On the Functional Test of
the GPGPU Scheduler

E. Rodriguez Condia, B. Du,
M. Sonza Reorda, L. Sterpone

$%,

\r

(Goal

- To propose methods for
testing General Purpose GPU (GPGPU)
during the operational phase

for possible permanentfaults.

Introduction

- Acceleration cards for 2D graphics
- First GPU (Nvidia GeForce 256) defined as

a single-chip processor with integrated transform, lighting, triangle
setup/clipping, and rendering engines that is capable of processing a
minimum of 10 million polygons per second.

- General Purpose GPU as GPU expends in other
applications for high performance parallel computing
capability

Al, Image/Video Processing (VR/AR), Autonomous Driving ...

The Rehiability Issue

. Design Verification (Requirement, Specification, Standards)
- Manufacturer Test (post-silicon verification, burn-in test)
- In-Field Test (Power-On Self Test, BIST)
- Fault Tolerant Design
Physical: shielding
Hardware: resource replication

Software: temporal redundancy, check-point recovery

Reliability Evaluation of Embedded GPGPUs
for Safety Critical Applications®

- soft error sensitiveness of a typical parallel algorithm, executed with
different GPGPUs cache configurations.

- the same algorithm, executed with different threads distribution.

- Cooley-Tukey implementation for Fast Fourier Transform (FFT)

Test Program Configuration

FFT 32 2 thread blocks, 32 threads per block,
block scheduler not activated,
thread scheduler not activated

FFT 64 2 thread blocks, 64 threads per block,
block scheduler not activated,
thread scheduler activated

FFT 64 NOL1 Same as FFT 64, L.1 cache disabled

*D. Sabena, L. Sterpone, L. Carro and P. Rech, "Reliability Evaluation of Embedded GPGPUs for Safety Critical
Applications," in IEEFE Transactions on Nuclear Science, vol. 61, no. 6, pp. 3123-3129, Dec. 2014.

Cooley-Tukey FFT Implementation

Not In-order Output data

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)
x(7)

Combine a 2 Combine a 4
2 point DFT points DFT points DFT
2 point DFT ><>< \\//
Combinea 2
2 point DFT points DFT
2 point DFT ><><

L\

1 tasks

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

In-order Output data

Stage 3

- common FFT implementation for embedded applications

- allows to reduce algorithm complexity from O(N?) to O(N*log,N)

- At each stage a FFT

butterfly unit combines the
results of two smaller

Discrete Fourier Transforms
(DFTs) into a large DFT

Experimental Setup

DUT: CARMA DevKit features a Qseven NVIDIA Tegra 3 with a Quad-
core ARM A9 CPU and the NVIDIA Quadro® 1000M GPGPU with 2 SM of
48 SP each for a total of 96 CUDA cores

GPGPU Fermi architecture

| 0,6
0 0.527
M2 : 0o 0.433 0.452
N BEa |
O =
o =
o 3 0,3
=1 El E1 E3 :
o5 g 0.2
= Shared Memory & L1 cache -
o 0,1
Registers r’ &) 00

FFT_64 FFT_32 FFT_64_NOL1
| L2 cache |

Global memory

Experimental Results

- VESUVIO neutron facility at ISIS, Rutherford Appleton Laboratories
(RAL), Didcot, UK
The available flux was of about 3.89-10% n/(cm?-s)
at room temperature
beam was focused on a spot with a diameter of 2 cm plus 1 cm of penumbra

Error rate per FFT Stage

5.50*103

GPU fully loaded

5.00*103 | -

WFFT_64

4.50*103 | -
HFFT_32

4.00*%103 | -
W FFT_64_NOL1

® 3.50%103 |
[7,]

o 3.00%103 | -
S

()
= 2.50*%103 | -
wl
2.00*103 | -
1.50*%103 |
1.00*103 | -
5.00%10% | - l] I
[0.00 n T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15

Stage ID

Experimental Results

The cross section was measured
dividing the number of observed
error per second by the average

neutron flux

1.50*10%

1.25*%10

disabling the L1 caches reduces the
cross section of the algorithm of 38%,
while the performance overhead is not
so relevant (about 4.5%)

1.00*10®

7,50*10°

Cross section [cmz]

5.00%10°

FFT_32 has a 25% higher cross section

than FFT 64. 2.50%10°
In FF_64, the number of instantiated
thread (i.e. 64) imposes the thread 000

scheduler to continuously swap the
active threads, causing data in the L1
cache refresh frequently.

Cross Section of the different configurations

- -9
—NNN\- 074110

—Q@éée—ew 10

N
1.33*10°®
[N

FFT_64

FFT_64_NOL1

FFT_32

A New Simulation-based Fault Injection

Approach for the Evaluation of
Transient Errors in GPGPUs *

Develop a transient error simulation tool for the early evaluation of
transient errors in applications on GPGPU

(b)

1918169y

> ()

*S. Azimi, B. Du, and L. Sterpone. "A New Simulation-Based Fault Injection Approach for the Evaluation of Transient
Errors in GPGPUs." International Conference on Architecture of Computing Systems. Springer, Cham, 2016.

GPGPU-S1m*

- a cycle-level GPU performance simulator that focuses on "GPU computing"

. Bank Shared| MSHR
E-l Illf‘er..'la"'n.l'ar;IJ: Reconv. Stacks confiict Pl Mem | |
SIMT o PCRPC Act!ver'.-lash['l:W] e K D3
& PC[RPClActiveMask[1:W] g P Coalesc.[” | Cache 5
- : &5
L_.; : i PCRPC Actiliﬁ.fel".-'lask[‘l W] 0 o [Const -
~| [Selection To s : Cache E
A el Fetch ¥ S
. =«
Valid[1:N lssue axture =
At FARC - "Cache""]
; Branch Target PC N I
Fetch | R ~—1 SIMT-Stack y ;
oy el f-Buffer Active Wpred. ™. ALU QL. :
— o Operand & /
— I-Cache |-> Decode ¢ Issue |—> - ’
L Collector
B wen |
Done (WID)

*A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong and T. M. Aamodt, "Analyzing CUDA workloads using a detailed GPU
simulator," 2009 IEEE International Symposium on Performance Analysis of Systems and Software, Boston, MA, 2009.

FlexGrip*: A soft GPGPU for FPGAs

- HDL implementation based on Nvidia G80 architecture

Warp Unit Fetch Decode Read Execute Write
Warp (ID, PC, Mask)]]] _
Warp 2 ; | e)
= 3|k 2 Coeene - 1| 5| s
4/8 o o o ;
PC[Mask]| State R 4 4 i {HERN 2 23
@ @ @ AL
= 3 BT [Y [Comerewmn [[G
Instruction E—’ i:% - i:% D
: F J a2 [(5RC | CoEsT]
PC| Mask| State
Warp N - 1) Pred Regs
] | N A L |t ’ Wamstack
x33
PC —
A Nx32 Nx32 ¢ Nx32
— Warp (ID, PC, Mask) N Vector Register File
----- » Warp ID ¥ Addr Regs » ¢
—sData e d » <
—~4¥ Vector Data Nx32
— Address
—~) Vector Address System Memory Global / Constant / Shared Memory
— Mask
* K. Andryc, M. Merchant and R. Tessier, "FlexGrip: A soft GPGPU for FPGAs," 2013 International Conference on Field-Programmable Technology (FPT), 1 2

Kyoto, 2013, pp. 230-237.

Proposed Flow

FlexGrip

HDL Impl.

Netlist
to PDD

Fault
Injection

Manager

=
GPGPU PDD
Present.

SEU/SEMU
Fault List

Fault
Location
Manager

Propagation
Paths

SET
Analyzer

Experimental Setup

Synthesized SM architecture
~50K gates, ~1.5M logical paths

Implemented usir - o
Streaming Processor SET sensitivity

SET analysis
Eight different type 1‘;3 _]
- 1,000 random 1nje —, | ;-)
R
Applications (input = 22
Matrix multiplicatic | EFiltered(%)
S | so
FEFT kS 40 - = W Partially Filtered(%)
Sobel fﬂter %D 30 A B W Broadened(%)
J 20 - —
10 | i I t
0 - T T T | T T T
o'-\’& 0?’& Q?(*"& 0?’& Q‘.)"’& 0(9& 0/-\& oc-b(&

Wrong Result [%]

Experimental Result

401

350

30E)

250

200

150

100

0,12

0,30

0,450

0,50

0,550

0,60

0,70

Matrix@lainkl
FFT@laink
Sobel@®laink
MatrixBABFTE
FFTEABFTER

SobelPABFTE

SET pulse length [ns]

Time Out [%]

Experimental Result

5
4,58
47
3,50
33
2,50
20
1,50
10
0,52

Orl

0,11

0,31

0,450

0,50 0,550 0,60

0,70

0,80

17

Matrix@lainkl
FFTElainkl
Sobel@Plainkl
MatrixBABFTE
FFTEABFTE

SobelPABFTE]

SET pulse length [ns]

tal Result

Experimen

Matrix@laink]
Sobel®lain
MatrixCGABFTE]
FFTRABFTR
SobelPABFTE]

FFT@PIlaink

0,3@ 0,45@ 0,57 0O,55(

0,10

[%] PassBIN

SET pulse length [ns]

In-Field GPGPU Test with Software-Based Self-
Test Techniques®

- Analyze the effects of permanent faults in the GPGPU operation

PR

* B. Du, Josie E. Rodriguez Condia, M. Sonza Reorda, L. Sterpone, accepted in IOLTS2018

In-Field GPGPU Test with Software-Based Self-
Test Techniques®

- Develop effective SBST techniques for testing
permanent faults

- based on architectural or structural description of
modules (Self-test program)

- at-speed and in-field
* non-intrusive

- flexibility

* cost

* B. Du, Josie E. Rodriguez Condia, M. Sonza Reorda, L. Sterpone, accepted in IOLTS2018

FlexGrip*: A soft GPGPU for FPGAs

- HDL implementation based on Nvidia G80 architecture

BLOCK Opcode Description
T WARP SCH EDULER 121 Copy integer value to integer with conversion
SCHEDULER [0 | Pc | STACK | IMUL/ Integer multiply
IMUL32/
Control < IMUL321
‘ - SHL Shift left
Ioglc IADD Integer addition between two registers
GLD Load from global memory
R2A Move register to address register
R2G Store to shared memory
BAR Barrier synchronization
EXECUTION STAGE SHR Shift right
BRA Conditional branch
|| “es ISET Integer conditional set
MOV/ Move register to register
SYSTEM »{ FETCH | | DECODE | | READ WRITEBACK {H | | Mov=2 y |
L » -~ ~ N RET Conditional return form kernel
M E MO RY o STAG E STAG E STAG E STAG E MOV R, S]] Load from Islhared memory .
. IADD, SJ], | Integer addition between shared memory and register
. . R
GST Store to global memory
ves AND C[], R Logical AND
IMAD/ Integer multiply-add; all register operands
IMAD32
1 hl. __________________ - SSY Set synchronization point; used before potentially
I | divergent instructions
IADDI Integer addition with an immediate operand
| CONSTANT SHARED FI LE Iﬁ' NOP No operation
1 @p Predicated execution
STREAMING I MEMORY MEMORY REGISTERS | MVI Move immediate to destination
XOR Logical XOR
MULTIPROCESSOR L e e — — = — — — — = | IMADI/ Integer multiply-add with an immediate operand
MAD321
LLD Load from local memory
< LST Store to local memory
G LO BAL M E M O RY A2R Move address register to data register

* K. Andryc, M. Merchant and R. Tessier, "FlexGrip: A soft GPGPU for FPGAs," 2013 International Conference on Field-Programmable Technology (FPT), 2 O
Kyoto, 2013, pp. 230-237.

Warp Unit (Thread Scheduler) in FlexGrip

Execution units in the pipeline are similar to normal processor and well
addressed 1n literatures for testing such as Adder, Multiplier etc.

In charge of wrap and thread scheduling, synchronization

Ao sM
Warp ID ™ i
Block Calchator Warp q Warp
Scheduler > (GGenerator Pool
Memory
— 2
Fence Warp
Registers Scheduler | —
e
- State
Warp Memory
Checker [€
>
" to SM to SM From S rite pipeline

Proposed Methods

- M1 based on creating divergence paths among threads and detect by
checking timing information
targets the permanent faults affecting the ID field of the warp pool line
faults affecting the bits in warp PC by extra comparisons

- M2 1nserts extra global memory access instructions in divergence
paths and detect by checking timing information and/or global
memory checking

slower global memory access could enlarge timing difference for easing fault
detection effort

faults causing “stuck” thread could be easily detected by memory checking

- M3 writes thread signature to global memory and detect by memory
checking only

does not depend on availability of performance monitor resources

Proposed Methods

j <0 » Initialize divergence control var.
» Normal app. Execution
Sig per_thread[] <« © » Initialize signature (M3)
for i € {set of ThreadId in SM} do » Evaluate for every ThreadlD
if i == j then » If ThreadlID Matches

Divergence_path_GroupA(); » Divergence path Group A
NOP » Not operation instruction
Thread_Store_in_memory(); » Memory results store (M2)
Sig per_thread[i] « Sig_per_thread[i]+1 | Set signature (M3)
Sig store_in_memory(); » Store signature M3)

else

Divergence_path_GroupB ();

» Divergence path Group B

Jej+l

» Move to next ThreadlD

Experimental Setup

FleXGrlp
Removed FPGA (Xilinx Virtex6) library dependency
Replaced with generic VHDL implementations
Synthesized with OpenCell library using Synopsys Design Compiler
RegisterFile/Memory components are kept back as behavioral model
Post-Synthesis netlist 1s extracted

Fault injection campaign

targets on warp pool memory lines (2048 sites) and interface connection with
other modules (478 sites)

stuck-at faults
test program based on VectorAdd sample program
FlexGrip configured to with one grid, 256 blocks and 24 threads per wrap

Experimental Results

e ecoraaa | w1 w2 | wa

Total Faults 2,048 2,048 2,048 2,048
Testable Faults 984 984 984 984
Detected Faults 624 728 984 984

Hang 440 613 616 616

Memory

Mismatch 164 Lo He 208

Performance

Degradation 0 0 250 °
Testable Fault 63.41 73.98 100 100
Coverage (%

Fault Coverage (%) 30.46 39.54 48.04 48.04

Conclusions

- The key 1dea 1s to generate divergence paths of thread execution and
use performance variation among the threads and/or memory write of
signature in global memory for testing and detecting permanent
faults in thread scheduler.

- M3 is effective even with only final memory checking.

SBST method 1s applicable for testing GPGPU and could achieve high
fault coverage.

Other modules? Multiple Streaming Multiprocessors? Block
Scheduler?

Other faults? Transient faults? Online testing?

- Mitigation Techniques?

Ongoing Activities

FlexGrip Modifications
Extension of currently supported instructions
Extension of functionalities (e.g. Multiple SMP)

SBST targeting on other modules
Embedded GPGPU

Timing, performance, reliability

Nvidia Jetson
HLS on Xilinx FPGA, OpenCL support

GPGPU acceleration of testing (analysis) automation

Thank You For Your Attention!

- Questions?

- email: boyang.du@polito.it

