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in safety critical applications such as the automotive ones due to their capabilities in data BLOCK .| WARP SCHEDULER » Application code case Z: » Thrd. execution for threadldx.x = Z
intensive processing operations. SCHEDULER D | PC | STACK | TEST_N: Thread_final_Store(); ® Store of results in global memory
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In these field, the GPGPUs must match a set of safety standards to guarantee the correct in-field MULTIPROCESSOR e ——— - ————— J Eﬂaenriory cyr—— igg ﬁi ﬁg gég
operation (15026262, IEC 61508). Performance degradation 0 0 256 0
These regulations include the requirements of functional safety of electronic systems and correct GLOBAL MEMORY < Testable Fault coverage (%) 63.41 73.98 100 100
execution of internal modules (Safety, Reliability). AUBCOTEIELE () : 3046 35.54 48.04 48.04
Requirements are not easily evaluated during in-field operation. Hence, techniques are required Interconections (WARP Scheduler - Shader)
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We aim first analyzing the effects of permanent faults in the GPGPU operation. Bl SAE Elebs El Sl L S CeELTD AETEL DA s me limsias 20 2L 2t e
Performance degradation 0 0 64 0
Fault Coverage (%) 32.42 37.02 49.79 49.37
FIELDS Warp Actual. MASK M1 is able to detect some faults; however, the fault coverage is low.
Warp. PC M2 achieves higher fault coverage by introducing store instruction to access global memory to
BASED ON - Thread Divergence. - Bottleneck of global - M2 method with a increasg perfor.m:?mce va.riation among different divergencg paths. _ .
: - Thread Routine placement memory storage. Thread signature storage. M3 achieves similarly high fault coverage by only checking the final results in global memory,
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i ] code with the SBST Conclusions:
, | method. * First, we experimentally proved the serious effects that permanent faults in the scheduler may
A 2N 25 | _ » _ cause.
ADVANTAGE - Faults identified .by ) _ Performance - Use (_)f results in m(.emory  The key idea of proposed methods is their capability to generate divergence paths of thread
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permanent fault in SMO actual mask and System hanging. - Memory  mismatch observability). * Fault injection campaigns have been carried out using FlexGrip. Results indicate that both
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Secondly, we aim at developing effective Software-based Self-Test(SBST) [1] techniques in observability). * The M3 method requires only to check the final results in memory after test program
presence of permanent faults. General Pseudo-code to describe the proposed algorithms to test the scheduler Memory. execution, which is a typical mechanism used in processor SBST techniques.
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