

IN-FIELD GPGPU TEST WITH SBST TECHNIQUES

B. Du*, Josie E. Rodriguez Condia⁺, M. Sonza Reorda[‡], L. Sterpone[§]

Electronic CAD & Reliability Group (CAD)

Politecnico di Torino, Torino, Italy

{*boyang.du, [†]josie.rodriguez, [‡]matteo.sonzareorda, [§]luca.sterpone}@polito.it

INTRODUCTION

General Purpose Graphical Processing Units (GPGPUs) are increasingly used as effective solutions in safety critical applications such as the automotive ones due to their capabilities in data intensive processing operations. Surround View **Traffic Sign** Recognition Adaptive Cruise Control Park Assistance edestrian De urround View Lane Departure Warning Long-Range Radar LIDAR Surround View Camera Short-/Medium-Range Radar Ultrasound

In these field, the GPGPUs must match a set of safety standards to guarantee the correct in-field operation (ISO26262, IEC 61508)

These regulations include the requirements of functional safety of electronic systems and correct execution of internal modules (Safety, Reliability).

Requirements are not easily evaluated during in-field operation. Hence, techniques are required to test them during in-field operation with respect to possible permanent faults arising when the device is already deployed in the field.

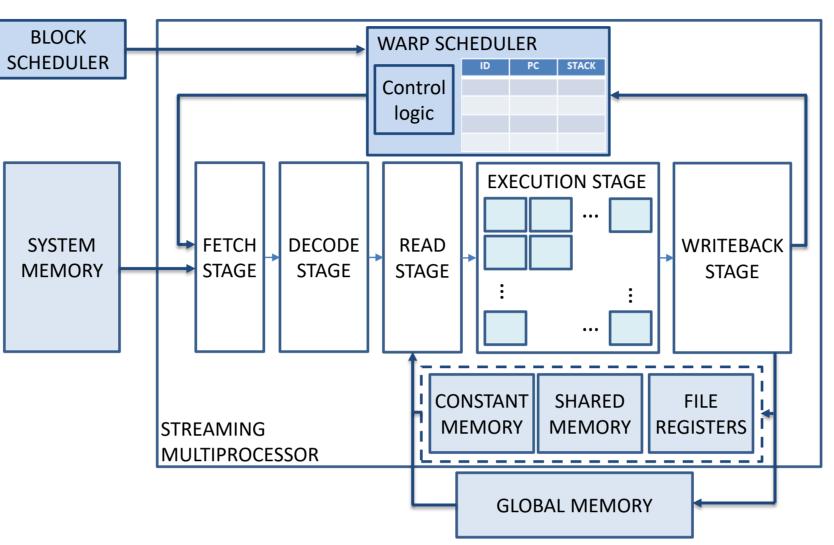
Motivation

We aim first analyzing the effects of permanent faults in the GPGPU operation. (example)

Edge detection result with a permanent fault in SMO actual mask field (Thread 5), 8 threads per block.

Secondly, we aim at developing effective Software-based Self-Test(SBST) [1] techniques in presence of permanent faults.

SBST are software routines developed to verify the integrity of internal modules of a system.

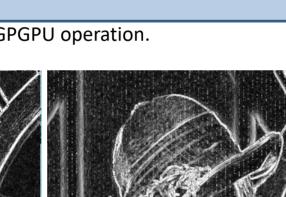

dge detection with Sobel filter.

- Based on architectural or structural description of modules (**Self-test program**).
- Advantages by **at-speed** and **in-field** testing (**functional testing**).
- Non-intrusiveness
- Flexibility
- Test duration

The development of the functional test code addressing the several computational cores composing a GPGPU can be done resorting to known methods developed for CPUs [2], for other modules which are typical of a GPGPU we still miss effective solutions [3-5]. This work focuses on the scheduler unit which is in charge of managing different scalar computational cores and the different executed threads.

At first, we propose SBST methods for evaluating the fault coverage that can be achieved using an application program. Then, we provide some guidelines for improving the achieved fault coverage. Experimental results are provided on an open-source VHDL model of a GPGPU [6].

BLOCK



The methods are based on the memory line entry description for the models. Entry line:

Wa	rp. STATE BLOCK	CONFIG	Warp. PC	V	Varp Actual. MASk	۲. Example 2
METHOD	M1		M2		M3	
FIELDS			Warp Actual. N Warp. PC			
BASED ON	 Thread Divergence Thread Routine pl in system memory. 			ge. oplication	- M2 method Thread signature s	
ADVANTAGE	- Faults identif Performance deg (performance deg and System hanging	gradation de ounters) (p g (n	egradation erformance cou	ormance Inters). nismatch content	- Use of results in to verify the ope module (memory observability).	ration of

General Pseudo-code to describe the proposed algorithms to test the scheduler Memory.

j ← 0	Clear constant		
	Normal app. Execution		
Sig_per_thread[] ← 0	► Initialize signature (N	13)	
for i ε {set of ThreadId in SM} do	SM} do Evaluate for every ThreadID		
if i == j then	If ThreadID Matches		
Divergence_path_GroupA(); ► Divergence path Gr			
NOP	Not operation instruction		
Thread_Store_in_memory();	Memory results store (N)	12)	
<pre>Sig_per_thread[i]</pre>	► Set signature (N		
Sig_store_in_memory();	► Store signature		
else			
Divergence_path_GroupB ();	Divergence path Group B		
j ←j+1	Change constant value		

FLEXGRIP GPGPU ARCHITECTURE

PROPOSED METHODS

UDA C				
switch(threadId				
{				
case Z:				
Thread_final_St				
break;				
}				
-				
s { c t				

Model simulation in: Experimental results:

Warp scheduler memory (Pool/Stack

warp scheduler memory (Pool/Stack)					
Application Code	VectorAdd	M1	M2	M3	
Total Faults	2,048	2,048	2,048	2,048	
Testable Faults	984	984	984	984	
Detected Faults	624	728	984	984	
Hang	440	613	616	616	
Memory Mismatch	184	115	112	368	
Performance degradation	0	0	256	0	
Testable Fault coverage (%)	63.41	73.98	100	100	
Fault coverage (%)	30.46	35.54	48.04	48.04	
Interconections (WARP Scheduler - Shader)					
Application Code	VectorAdd	M1	M2	M3	
Total Fault	478	478	478	478	
Testable Faults	277	277	277	277	
Detected Faults	155	177	238	236	
Hang	105	157	154	161	
Memory Mismatch	50	20	20	75	
Performance degradation	0	0	64	0	

Hang	105
Memory Mismatch	50
Performance degradation	0
Testable Fault Coverage (%)	55.95
Fault Coverage (%)	32.42

M1 is able to detect some faults; however, the fault coverage is low M2 achieves higher fault coverage by introducing store instruction to access global memory to increase performance variation among different divergence paths. M3 achieves similarly high fault coverage by only checking the final results in global memory, taking advantage of a signature variable for each thread.

Conclusions:

- First, we experimentally proved the serious effects that permanent faults in the scheduler may cause.
- The key idea of proposed methods is their capability to generate divergence paths of thread execution and use performance variation among the threads and/or final results in global memory to detect permanent faults.
- Fault injection campaigns have been carried out using FlexGrip. Results indicate that both method M2 and M3 are promising SBST methods able to achieve high fault coverage.
- The M3 method requires only to check the final results in memory after test program execution, which is a typical mechanism used in processor SBST techniques.

Future works:

- To extend the characterization to further GPGPU modules and to compare the fault coverage results with extended Instruction Set Architecture (ISA) fault simulators.
- To use the proposed techniques on gate-level netlist models and real GPGPU embedded platforms.

REFERENCES

[1] Stefano Di Carlo; Giulio Gambardella; Marco Indaco; Ippazio Martella; Paolo Prinetto; Daniele Rolfo; Pascal Trotta, "A software-based self test of CUDA Fermi GPUs", 2013 18th IEEE European Test Symposium (ETS) [2] A. Paschalis; D. Gizopoulos, "Effective software-based self-test strategies for on-line periodic testing of embedded processors", IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, Year: 2005, Volume: 24, Issue: 1, Pages: 88 – 99 [3] N. Farazmand, R. Ubal, and D. Kaeli, "Statistical fault injectionbased AVF analysis of a GPU architecture," in Proc. 8th IEEE Workshop Silicon Errors Logic Syst. Effects, Year: 2012.

[4] J. Tan, Y. Yi, F. Shen, and X. Fu, "Modeling and characterizing GPGPU reliability in the presence of soft errors," Parallel Comput., Year: 2013, vol. 39, no. 9, Pages 520–532

[5] David Defour, Eric Petit, "A software scheduling solution to avoid corrupted units on GPUs", Journal of Parallel and Distributed Computing, Year: 2016, Volumes 90–91, Pages 1-8

[6] Kevin Andryc; Murtaza Merchant; Russell Tessier, "FlexGrip: A soft GPGPU for FPGAs", 2013 International Conference on Field-Programmable Technology (FPT), pp. 230 – 237

	CNICO DI I CONCORTO I
	Normal application code
dv v)	 Normal application code Comparison of threadldy y
dx.x)	Comparison of threadIdx.x
	► Thrd. execution for threadIdx.x = Z
tere().	
Store();	Store of results in global memory
	Comparison with other Z-1 value
	► End of M2 code

I	V		
I	V	•	

63.89

37.02

85.92

49.79

85.20

49.37