
IN-FIELD GPGPU TEST WITH SBST TECHNIQUES 

General Purpose Graphical Processing Units (GPGPUs) are increasingly used as effective solutions 
in safety critical applications such as the automotive ones due to their capabilities in data 
intensive processing operations. 

j ← 0                 ► Clear constant 
…                                                                                       ► Normal app. Execution 

Sig_per_thread[] ← 0                                                       ► Initialize signature                 (M3) 
for i ϵ {set of ThreadId in SM} do                                   ► Evaluate for every ThreadID 

     if i == j then                                                                   ► If ThreadID Matches 

          Divergence_path_GroupA();                                              ► Divergence path Group A  
              NOP ► Not operation instruction 

          Thread_Store_in_memory();                                  ► Memory results store           (M2) 
          Sig_per_thread[i] ← Sig_per_thread[i]+1            ► Set signature                          (M3) 
          Sig_store_in_memory();                                         ► Store  signature                     (M3) 
     else    
          Divergence_path_GroupB ();                                                ► Divergence path Group B  
     j ←j+1                                                                         ► Change constant value 

… ►Application code 

GLD Rx, g[0x06] ►Move of threadIdx.x (stored in shared memory) 
MVI Ry, Z ►Move constant parameter per SP (from 0 to (Z-1))  
… ►Application code  
TEST_N: 

AND Rx, Ry ►Comparison (Z) and threadIdx.x 

SSY Dir_1 ►Convergence point definition 

BRANCH Dir_2 ►Conditional evaluation 

NOP ►Divergence Path 

NOP   
Dir_2:GST M[Ra],Rb ►Convergence Path, Storage thread results 

Dir_1:  NOP.S ►Warp branch stack release (Convergence point) 
--- Repeat Z-1 times according to the number of threads per block. 

… ► Normal application code 

switch(threadIdx.x) ► Comparison of threadIdx.x 

{   
case Z:     ►Thrd. execution for threadIdx.x = Z 

Thread_final_Store();     ►Store of results in global memory 

break;   
… ►Comparison with other Z-1 value 

}                                            ►End of M2 code 

Application Code VectorAdd M1 M2 M3 

Total Faults 2,048 2,048 2,048 2,048 

Testable Faults 984 984 984 984 

Detected Faults 624 728 984 984 

      Hang 440 613 616 616 

      Memory Mismatch 184 115 112 368 

      Performance degradation  0 0 256 0 

Testable Fault coverage (%) 63.41 73.98 100 100 

Fault coverage (%) 30.46 35.54 48.04 48.04 

Application Code VectorAdd M1 M2 M3 

Total Fault 478 478 478 478 

Testable Faults 277 277 277 277 

Detected Faults 155 177 238 236 

        Hang 105 157 154 161 

        Memory Mismatch 50 20 20 75 

        Performance degradation  0 0 64 0 

Testable Fault Coverage (%) 55.95 63.89 85.92 85.20 

Fault Coverage (%) 32.42 37.02 49.79 49.37 
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INTRODUCTION FLEXGRIP GPGPU ARCHITECTURE 

EVALUATION 

PROPOSED METHODS 

REFERENCES 

METHOD M1 M2 M3 

FIELDS Warp Actual. MASK                  
 Warp. PC 

BASED ON - Thread Divergence. 
- Thread Routine placement 
in system memory. 

- Bottleneck of global 
memory storage. 

- Mixing the application 
code with the SBST 
method. 

- M2 method with a 
Thread signature storage. 

ADVANTAGE - Faults identified by 
Performance degradation 
(performance counters) 
and System hanging. 

- Performance 
degradation 
(performance counters). 
- Memory mismatch 
(memory content 
observability). 

- Use of results in memory 
to verify the operation of 
module (memory content 
observability). 

Motivation 
We aim first analyzing the effects of permanent faults in the GPGPU operation.      
(example) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Secondly, we aim at developing effective Software-based Self-Test(SBST) [1] techniques in 
presence of permanent faults. 
SBST are software routines developed to verify the integrity of internal modules of a system. 
• Based on architectural or structural description of modules (Self-test program). 
• Advantages by at-speed and in-field testing (functional testing). 
• Non-intrusiveness 
• Flexibility 
• Test duration 
The development of the functional test code addressing the several computational cores 
composing a GPGPU can be done resorting to known methods developed for CPUs [2], for other 
modules which are typical of a GPGPU we still miss effective solutions [3-5] . This work focuses on 
the scheduler unit which is in charge of managing different scalar computational cores and the 
different executed threads. 
At first, we propose SBST methods for evaluating the fault coverage that can be achieved using an 
application program. Then, we provide some guidelines for improving the achieved fault 
coverage. Experimental results are provided on an open-source VHDL model of a GPGPU [6]. 

The methods are based on the memory line entry description for the models. 
Entry line:  

General  Pseudo-code to describe the proposed algorithms to test the scheduler Memory. 
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Conclusions:  
• First, we experimentally proved the serious effects that permanent faults in the scheduler may 

cause. 
• The key idea of proposed methods is their capability to generate divergence paths of thread 

execution and use performance variation among the threads and/or final results in global 
memory to detect permanent faults. 

• Fault injection campaigns have been carried out using FlexGrip. Results indicate that both 
method M2 and M3 are promising SBST methods able to achieve high fault coverage. 

• The M3 method requires only to check the final results in memory after test program 
execution, which is a typical mechanism used in processor SBST techniques.  

Future works: 
• To extend the characterization to further GPGPU modules and to compare the fault coverage 

results with extended Instruction Set Architecture (ISA) fault simulators. 
• To use the proposed techniques on gate-level netlist models and real GPGPU embedded 

platforms. 

Experimental results: 
                                                       Warp scheduler memory (Pool/Stack) 

Original Image.           Edge detection with Sobel filter.              Edge detection result with a 
                     permanent fault in SM0 actual mask 
                     field (Thread 5), 8 threads per block. 

In these field, the GPGPUs must match a set of safety standards to guarantee the correct in-field 
operation (ISO26262, IEC 61508).  
These regulations include the requirements of functional safety of electronic systems and correct 
execution of internal modules (Safety, Reliability). 
Requirements are not easily evaluated during in-field operation. Hence, techniques are required 
to test them during in-field operation with respect to possible permanent faults arising when the 
device is already deployed in the field. 

Interconections (WARP Scheduler - Shader) 

CAD Group 

M1 is able to detect some faults; however, the fault coverage is low. 
M2 achieves higher fault coverage by introducing store instruction to access global memory to 
increase performance variation among different divergence paths. 
M3 achieves similarly high fault coverage by only checking the final results in global memory, 
taking advantage of a signature variable for each thread. 
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