
IN-FIELD GPGPU TEST WITH SBST TECHNIQUES

General Purpose Graphical Processing Units (GPGPUs) are increasingly used as effective solutions
in safety critical applications such as the automotive ones due to their capabilities in data
intensive processing operations.

j ← 0 ► Clear constant
… ► Normal app. Execution

Sig_per_thread[] ← 0 ► Initialize signature (M3)
for i ϵ {set of ThreadId in SM} do ► Evaluate for every ThreadID

 if i == j then ► If ThreadID Matches

 Divergence_path_GroupA(); ► Divergence path Group A
 NOP ► Not operation instruction

 Thread_Store_in_memory(); ► Memory results store (M2)
 Sig_per_thread[i] ← Sig_per_thread[i]+1 ► Set signature (M3)
 Sig_store_in_memory(); ► Store signature (M3)
 else
 Divergence_path_GroupB (); ► Divergence path Group B
 j ←j+1 ► Change constant value

… ►Application code

GLD Rx, g[0x06] ►Move of threadIdx.x (stored in shared memory)
MVI Ry, Z ►Move constant parameter per SP (from 0 to (Z-1))
… ►Application code
TEST_N:

AND Rx, Ry ►Comparison (Z) and threadIdx.x

SSY Dir_1 ►Convergence point definition

BRANCH Dir_2 ►Conditional evaluation

NOP ►Divergence Path

NOP
Dir_2:GST M[Ra],Rb ►Convergence Path, Storage thread results

Dir_1: NOP.S ►Warp branch stack release (Convergence point)
--- Repeat Z-1 times according to the number of threads per block.

… ► Normal application code

switch(threadIdx.x) ► Comparison of threadIdx.x

{
case Z: ►Thrd. execution for threadIdx.x = Z

Thread_final_Store(); ►Store of results in global memory

break;
… ►Comparison with other Z-1 value

} ►End of M2 code

Application Code VectorAdd M1 M2 M3

Total Faults 2,048 2,048 2,048 2,048

Testable Faults 984 984 984 984

Detected Faults 624 728 984 984

 Hang 440 613 616 616

 Memory Mismatch 184 115 112 368

 Performance degradation 0 0 256 0

Testable Fault coverage (%) 63.41 73.98 100 100

Fault coverage (%) 30.46 35.54 48.04 48.04

Application Code VectorAdd M1 M2 M3

Total Fault 478 478 478 478

Testable Faults 277 277 277 277

Detected Faults 155 177 238 236

 Hang 105 157 154 161

 Memory Mismatch 50 20 20 75

 Performance degradation 0 0 64 0

Testable Fault Coverage (%) 55.95 63.89 85.92 85.20

Fault Coverage (%) 32.42 37.02 49.79 49.37

[1] Stefano Di Carlo; Giulio Gambardella; Marco Indaco; Ippazio Martella; Paolo Prinetto; Daniele Rolfo; Pascal Trotta, “A software-based self test of CUDA
Fermi GPUs”, 2013 18th IEEE European Test Symposium (ETS)
[2] A. Paschalis; D. Gizopoulos, “Effective software-based self-test strategies for on-line periodic testing of embedded processors”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Year: 2005, Volume: 24, Issue: 1, Pages: 88 – 99
[3] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault injectionbased AVF analysis of a GPU architecture,” in Proc. 8th IEEE Workshop Silicon Errors Logic
Syst. Effects, Year: 2012.
[4] J. Tan, Y. Yi, F. Shen, and X. Fu, “Modeling and characterizing GPGPU reliability in the presence of soft errors,” Parallel Comput., Year: 2013, vol. 39, no. 9,
Pages 520–532
[5] David Defour, Eric Petit, “A software scheduling solution to avoid corrupted units on GPUs”, Journal of Parallel and Distributed Computing, Year: 2016,
Volumes 90–91, Pages 1-8
[6] Kevin Andryc; Murtaza Merchant; Russell Tessier, “FlexGrip: A soft GPGPU for FPGAs”, 2013 International Conference on Field-Programmable Technology
(FPT), pp. 230 – 237

B. Du*, Josie E. Rodriguez Condia†, M. Sonza Reorda‡, L. Sterpone§
Electronic CAD & Reliability Group (CAD)

Politecnico di Torino, Torino, Italy
{*boyang.du, †josie.rodriguez, ‡matteo.sonzareorda, §luca.sterpone}@polito.it

INTRODUCTION FLEXGRIP GPGPU ARCHITECTURE

EVALUATION

PROPOSED METHODS

REFERENCES

METHOD M1 M2 M3

FIELDS Warp Actual. MASK
 Warp. PC

BASED ON - Thread Divergence.
- Thread Routine placement
in system memory.

- Bottleneck of global
memory storage.

- Mixing the application
code with the SBST
method.

- M2 method with a
Thread signature storage.

ADVANTAGE - Faults identified by
Performance degradation
(performance counters)
and System hanging.

- Performance
degradation
(performance counters).
- Memory mismatch
(memory content
observability).

- Use of results in memory
to verify the operation of
module (memory content
observability).

Motivation
We aim first analyzing the effects of permanent faults in the GPGPU operation.
(example)

Secondly, we aim at developing effective Software-based Self-Test(SBST) [1] techniques in
presence of permanent faults.
SBST are software routines developed to verify the integrity of internal modules of a system.
• Based on architectural or structural description of modules (Self-test program).
• Advantages by at-speed and in-field testing (functional testing).
• Non-intrusiveness
• Flexibility
• Test duration
The development of the functional test code addressing the several computational cores
composing a GPGPU can be done resorting to known methods developed for CPUs [2], for other
modules which are typical of a GPGPU we still miss effective solutions [3-5] . This work focuses on
the scheduler unit which is in charge of managing different scalar computational cores and the
different executed threads.
At first, we propose SBST methods for evaluating the fault coverage that can be achieved using an
application program. Then, we provide some guidelines for improving the achieved fault
coverage. Experimental results are provided on an open-source VHDL model of a GPGPU [6].

The methods are based on the memory line entry description for the models.
Entry line:

General Pseudo-code to describe the proposed algorithms to test the scheduler Memory.

H2020 Programme, under grant n. 722325.

Warp. STATE BLOCK CONFIG Warp. PC Warp Actual. MASK

.SASS CUDA C

Conclusions:
• First, we experimentally proved the serious effects that permanent faults in the scheduler may

cause.
• The key idea of proposed methods is their capability to generate divergence paths of thread

execution and use performance variation among the threads and/or final results in global
memory to detect permanent faults.

• Fault injection campaigns have been carried out using FlexGrip. Results indicate that both
method M2 and M3 are promising SBST methods able to achieve high fault coverage.

• The M3 method requires only to check the final results in memory after test program
execution, which is a typical mechanism used in processor SBST techniques.

Future works:
• To extend the characterization to further GPGPU modules and to compare the fault coverage

results with extended Instruction Set Architecture (ISA) fault simulators.
• To use the proposed techniques on gate-level netlist models and real GPGPU embedded

platforms.

Experimental results:
 Warp scheduler memory (Pool/Stack)

Original Image. Edge detection with Sobel filter. Edge detection result with a
 permanent fault in SM0 actual mask
 field (Thread 5), 8 threads per block.

In these field, the GPGPUs must match a set of safety standards to guarantee the correct in-field
operation (ISO26262, IEC 61508).
These regulations include the requirements of functional safety of electronic systems and correct
execution of internal modules (Safety, Reliability).
Requirements are not easily evaluated during in-field operation. Hence, techniques are required
to test them during in-field operation with respect to possible permanent faults arising when the
device is already deployed in the field.

Interconections (WARP Scheduler - Shader)

CAD Group

M1 is able to detect some faults; however, the fault coverage is low.
M2 achieves higher fault coverage by introducing store instruction to access global memory to
increase performance variation among different divergence paths.
M3 achieves similarly high fault coverage by only checking the final results in global memory,
taking advantage of a signature variable for each thread.

SYSTEM
MEMORY

BLOCK
SCHEDULER

WARP SCHEDULER

Control
logic

WRITEBACK
STAGE

EXECUTION STAGE

…

…

…

…

FETCH
STAGE

DECODE
STAGE

READ
STAGE

SHARED
MEMORY

CONSTANT
MEMORY

FILE
REGISTERS

GLOBAL MEMORY

STREAMING
MULTIPROCESSOR

Model simulation in:

