IN-FIELD GPGPU TEST WITH SBST TECHNIQUES

CAD Group B. Du*, Josie E. Rodriguez Condia®, M. Sonza Reorda?, L. Sterpone$
Electronic CAD & Reliability Group (CAD)

% RESCUE Politecnico di Torino, Torino, Italy

European Training Network * +- . . i § . .
_ 42020 rogramme,undergran . 722525 {*boyang.du, "josie.rodriguez, *matteo.sonzareorda, 3luca.sterpone}@polito.it

INTRODUCTION FLEXGRIP GPGPU ARCHITECTURE A —
» Application code » Normal application code
General Purpose Graphical Processing Units (GPGPUs) are increasingly used as effective solutions snLle ::’;’ 5[0’(06] :mgzg 22;:{::5;1’;:;5(::;?2;:;‘Q?greodmmoe:)o(rzy)l) :W'tCh(threadldX'x) > Comparison of threadidx.x
in safety critical applications such as the automotive ones due to their capabilities in data BLOCK .| WARP SCHEDULER » Application code case Z: » Thrd. execution for threadldx.x = Z
intensive processing operations. SCHEDULER D | PC | STACK | TEST_N: Thread_final_Store(); ® Store of results in global memory
Control AND Rx, Ry » Comparison (Z) and threadldx.x break;
. ¢ SSY Dir_1 P Convergence point definition » Comparison with other Z-1 value
Surround View |OgIC BRANCH Dir_2 P Conditional evaluation } » End of M2 code
NOP » Divergence Path
Traffic Sign NoP
Recognition ' EXECUTION STAGE Dir_2:GST M[Ra],Rb P Convergence Path, Storage thread results
‘9 Dir_1: NOP.S » Warp branch stack release (Convergence point)
; J || --- Repeat Z-1 times according to the number of threads per block.
st R rakhsSEE SYSTEM »{ FETCH | | DECODE| | READ WRITEBACK EVALUATION
ion. Vi > > > " >
.= ing IR MEMORY » STAGE | | STAGE || sTAGE STAGE =
| » y 4 : : Model simulation in: ModelSim
Lane Departure . .
Warning | Experimental results:
=> | I Long-Range Radar : Warp scheduler memory (Pool/Stack)
=>| B LIDAR Surround View “I_ —————————————————) Application Code VectorAdd M1 M2 M3
nd Camera I Total Faults 2,048 2,048 2,048 2,048
= | M Short-/Medium-Range Radar L COBURIET - SlRlAHAD FILE 1] Testable Faults 984 984 984 984
B Ultrasound STREAMING | MEMORY || MEMORY || REGISTERS : Detected Faults 624 728 984 984
In these field, the GPGPUs must match a set of safety standards to guarantee the correct in-field MULTIPROCESSOR e ——— - ————— J Eﬂaenriory cyr—— igg ﬁi ﬁg gég
operation (15026262, IEC 61508). Performance degradation 0 0 256 0
These regulations include the requirements of functional safety of electronic systems and correct GLOBAL MEMORY < Testable Fault coverage (%) 63.41 73.98 100 100
execution of internal modules (Safety, Reliability). AUBCOTEIELE () : 3046 35.54 48.04 48.04
Requirements are not easily evaluated during in-field operation. Hence, techniques are required Interconections (WARP Scheduler - Shader)
. P RO P OS E D M ET H O DS Application Code VectorAdd M1 M2 M3
to test them during in-field operation with respect to possible permanent faults arising when the - L e 278 278 178 278
device is already deployed in the field. The methods are based on the memory line entry description for the models. Testable Faults 277 277 277 277
] . Entry line: Detected Faults 155 177 238 236
Motauon | Warp. STATE | BLOCKCONFIG | Warp.PC___| Warp Actual. MASK _
We aim first analyzing the effects of permanent faults in the GPGPU operation. Bl SAE Elebs El Sl L S CeELTD AETEL DA s me limsias 20 2L 2t e
Performance degradation 0 0 64 0
Fault Coverage (%) 32.42 37.02 49.79 49.37
FIELDS Warp Actual. MASK M1 is able to detect some faults; however, the fault coverage is low.
Warp. PC M2 achieves higher fault coverage by introducing store instruction to access global memory to
BASED ON - Thread Divergence. - Bottleneck of global - M2 method with a increasg perfor.m:?mce va.riation among different divergencg paths. _ .
: - Thread Routine placement memory storage. Thread signature storage. M3 achieves similarly high fault coverage by only checking the final results in global memory,
/.- 1 L in system memory. - Mixing the application taking advantage of a signature variable for each thread.
i] code with the SBST Conclusions:
, | method. * First, we experimentally proved the serious effects that permanent faults in the scheduler may
A 2N 25 | _ » _ cause.
ADVANTAGE - Faults identified .by) _ Performance - Use (_)f results in m(.emory The key idea of proposed methods is their capability to generate divergence paths of thread
: L W Vg < B RaS 4 | Performance degradation degradation to verify the operation of execution and use performance variation among the threads and/or final results in global
Original Image. Edge detection with Sobel filter. - Edge detection result with a (performance) counters) (performance Cour?ters)' module (Temory content memory to detect permanent faults.
permanent fault in SMO actual mask and System hanging. - Memory mismatch observability). * Fault injection campaigns have been carried out using FlexGrip. Results indicate that both
field (Thread 5), 8 threads per block. (memory.) el method M2 and M3 are promising SBST methods able to achieve high fault coverage.
Secondly, we aim at developing effective Software-based Self-Test(SBST) [1] techniques in observability). * The M3 method requires only to check the final results in memory after test program
presence of permanent faults. General Pseudo-code to describe the proposed algorithms to test the scheduler Memory. execution, which is a typical mechanism used in processor SBST techniques.
SBST are software routines developed to verify the integrity of internal modules of a system. j<0 » Clear constant Future works:
e Based on architectural or structural description of modules (Self-test program). » Normal app. Execution * To extend the characterization to further GPGPU modules and to compare the fault coverage
* Advantages by at-speed and in-field testing (functional testing). Sig_per_thread[] < 0 > Initialize signature (M3) results with extended Instruction Set Architecture (ISA) fault simulators.
* Non-intrusiveness for_ie {s_et of Threadlid in SM} do » Evaluate for every ThreadID * To use the proposed techniques on gate-level netlist models and real GPGPU embedded
) FIexibiIity. if i == j then » If ThreadID Matches platforms.
* Testduration _ _ _ Divergence_path_GroupA(); » Divergence path Group A REFERENCES
The development of the functional test code addressing the several computational cores NOP > N L : , — _ —
. b d . k h d d | d f C 2 f h ot Operatlon Instruction [1] Stefano Di Carlo; Giulio Gambardella; Marco Indaco; Ippazio Martella; Paolo Prinetto; Daniele Rolfo; Pascal Trotta, “A software-based self test of CUDA
cr;:)g:jz(l)esén\l%halcipa(::li Cai:al sf aogli(;iijoifllenftm) mrI]SZ.V;?fen(]jtelt/eOSCjut?(\)/ESO[F;?S] o-lr-'hls\l;ij)Ek]ngCol:SZZ oer: T!1read—Store—in.—men:‘ory(); . > Memory reSUItS store (MZ) [F:]m: (;I;Scsi:;ﬁs(:l;.12::2:555:rSEf?‘::t:\-/ZStscS):‘ltrUvF;cr):i-z?sézTiLlf-test strategies for on-line periodic testing of embedded processors”, IEEE Transactions on
) yp o)) T Slg_per_thread[l] & Slg_per_thread[|]+1 » Set SIgnature (M3) Computer-Aided Design of Integrated Circuits and Systems, Year: 2005, Volume: 24, Issue: 1, Pages: 88 — 99
the scheduler unit which is in charge of managing different scalar computatlonal cores and the Sig store in memory(), » Store Signature (M3) [3] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault injectionbased AVF analysis of a GPU architecture,” in Proc. 8th IEEE Workshop Silicon Errors Logic
. — - — ’ Syst. Effects, Year: 2012.
dlfferent executed threads' else [4] J. Tan, Y. Yi, F. Shen, and X. Fu, “Modeling and characterizing GPGPU reliability in the presence of soft errors,” Parallel Comput., Year: 2013, vol. 39, no. 9,
. Pages 520-532
At f”jSt' Yve propose SBST methods fOf' e.'valuatlng the _faUI_t Coverag_e that C_an be achlev?d using an Dlvergence_path_GroupB (); > Dlvergence path GrOUp B [5] David Defour, Eric Petit, “A software scheduling solution to avoid corrupted units on GPUs”, Journal of Parallel and Distributed Computing, Year: 2016,
application program. Then, we provide some guidelines for improving the achieved fault j <j+1 » Change constant value Volumes 90-91, Pages 1-8

[6] Kevin Andryc; Murtaza Merchant; Russell Tessier, “FlexGrip: A soft GPGPU for FPGAs”, 2013 International Conference on Field-Programmable Technology

coverage. Experimental results are provided on an open-source VHDL model of a GPGPU [6]. (FPT). b 230 - 237

