse length [ns]

Experimental Result

17

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0,1	 0,3	 0,45	 0,5	 0,55	 0,6	 0,7	 0,8	 1	

Matrix	Plain	

FFT	Plain	

Sobel	Plain	

Matrix	ABFT	

FFT	ABFT	

Sobel	ABFT	

SET pulse length [ns]

M
a
sk

e
d

 [
%

]

In-Field GPGPU Test with Software-Based Self-
Test Techniques*

• Analyze the effects of permanent faults in the GPGPU operation

18 * B. Du, Josie E. Rodriguez Condia, M. Sonza Reorda, L. Sterpone, accepted in IOLTS2018

In-Field GPGPU Test with Software-Based Self-
Test Techniques*

• Develop effective SBST techniques for testing
permanent faults
 based on architectural or structural description of

modules (Self-test program)

 at-speed and in-field

 non-intrusive

 flexibility

 cost

19 * B. Du, Josie E. Rodriguez Condia, M. Sonza Reorda, L. Sterpone, accepted in IOLTS2018

FlexGrip*: A soft GPGPU

• HDL implementation based on Nvidia G80 architecture

20 * K. Andryc, M. Merchant and R. Tessier, "FlexGrip: A soft GPGPU for FPGAs," 2013 International Conference on Field-Programmable Technology (FPT),

Kyoto, 2013, pp. 230-237.

for FPGAs

Warp Unit (Thread Scheduler) in FlexGrip

• Execution units in the pipeline are similar to normal processor and well
addressed in literatures for testing such as Adder, Multiplier etc.

• In charge of wrap and thread scheduling, synchronization

21

Proposed Methods

22

• M1 based on creating divergence paths among threads and detect by
checking timing information
 targets the permanent faults affecting the ID field of the warp pool line

 faults affecting the bits in warp PC by extra comparisons

• M2 inserts extra global memory access instructions in divergence
paths and detect by checking timing information and/or global
memory checking
 slower global memory access could enlarge timing difference for easing fault

detection effort

 faults causing “stuck” thread could be easily detected by memory checking

• M3 writes thread signature to global memory and detect by memory
checking only
 does not depend on availability of performance monitor resources

Proposed Methods

23

j ← 0 ► Initialize divergence control var.

… ► Normal app. Execution

Sig_per_thread[] ← 0 ► Initialize signature (M3)

for i ϵ {set of ThreadId in SM} do ► Evaluate for every ThreadID

 if i == j then ► If ThreadID Matches

 Divergence_path_GroupA(); ► Divergence path Group A

 NOP ► Not operation instruction

 Thread_Store_in_memory(); ► Memory results store (M2)

 Sig_per_thread[i] ← Sig_per_thread[i]+1 ► Set signature (M3)

 Sig_store_in_memory(); ► Store signature (M3)

 else

 Divergence_path_GroupB (); ► Divergence path Group B

j←j+1 ► Move to next ThreadID

Experimental Setup

• FlexGrip

 Removed FPGA (Xilinx Virtex6) library dependency

 Replaced with generic VHDL implementations

 Synthesized with OpenCell library using Synopsys Design Compiler

 RegisterFile/Memory components are kept back as behavioral model

 Post-Synthesis netlist is extracted

• Fault injection campaign

 targets on warp pool memory lines (2048 sites) and interface connection with
other modules (478 sites)

 stuck-at faults

 test program based on VectorAdd sample program

 FlexGrip configured to with one grid, 256 blocks and 24 threads per wrap

24

Experimental Results

25

VectorAdd M1 M2 M3

Total Faults 2,048 2,048 2,048 2,048

Testable Faults 984 984 984 984

Detected Faults 624 728 984 984

Hang 440 613 616 616

Memory

Mismatch
184 115 112 368

Performance

Degradation
0 0 256 0

Testable Fault

Coverage (%)
63.41 73.98 100 100

Fault Coverage (%) 30.46 35.54 48.04 48.04

Conclusions

• The key idea is to generate divergence paths of thread execution and
use performance variation among the threads and/or memory write of
signature in global memory for testing and detecting permanent
faults in thread scheduler.

• M3 is effective even with only final memory checking.

• SBST method is applicable for testing GPGPU and could achieve high
fault coverage.

• Other modules? Multiple Streaming Multiprocessors? Block
Scheduler?

• Other faults? Transient faults? Online testing?

• Mitigation Techniques?

26

Ongoing Activities

• FlexGrip Modifications

 Extension of currently supported instructions

 Extension of functionalities (e.g. Multiple SMP)

• SBST targeting on other modules

• Embedded GPGPU

 Timing, performance, reliability

 Nvidia Jetson

 HLS on Xilinx FPGA, OpenCL support

• GPGPU acceleration of testing (analysis) automation

27

Thank You For Your Attention!

• Questions?

• email: boyang.du@polito.it

 28

