

HBRP Publication Page 1-16 2021. All Rights Reserved Page 1

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

The Best Practices of Extreme Programming (XP) Quality

(Review)

Rana Alaudeen Abdulrahman
1
, Sawsan Ali Hamid

2*
, Dr. Ruaa Ali Khamees

3

1,3
Institute of Technology, Middle Technical University, Baghdad, Iraq.

2
College of Computer Science, Tikrit University, Tikrit, Iraq.

*
Corresponding Author

E-mail Id:-sawsan.ali@tu.edu.iq

ABSTRACT
Software engineering (SE) plays an important role for improving society‘s well-being

through the use of high quality software. There is noted that most of the software projects are

failed, due to missing or poor software development practices in software organizations. Due

to this reason, having a good and sound software development methodology is crucial for

software organization to satisfy stakeholder‘s requirements. One of the prevalent software

development methodologies in SE is Extreme programming (XP) methodology. As a matter of

fact, an appropriate software development methodology is a fundamental to reach

stakeholders’ satisfaction. Within context, it has been a notable failure in software

development projects due to the frailty usage of software development methodologies in

software organizations. However, Extreme Programming (XP) is an emerging software

development methodology that affects positively in term of quality, time and cost among other

methodologies.

Keywords:-Software engineering, agile software, Extreme programming (XP)

INTRODUCTION
Software engineering (SE) is an area that
deals with the field of software
construction engineering. As guidance in
software development, it has been held
systematic and has practical
methodologies. The software life cycle
consisting of the elicitation and review of
requirements, design specifications,
implementation, verification and
validation, deployment and maintenance
has been demonstrated [1]. Software
development processes are an important
part of software engineering, which
influence the product outcome [2,3].
Nowadays, business processes are more
complex, interconnected, interdependent,
and interrelated than ever before. Due to
this multifaceted nature of businesses, the
software industry is strongly going toward
the use of the methodologies which have
been developed from practices such as
agile methods[4,5]. Recently, the agile

methodologies family – such as Extreme
Programming (XP), Scrum, and Adaptive
Software (ASD), have become extremely
established in software engineering. In
general, agile is characterized by the
following attributes: incremental,
cooperative, straight forward, and
adaptive. However, agile methods are
iterative processes, where stakeholders and
developers work together effectively,
understand the system‗s idea, identify the
requirements, and prioritize the functions
of the system[6]. Additionally, agile
software methods emphasize on delivering
the software after iteration. They emerged
as a response to the inability of previous
plan driven approaches to handle rapidly
changing environments[7].

SOFTWARE DEVELOPMENT

PRACTICES METHODOLOGY
Software engineering methods often

introduce a new set of criteria for software

HBRP Publication Page 1-16 2021. All Rights Reserved Page 2

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

quality and a special language-oriented or

graphical notation[8,9]. A notation is a

system of characters, symbols or

abbreviated expressions used to express

technical facts or quantities and usually a

technique uses a notation [10]. For

example, structured analysis and design,

object-oriented analysis and design and

prototyping are methods. Techniques of

structured analysis and design are for

instance data flow diagrams and entity-

relationship diagrams that can be described

by using annotation. Paradigm the term

(software engineering) paradigm is often

used to refer to a set of steps that consist of

methods, tools and procedures [11,12]. A

paradigm is also used in order to perceive

the different phases in development.

Phases are decomposed into tasks and

activities and tools such as templates,

forms and checklists are used to complete

the tasks and activities [13,14].

Software engineering approaches from

part of a quality assurance system, and

may include methods such as waterfall,

prototyping, iterative and incremental

development, spiral development, rapid

application development, and extreme

programming [15-17]. Thus, study the

software development methodologies and

their stages is essential in improving the

software industry. The software

development process, along with its

associated systems analysis and design

phase, needs to be more adaptive as the

business community advances into the

future economy [18-21]. The process of

software development has progressed

through three significant historical stages,

including (1) developer-as-artist, (2)

developer-as-engineer, and (3) agile

methodologies [22-24].

According to Valacich, George, and

Hoffer [22] the first of these phases in

software development, developer-as-artist,

was evidenced by software developers not

documenting the programs being

developed or not utilizing automated tools

during the development process. The

software developers in this phase were

considered geniuses and artists as a high

degree of dependence on the software

developer was necessary for continued

maintenance. The next phase, developer-

as-engineer, was when organizations

brought more control and regulation to the

software development arena as the

development process and the lifecycle of

software development became a more

structured process[22]. This is where the

rise of a waterfall system development

methodology was formed, in which the

system development lifecycle is more of a

linear process and moves in strict order

from the actual software system concept

through the software system design,

implementation, testing, installation, and

troubleshooting, and finally ends up with

the ultimate operation and maintenance of

the software system [17,24].The rise of the

third phase, agile development

methodologies, has been ushered in over

the last few years as the growth of the

Internet economy and object-oriented

approaches have intersected [22].

According to Leffingwell [25] there are

several methodologies was developed by

the developers, one of the main software

development methodologies is an agile

methodology. Agile software development

methodologies require closer cooperation

between programmers and the ultimate

business user community that will

combine a number of software lifecycle

phases into fewer phases, and involve

multiple iterations of software

implementations within an application

system [26-28]. Prototyping, time

constraints, smaller project team members,

management involvement, and iterative

software development are all significant

components of the agile software

development process[29,30]. This new

concept of agile software development has

aided in adding value to software

HBRP Publication Page 1-16 2021. All Rights Reserved Page 3

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

generation and seems to fit into a world

where the requirements for businesses to

develop application software are at a faster

pace to meet the demands of a changing

environment [26,31].

AGILE SOFTWARE DEVELOPMENT
Agile software development is an

approach to software development that, in

addition to programming, concentrates on

subjects like project management and

teamwork. Agile is a philosophy or a way

of thinking about software development

and there is no single unified agile

methodology to follow [25,32-34]. The

term agile also refers to a number of

different iterative and incremental

software development methodologies that

share common principles and practices.

These methodologies emphasize people,

communication and the ability to adapt to

change rather than the process, tools and

predictive planning. The methodologies

―are processes that support the agile

philosophy‖ [26,32,35] and each of them

consists of individual practices and

techniques.

Many of the agile methodologies (then

called as lightweight) were created in the

1990s [26,36] as an alternative to the

traditional sequential (waterfall),

document-centric and often heavyweight

software development processes and their

problems. Although agile methodologies

are relatively new, some of their concepts

like Iterative and Incremental

Development (IID) can be traced back to

the 1930s [30,37,38]. NASA has used IID

in software projects since the 1960s and

IBM from the 1970s [37,39] and it has

been promoted by several software

development thought leaders since the

1970s [37,38]. Also the ideas of Lean

Product Development (used and

propagated by Toyota in automobile

production) have influenced the

development of agile methodologies

[35,36] as they spread to North America

and to the IT community at large in the

1980s[40]. The actual term agile software

development was coined in 2001 when 17

lightweight methodologists got together

[25,36] and they wrote the Agile

Manifesto based on four values as shown

below:
1. Individuals and interactions over

processes and tools

2. Working software over

comprehensive documentation

3. Customer collaboration over contract

negotiation

4. Responding to change over following

a plan)

According to Fowler and Highsmith[41]

the manifesto is also accompanied by the

following 12 principles that reflect its four

values as illustrated in Table 1.

Table 1:-Principles of the Manifesto for Agile Software Development[41]
Principles of Principles of the Manifesto for Agile Software Development

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness change for the

customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to

the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and support they need, and trust

them to get the job done.

6. The most efficient and effective method of conveying information to and within a development team is

face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and users should be able to

maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

HBRP Publication Page 1-16 2021. All Rights Reserved Page 4

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

10. Simplicity - the art of maximizing the amount of work not done - is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior

accordingly.

In general, it is confirmed that the agile

methodologies share many common

practices like iterative and incremental

development and delivery, adaptive

planning and put open face-to-face

communication and people before

documentation, processes and tools[25,

26] In addition, in addition to working and

delivering agile methodologies in short

iterations, an agile team acts as one

sharing a common purpose [42].

Irrespective of the positions, problems are

solved together. As the main means of

correspondence, records are no longer

transferred from one expert to another.

It sees programming as a detailed art. In

addition to writing the code, it also

requires the code's technological design

(modeling) and checking. Agile teams

concentrate company targets by delivering

complete user-valued features in customer

specified order to optimize the ROI [42].

Teams also have an onsite client

representative who works regularly with

the team to provide input and identify

software specifications [32,38]. This face-

to-face direct contact [43] (and other

practices) helps the team to build the

program without requiring comprehensive

written documentation (like a traditional

software requirement specification).

The following section will explain in detail

about XP. This highlighted in the next

section elements related to XP method, for

instance the definitions, values and the

twelve practices.

EXTREME PROGRAMMING

PRACTICES (XP)
XP was created by Kent Beck and Martin

Fowler [46] while working for Chrysler

Corporation and was first published in his

book[47].The name reflects the idea that

teams should take good, proven

engineering practices to the extreme[36].

XP stresses ―customer satisfaction through

rapid creation of high-value software,

skilful and sustainable software

development techniques and flexible

response to change‖ [37]. According to

Shore and Warden [32] XP project life-

cycle is divided into 1-4 week iterations

(preference on the shorter) and the teams

are relatively small (5-20 members). In

fact, the XP method involves a main four

values. In the following paragraph

discusses these values in more detail

[48,49]

Communication: XP encourages the team

members and users to own a shared view

on requirements. As a result of continuous

communication between the team

members as well as with the user, the

knowledge about the new system becomes

unified. Therefore, there are fewer

possibilities of ambiguities and

misunderstandings on requirements.

Projects developed with XP show that

good results can be obtained using sheets

of papers to collect user requirements, wall

boards to show diagrams and other

project-relevant information, and shared

workspaces to maximize face-to-face

communication.

Feedback: Developers must always

provide a means of collecting knowledge

about the phase of creation. There are

several aspects of feedback: the system,

client, and team members. System input

and team members seek to provide project

leaders with fast indicators of the su cess

of the project, while customer feedback

provides functional and acceptance checks.

Simplicity: It's one of the ideals that XP

directly supports. A simple design often

HBRP Publication Page 1-16 2021. All Rights Reserved Page 5

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

takes less time than a complicated one to

complete.

Thus, XP allows developers to begin with

the simplest solution. It is then possible

to add extra features later. The simplest

thing that might work, programmers do

and leave the machine in the simplest

state. This boosts the overall development

pace while also maintaining a focus on

working applications.

Courage: XP helps the members of the

team to make choices that help XP practice

implementation. In order to refactor the

software code, the team members need

courage. To promote the introduction of

potential improvements, the team members

review the current framework and alter it.

Furthermore, bravery can involve

eliminating sections of obsolete source

code, no matter how much effort has been

made to construct these parts.

The focus of XP's practices is on

programming and code quality, but it is

also a philosophy focused on teamwork

and teams. XP does not include other

comprehensive work items (like a

specifications specification document) but

software code and test cases. The

recommended way of dealing with

specifications and design is oral

communication. It is expected that the

entire team, including clients, developers

and managers, will work together in the

same project space to rapidly produce

high-quality applications [26,50]

In an XP project, the customer's job is to

document software requirements/features

as user stories, prioritize these stories by

their business value, and write and conduct

tests that prove that the stories are

implemented as planned.

The function of the XP programmer is

flexible and does not differentiate between

programmers, designers, testers, etc. All

programmers work as a team and share

roles that in a non-XP project might be

delegated to particular individuals. The

programmers are responsible for creating

job estimates for the user stories and

writing automated unit tests for all they

program, in addition to the design and

development tasks. The team can also have

an XP coach or a project manager who

supervises the use of XP procedures and

keeps the job running[25]. In addition to

the values and principles, XP includes

twelve software engineering practices

which it combines for greater synergy as

shows in Figure 1.

Fig.1:- Original XP practices [32,34,42,49]

HBRP Publication Page 1-16 2021. All Rights Reserved Page 6

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

On site customer: is the practice which

deals with the communication aspects

among the customers and developmental

team. It is an extremely important towards

producing quality software. In another

words, it concerns about many

characteristics in software engineering. For

example, the number and type of meetings

is a main target for this practice. It has

used to collect the software‘s requirements

and the feedback for versions previews of

software. Moreover, it refers to how many

times that the team spends with the

customer to set immediate and continuous

feedback when developing software. The

customers have to be available full-time

for the development team. On site

customer practice is looking for explaining

how to communicate with customers and

get the requirements and feedback from

them and how long take every meeting. As

well as, the activity of customers in

software development [1,2].

Planning game: it refers to agreed

statement by the client that demonstrates

what the system can do, determine the

target functions, and constrains of system.

The planning practice deals with writing

and documenting methods for system

needs and function and how to get the

requirements from clients. As well as,

estimate the development time and

prioritize the software requirements [3,4].

Collective Code Ownership: it considers

that the developed code is belonging to the

development team rather than the

individual member for the software. The

code must be available and accessible to

all developers of team. For this reason,

every developer is going to contribute and

add a new idea to all parts of software at

anytime and anywhere they gets an

opportunity to add new value and feel it is

an important without asking for

permission. As a final point, this practice

makes the code as a one repository and

reachable for all the programmer of project

team [5,6].

Coding Standard: in software

engineering industry, every project has a

set of coding rules. The main idea of this

practice is that developers should that the

entire developers of project team agree to

adhere and follow a common set of coding

standards on a software project throughout

the project. As well, this practice discuss

that the type of standard which use in this

project and what the responsibility of

developers for that selected standard. Just

like there is value in following common

coding conventions, clean code that

follows your chosen coding guidelines is

easier to understand and evolve than code

that doesn‘t, there is similar value in

following common modeling conventions.

In addition, developers also incorporate

coding standard practice with note taking

technique by adding comments to their

code. By applying this coding standard,

the code written by different team

members is easier to understand and helps

software reuse in the future projects [7-9].

Continuous Integration: this practice

refers to developers is able to merge code

into a shared depository several times a

day. It involves in continuous quality

control as small pieces of work are tested

frequently to provide continuous feedback

on the project‘s progress and to improve

the quality of software. Moreover, it cares

about how the development team uses it

and what the tool of this practice. On other

side, it replaces the traditional practice of

applying quality control only after

completing all development. It helps for

reducing developments risks. Continuous

integration guarantees that working

software is available to employ with new

features. It allow developers to learn,

interact, and share knowledge to enhance

learning process[1, 10].

HBRP Publication Page 1-16 2021. All Rights Reserved Page 7

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

Frequent Releases: this practice refers to

a team could launch code/module to the

user frequently and listening to feedback,

whether crucial or appreciative. It shortens

release cycle to speed the feedback from

the client. In condition, the requirements

often change, one keeps release cycles

short and ensures that each release

produces a beneficial software that makes

business value for the client. An early

version of the project is put into

production quickly, small iteration later. In

the end of every version, the client reviews

the interim product; identify defects and

adjusting changes and future requirements

to improve the software functions and

features [3, 11].

Sustainable Pace (40-Hours week):

sometime it is known as 40-weeks hours.

Extreme programming teams are in it for

the long term. They work hard, and at a

pace that can be sustained indefinitely.

This means that they work overtime when

it is effective, keeping them fresh, healthy,

as to reduce as much as possible mistakes

and that they normally work in such a way

as to maximize productivity week in and

week out. On other hand, they do not work

for more than 40 hours for week as a rule

and never overtime for two consecutive

weeks. It is pretty well understood these

days that death much quality software. XP

teams are in it to win, not to die [12,13].

Pair programming: this practice is one of

the primary practices of Extreme

Programming (XP). It is means that two

programmers can work and writes all

production code together as a pair on the

single computer, one is the driver (writes

code) while the other the observer will

assist the driver and suggest a solution. On

the other word, one writes the code and, at

the same time, another reviews the code

for correctness and understandability.

They have selected according to specific

criteria and they can switch their tasks. It

ensures that all written code is reviewed by

at least one other developer, resulting in

better design, better testing, and better

code. It may seem inefficient to have two

developers doing "one developer‘s job",

but the reverse is true. Research on pair

programming shows that pairing produces

better code in about the same time as

programmers working singly [14,15].

Test First Programming: this kind of

practice is known as unit test and test first

design also. It means that the software‘s

programmers make a prior test before

beginning the coding process. It helps

programmers to really get what needs to be

developed. The requirements of software

are nailed down firmly by these tests. It

clears the understanding a specification

written in the form of executable code. It is

often very difficult to test some software

systems. These systems are typically built

code first and testing second, often by a

different team entirely. By creating tests

first the programming will be influenced

by a desire to test everything of value to

your customer. The design will reflect this

by being easier to test [6,16].

Simple design: XP follows the principle

‗keep it simple.‘ That is, in XP, designs

must be easy to implement and a developer

should be able to make necessary

amendments when required [65,66]

Refactoring: it is the process of improving

the design of an artifact without changing

its functionality. Refactoring should be

done on an ongoing basis throughout

development of the artifact. Better

arrangements for parts of an artifact can

provide, for example, support to other

ideas. On the other hand, allowing poorly

structured ideas to exist in a project is a

risk that accumulates over weeks of

development [67].

Metaphor: a metaphor represents a

coherent view of the system that makes

sense to both the business and technical

sides and represents ―what we are trying to

HBRP Publication Page 1-16 2021. All Rights Reserved Page 8

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

do.‖ The metaphor is sometimes embodied

in a single user story that portrays this idea

and gives everyone the system basics. In a

sense, the metaphor serves as the high-

level software architecture [68]. At its

best, the metaphor is a simple evocative

description of how the program works,

such as "this program works like a hive of

bees, going out for pollen and bringing it

back to the hive" as a description for an

agent-based information retrieval

system[69].

Based on the discussion above and the

previous studies, Table 2 distinguishing

the XP practices which address the

software quality and those which address

the development process quality. This

mapping highlights the different aspects

concerning quality with respect to XP

practices.

Table 2:-XP practices mapping with respect to quality subjects[70]
XP practices address the software

quality

XP practices address the

development process quality

Quality aspect

 Influence level

Simple design

Testing

Refactoring

Continuous integration

Planning game

Customer on-site

Pair programming

Collective code ownership

High

Small releases

Coding standard

Metaphor

40- hour week

Normal

The Adoption of Agile Practices

Agile methodologies were developed as a

remedy to the failure of predictable

manufacturing concepts, such as the

waterfall life-cycle, big up-front

specifications and speculative planning as

they were misapplied to software

development. Besides giving flexibility

and focusing on delivering customer value,

where [25] stated that the agile

methodologies reduce the risk of building

a wrong product by:

1- Working on the requirements with

an on-site customer,

2- Eliciting stakeholder feedback

early and often with working software, and

3- Adapting development to changing

requirements based on that feedback.

Agile development also reduces the risk of

building the right product wrong with test-

driven development, continuous

integration and other practices and

techniques concentrating on software

quality. When working software is

evaluated and tested in every sprint,

requirements and design issues and also

software defects are discovered much

earlier than in waterfall type projects

where testing is done only once at the end

of the project. Also, the risk of getting

stuck in the requirements or design phase

in an unclear project is negated as agile

development ensures that actual

implementation is done in every

sprint[40]. Aguanno also points out two

issues related to agile development that

needs to be considered. Firstly, a self-

organizing, empowered agile team tends to

locally optimize their way of working in a

particular project, which can cause

problems in enterprise project/portfolio

management. Secondly, agile

methodologies are not formal enough for

life-critical systems development as they

lack the necessary design reviews and

evaluations needed to discover possible

safety issues.

Furthermore, agile methods have many

HBRP Publication Page 1-16 2021. All Rights Reserved Page 9

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

significant attribute one of them is an

adaptive development process, which

draws on the two lean principles of

―amplifying learning‖ and ―decide as late

as possible.‖ The lean principle

―amplifying learning‖ is based on the

concept that Development is an exercise in

discovery while production is an exercise

in reducing variation, and for this reason, a

lean approach to development results in

practices that are quite different than lean

production practices.‖ [71]. The lean

principle ―decide as late as possible‖

provides a capacity for change by delaying

decisions as late as possible. ASDMs

follow with these principles by

emphasizing adaptive software

development, which requires iterative and

incremental development through

productive feedback. Satzinger, Jackson,

and Burd [72] mentioned that some

projects were reasonably predictable and

could be managed sequentially but most

projects are less predictable, demanding an

iterative and adaptive approach to

development.

Small-Medium-Large Scale Project
Most agile methods have primarily been

applied to small to medium size projects

such as internet and web-based

information systems. It is not clear if agile

methods are used on large-scale projects

that they can provide end-users with the

desired quality in a timely manner [73].

However, some researchers have reported

that large-scale and complex projects have

benefited from suitably tailored agile

development methods [74-77].

As well as, Bowers et al [74] examined

whether the XP method can handle large-

scale and life-critical software systems.

The authors adopted the XP method to

redesign their public safety

communication systems, which consists of

over a million lines of C language code.

They indicated that a suitably adapted

agile development process (in particular

XP) was ideal for long-term projects and

the development of large systems. This is

contradictory to the preferences of many

information technology (IT) managers

who often consider XP as a slightly

chaotic methodology. Lippert et al [75]

mentioned that they followed the

recommended practice of adapting XP to

their specific project. They also developed

methodological extensions to XP for use in

a number of areas in which questions and

problems frequently occur. The majority

of studies on large-scale projects have

been conducted using the XP method,

which was initially designed for small-

scale projects with less than 10 developers

and a product that would not be

excessively complex[80].

There studies used the XP method to

mitigate risks with early, frequent

feedback. However, they did not use every

part of the XP method. Instead, they

adopted some practices, dropped others

and supplemented others with practices

from other fields. This paper revealed the

possibilities for applying the XP method to

large-scale and life-critical projects if the

XP method was modified to fit into the

specific application development

environment. Lippert et al[75] also

examined whether the XP method was

appropriate for large and long term

projects.

In dead, each agile method is a unique

system or software development

methodology according to the definition of

Avison and Fitzgerald[78] , each agile

method has a different purpose. For

example, XP is specifically designed for

software development in high change

environments, for satisfying customer

needs, and for maintaining effective teams

[80]. Scrum focuses on project

management of iterative development[79],

and Adaptive System Development (ASD)

is a framework for managing software

projects under intense time pressure [41].

HBRP Publication Page 1-16 2021. All Rights Reserved Page 10

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

Strengths and Weaknesses of XP

Method
Many researchers indicate the strengths

and weaknesses of XP method. Table 3

depicted these cons and pros of the XP

based on number of the researchers.

Table 3:-Summary of the Common Strengths and Weaknesses of XP
Strengths of XP Method

XP method helps the software industry for shorter release of functional

software, where the customers are always contacted to ask for the highest

priority features in the software.

Beck, 2000; Fruhling & Vreede,

2006; Xu, 2009 [80-82]

XP method saves the project against the cancellation with the help of

periodic releases.

Beck, 2000; Guha et al.,

2011.[80,83]

XP method always focuses on the highest priority tasks; therefore false

features are not prioritized during the development of the software, as it

gives the freedom to the developers and testers to give their feedbacks

upon the release time and cost of the software which will helpful for

interaction with the clients via the business people.

Beck, 2000; Munassar &

Govardhan, 2010; Xu, 2009.[80,82-

84]

XP method is more flexible and includes more explicitly the needs and

intentions of all project participants.

Beck, 2000; Fruhling & Vreede,

2006; Xu, 2009.[80-82]

By test driven development practices, XP method resulting in less errors

and acceptance of changing requirements.

Beck, 2000; Fruhling & Vreede,

2006; Munassar & Govardhan,

2010.[80,81,84]

XP method is suited for single project, developed and maintained by a

single team. It cannot be implemented in the system where developers

don‘t work well with each other and like to work on their own.

Beck, 2000; Guha et al., 2011; Hneif

& Hock Ow, 2009.[80,83,85]

Weaknesses of XP Method

XP method is not suitable for medium and large scale projects. Munassar & Govardhan, 2010;

Mushtaq & Qureshi, 2012; Hneif &

Hock Ow, 2009.[7,84,85]

XP method is not suitable to be implemented in an environment where a

customer or manager insists on a complete specification or design before

they begin programming.

Beck, 2000, Turk et al., 2002; Xu,

2009.[80, 33,82]

Lack of project management practices.

Beck, 2000; Turk et al., 2002;

Mushtaq, 2012[7,80,33]

Lack of documentation though the development lifecycle.

Qureshi, 2011; Munassar &

Govardhan, 2010; Guha et al., 2011;

Paulk, 2001.

[83,84,86]

Developers must be experienced.

Paulk, 2001; Munassar &

Govardhan, 2010[84,86].

RELATED WORKS

The research community has devoted a

great deal of attention to agile software

development since the agile manifesto was

created in 2001. Dingsøyr, Nerur,

Balijepally and Moe [87] referred that

there are around 32 articles from 2003

until 2011 addressed the agile software

development and their applying such

methods in industry. Moreover, the XP

was described as the most common agile

methods. These articles were focused on

understanding of agile concepts, adoption

and/or adaptation of agile, and evaluation

of adoption issues in environments that are

not inherently conducive to agile. The

HBRP Publication Page 1-16 2021. All Rights Reserved Page 11

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

reviewing of the previous studies would

illustrated the applied of Extreme

programming methodologies in different

area as showed in Table 4.

Table 4:-Summary of the Application Extreme programming Practices
Authors Year Type of the study Finding

Sfetsos, Angelis &

Stamelos[88]

2006

Mix methods
 The results have shown that companies,

facing various problems with common code

ownership, on-site customer, 40-hour week and

metaphor, prefer to develop their own tailored XP

method and way of working-practices that met their

requirements.

 Pair programming and test-driven

development were found to be the most significant

success factors.

Salo & Abrahamsson[58] 2008 Quantitative  The outcomes of study showed that the

organizations are able to apply the two agile

methods, namely, XP and Scrum, and their

individual practices in their projects and report

fairly positive results of their application; and the

most used XP practices among the respondents.

 Moreover, the experienced usefulness of

the practices was clearly higher than the expected

usefulness among the respondents not having

applied the practices of XP and Scrum in their

projects.

Omar, Syed-Abdullah,

&Yasin, A. [89]

2010

Qualitative

 The output shows that the adopting agile-

XP practices have been successfully implemented in

this centre; despite the XP practices have not fully

adopted. This is because organization culture may

affected the adoption.

Haider & Ali[90] 2011 Mix methods  The outcome of this study shows that the

using of Pair programming as an effective software

development technique as well as a pedagogical

tool. Furthermore, the use of pair programming also

effects performance in distributed software

development, and positively impacts the social

practices (human or social factors).

Ghani, Izzaty, &

Firdaus[91]

2013 Qualitative  The results indicated that software

development using XP method delivered quickly.

Mohamed, Farvin,

Baharom, &

Deraman,[92]

2014

Quantitative

 All of the respondents agreed that agility

should be considered during software development

in order to produce high quality software.

 Software practitioners in Malaysia are

gradually implementing agile based software

development; but there still exist among them who

have never heard about it.

 The most implemented agile methods are

XP and Scrum.

Omar & Abdullah[93]

2015

Quantitative

 The findings showed that the use of agile

methodology does not significantly affect work-

related well-being.

 Agile practices, such as pair

programming, continuous integration, and frequent

release, are able to induce teams to work closely

and experience higher well-being.

HBRP Publication Page 1-16 2021. All Rights Reserved Page 12

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

CONCLUSION

The aim of this article is to identify the

best practices for evaluating the quality of

Extreme programming (XP)

implementation. XP has been chosen in

this article because it is one of the most

prevalent software development

methodologies. The current study

identified twelve practices based on the

previous studies for evaluating the XP

quality implementation. Many researchers

state that these practices must be used

together and support each other to get high

quality XP implementation.

REFERENCES

1. Wu, B. H. (2011, March). On software

engineering and software

methodologies a software developer's

perspective. In International

Conference on Information Science

and Technology (pp. 155-162). IEEE.

2. Senapathi, M., & Srinivasan, A.

(2012). Understanding post-adoptive

agile usage: An exploratory cross-case

analysis. Journal of Systems and

Software, 85(6), 1255-1268.

3. Päivärinta, T., & Smolander, K.

(2015). Theorizing about software

development practices. Science of

Computer Programming, 101, 124-

135.

4. Burman, E. (2015). Agile in action:

Hybrid methodologies in practice.

5. Hass, K. B. (2007). The blending of

traditional and agile project

management. PM world today, 9(5),

1-8.

6. Abrahamsson, P., Conboy, K., &

Wang, X. (2009). ―Lots done, more

to do‖: the current state of agile

systems development research.

7. Mushtaq, Z., & Qureshi, M. R. J.

(2012). Novel Hybrid Model:

Integrating Scrum and XP.

International Journal of Information

Technology and Computer Science

(IJITCS), 4(6), 39.

8. Kalermo, J., & Rissanen, J. (2002).

Agile software development in theory

and practice. University of Jyväskylä.
9. Chandra Misra, S., Kumar, V., &

Kumar, U. (2010). Identifying some

critical changes required in adopting

agile practices in traditional software

development projects. International

Journal of Quality & Reliability

Management, 27(4), 451-474.
10. Blokdijk, A. (2014). Planning and

design of information systems:

Academic Press.
11. Pressman, R. S. (2005). Software

engineering: a practitioner's approach:

Palgrave Macmillan.
12. Chung, L., Nixon, B. A., Yu, E., &

Mylopoulos, J. (2012). Non-functional

requirements in software engineering.

Springer Science & Business Media
13. Pressman, R. S., & David Brian, L.

(2009). Web engineering:: a

practitioner's approach.
14. Pickering, C. (2001). Building an

Effective E-project Team. E-Project

Management Advisory Service, Cutter

Consortium, 2(1).
15. McConnell, S. (2004). Code complete:

Pearson Education.
16. Miller, J. H., & Page, S. E. (2009).

Complex adaptive systems: an

introduction to computational models

of social life: an introduction to

computational models of social life:

Princeton university press.
17. Cyganek, B., & Siebert, J. P. (2011).

An introduction to 3D computer

vision techniques and algorithms:

John Wiley & Sons.
18. Boehm, B. (2006). A view of 20th and

21st century software engineering.

Paper presented at the Proceedings of

the 28th international conference on

Software engineering.
19. Unterkalmsteiner, M., Gorschek, T.,

Cheng, C. K., Permadi, R. B., & Feldt,

R. (2012). Evaluation and

measurement of software process

improvement—a systematic literature

HBRP Publication Page 1-16 2021. All Rights Reserved Page 13

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

review. Software Engineering, IEEE

Transactions on, 38(2), 398-424
20. Highsmith, J. (2013). Adaptive

software development: a collaborative

approach to managing complex

systems: Addison-Wesley.
21. Santos, R. P. d. (2014). ReuseSEEM:

an approach to support the definition,

modeling, and analysis of software

ecosystems. Paper presented at the

Companion Proceedings of the 36th

International Conference on Software

Engineering.
22. Valacich, J., George, J., & Hoffer, J.

(2009). Essentials of system analysis

and design: Prentice Hall Press.
23. Bird, M. (2007). Comprehensive

Examination Written Responses

Presented in Partial Fulfillment of the

Requirements for the Degree Doctor

of Philosophy. Capella University
24. Douglas, I. (2006). Issues in software

engineering of relevance to

instructional design. TechTrends,

50(5), 28-35
25. Leffingwell, D. (2010). Agile software

requirements: lean requirements

practices for teams, programs, and the

enterprise: Addison-Wesley

Professional.
26. Stober, T., & Hansmann, U. (2010).

Best Practices for Large Software

Development Projects: Springer.
27. Cagle West, M. (2010). Cagle

ProQuest LLC.
28. Bustard, D., Wilkie, G., & Greer, D.

(2013). The maturation of agile

software development presented at the

Engineering of Computer Based

Systems (ECBS), 2013 20th IEEE

International Conference and

Workshops on the. Principles and

practice: observations on successive

industrial studies in 2010 and 2012.

Paper
29. Leau, Y. B., Loo, W. K., Tham, W.

Y., & Tan, S. F. (2012). Software

development life cycle AGILE vs

traditional approaches. Paper

presented at the International

Conference on Information and

Network Technology.
30. Eckstein, J. (2013). Agile software

development in the large: Diving into

the deep: Pearson Education.
31. Cano, S. P., González, C. S., Collazos,

C. A., Arteaga, J. M., & Zapata, S.

(2015). Agile Software Development

Process Applied to the Serious Games

Development for Children from 7 to

10 Years Old. International Journal of

Information Technologies and Systems

Approach (IJITSA), 8(2), 64-79.
32. Shore, J., & Warden, S. (2008). The

Art of Agile Development O‗Reilly

Media Inc: Shroff Publishers and

Distributors Pvt. Ltd.
33. Turk, D., France, R., & Rumpe, B.

(2014). Assumptions underlying agile

software development processes.

arXiv preprint arXiv:1409.6610.

34. Turk, D., France, R., & Rumpe, B.

(2014). Limitations of agile software

processes. arXiv preprint

arXiv:1409.6600.
35. Soundararajan, S., Arthur, J. D., &

Balci, O. (2012). A methodology for

assessing agile software development

methods. Paper presented at the Agile

Conference (AGILE), 2012.
36. Sliger, M., & Broderick, S. (2008).

The software project manager's bridge

to agility: Addison-Wesley

Professional.
37. Larman, C. (2004). Agile and iterative

development: a manager's guide:

Addison-Wesley Professional
38. Petersen, K., & Wohlin, C. (2009). A

comparison of issues and advantages

in agile and incremental development

between state of the art and an

industrial case. Journal of Systems

and Software, 82(9), 1479-1490.
39. Kruchten, P. (2013). Contextualizing

agile software development. Journal

of Software: Evolution and Process,

25(4), 351-361.

HBRP Publication Page 1-16 2021. All Rights Reserved Page 14

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

40. Aguanno, K. (2004). 101 Ways to

Reward Team Members for $20 (or

Less!): Multi-Media Publications Inc.

41. Highsmith, J. (2000). Retiring

Lifecycle Dinosaurs A look at

Adaptive Software Development, an

alternative to traditional, process-

centric software management

methods. Software testing and quality

engineering, 2, 22-30.

42. Cohn, M. (2005). Agile estimating

and planning: Pearson Education.

43. Cockburn, A., 2007. Agile Software

Development: A Cooperative Game.

2nd Edn., Addison Wesley, ISBN: 0-

321-48275-1, pp: 504.

44. Elssamadisy, A. (2008). Agile

adoption patterns: a roadmap to

organizational success: Addison-

Wesley Professional.

45. Alite, B., & Spasibenko, N. (2008).

Project Suitability for Agile

methodologies. Umeå School of

Business
46. Wells, D. (2009). Agile process.

extreme programming: a gentle

introduction.
47. Beck, K. (1999). Embracing change

with extreme programming.

Computer, 32(10), 70-77.

48. Rittenbruch, M., McEwan, G., Ward,

N., Mansfield, T., & Bartenstein, D.

(2002). Extreme participation-moving

extreme programming towards

participatory design. Paper presented

at the PDC2002 Proceedings
49. Darwish, N. R. (2013). Towards an

Approach for Evaluating the

Implementation of eXtreme

Programming Practices. International

Journal of Intelligent Computing and

Information Sciences (IJICIS), Ain

Shams University, 13(3).

50. Martin, R. C. (2003). Agile software

development: principles, patterns, and

practices: Prentice Hall PTR.

51. Syed-Abdullah, S. L., Omar, M.,

Hamid, M. N. A., bt Ismail, C. L., &

Jusoff, K. (2009). Positive affects

inducer on software quality. Computer

and Information Science, 2(3), p64.

52. Wood, S., Michaelides, G., &

Thomson, C. (2013). Successful

extreme programming: Fidelity to the

methodology or good teamworking?

Information and Software Technology,

55(4), 660-672.

53. Jun, L., Qiuzhen, W., & Lin, G.

(2010). Application of agile

requirement engineering in modest-

sized information systems

development. Paper presented at the

Software Engineering (WCSE), 2010

Second World Congress on.

54. Abrantes, J. F., & Travassos, G. H.

(2011). Common agile practices in

software processes. Paper presented at

the Empirical Software Engineering

and Measurement (ESEM), 2011

International Symposium on.

55. Lindstrom, L., & Jeffries, R. (2004).

Extreme programming and agile

software development methodologies.

Information systems management,

21(3), 41-52.

56. Aveling, B. (2004). XP lite considered

harmful? Extreme Programming and

Agile Processes in Software

Engineering (94-103): Springer.
57. Omar, M., Abdullah, S., & Lailee, S.

(2013). Agile practices: A cognitive

learning perspective.

58. Salo, O., & Abrahamsson, P. (2008).

Agile methods in European embedded

software development organisations: a

survey on the actual use and

usefulness of Extreme Programming

and Scrum. Software, IET, 2(1), 58-

64.

59. Sison, R., & Yang, T. (2007). Use of

Agile Methods and Practices in the

Philippines. Paper presented at the

Software Engineering Conference,

2007. APSEC 2007. 14th Asia-

Pacific.

60. Kongyai, B., & Edi, E. (2011).

Adaptation of Agile Practices: A

Systematic Review and Survey

HBRP Publication Page 1-16 2021. All Rights Reserved Page 15

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

61. Hummel, M. (2014). State-of-the-Art:

A Systematic Literature Review on

Agile Information Systems

Development. Paper presented at the

System Sciences (HICSS), 2014 47th

Hawaii International Conference on.
62. Begel, A., & Nagappan, N. (2008).

Pair programming: what's in it for me?

Paper presented at the Proceedings of

the Second ACM-IEEE international

symposium on Empirical software

engineering and measurement
63. Rumpe, B., & Schröder, A. (2014).

Quantitative survey on extreme

programming projects. arXiv preprint

arXiv:1409.6599.

64. Lemos, O. A. L., Ferrari, F. C.,

Silveira, F. F., & Garcia, A. (2012).

Development of auxiliary functions:

Should you be agile? an empirical

assessment of pair programming and

test-first programming. Paper

presented at the Proceedings of the

34th International Conference on

Software Engineering.

65. Harrison, N. B. (2003). A study of

extreme programming in a large

company. Avaya Labs.

66. Singhal, A., & Banati, H. (2014).

FISA-XP: an agile-based integration

of security activities with extreme

programming. ACM SIGSOFT

Software Engineering Notes, 39(3), 1-

14.

67. Siebra, C., Mozart Filho, S., Silva, F.

Q., & Santos, A. L. (2008).

Deciphering extreme programming

practices for innovation process

management. Paper presented at the

Management of Innovation and

Technology, 2008. ICMIT 2008. 4th

IEEE International Conference on

68. Maurer, F., & Martel, S. (2002).

Extreme programming: Rapid

development for Web-based

applications. IEEE Internet

computing(1), 86-90.

69. Jeffries, R. (2003). Extreme

Programming and Agile Software

Development Methodologies: CRC

Press LLC.
70. Dubinsky, Y., & Hazzan, O. (2002).

Improvement of software quality:

Introducing extreme programming

into a project-based course. Paper

presented at the 14th International

Conference of the Israel Society for

Quality.

71. Poppendieck, M., & Poppendieck, T.

(2003). Lean software development:

an agile toolkit: Addison-Wesley

Professional.
72. Satzinger, J. W., Jackson, R. B., &

Burd, S. D. (2005). Object-oriented

Analysis and Design: With the

Unified Process: Thomson Course

Technology
73. Marrington, A., Hogan, J. M., &

Thomas, R. (2005). Quality assurance

in a student-based agile software

engineering process. Paper presented

at the Software Engineering

Conference, 2005. Proceedings. 2005

Australian
74. Bowers, J., May, J., Melander, E.,

Baarman, M., & Ayoob, A. (2002).

Tailoring XP for large system mission

critical software development Extreme

Programming and Agile Methods—

XP/Agile Universe 2002 (pp. 100-

111): Springer.

75. Lippert, M., Becker-Pechau, P.,

Breitling, H., Roock, S., Schmolitzky,

A., Wolf, H., & Heinz, Z. (2003).

Developing complex projects using

XP with extensions. Computer(6), 67-

73

76. Cao, L., Mohan, K., Xu, P., &

Ramesh, B. (2004). How extreme

does extreme programming have to

be? Adapting XP practices to large-

scale projects. Paper presented at the

System Sciences, 2004. Proceedings

of the 37th Annual Hawaii

International Conference on.

77. Lindvall, M., Muthig, D., Dagnino,

A., Wallin, C., Stupperich, M., Kiefer,

D., Kähkönen, T. (2004). Agile

HBRP Publication Page 1-16 2021. All Rights Reserved Page 16

Recent Trends in Information Technology and its Application

Volume 4 Issue 1

software development in large

organizations. Computer, 37(12), 26-

34.

78. Avison, D., Cole, M., & Fitzgerald, G.

(2006). Reflections on teaching

information systems analysis and

design: from then to now. Journal of

Information Systems Education, 17(3),

253.

79. Schwaber, K., & Beedle, M. (2002).

gilè Software Development with

Scrum.

80. Beck, K. (2000). Extreme

programming explained: embrace

change: Addison-Wesley Professional
81. Fruhling, A., & Vreede, G.-J. D.

(2006). Field experiences with

eXtreme programming: developing an

emergency response system. Journal

of Management Information Systems,

22(4), 39-68.

82. Xu, B. (2009). Towards high quality

software development with extreme

programming methodology: practices

from real software projects. Paper

presented at the Management and

Service Science, 2009. MASS'09.

International Conference on.

83. Guha, P., Shah, K., Shukla, S. S. P., &

Singh, S. (2011). Incorporating Agile

with MDA Case Study: Online Polling

System. arXiv preprint

arXiv:1110.6879.

84. Munassar, N. M. A., & Govardhan, A.

(2010). A comparison between five

models of software engineering.

IJCSI, 5, 95-101
85. Hneif, M., & Hock Ow, S. (2009).

Review of Agile Methodologies in

Software Development. International

Journal of Research and Reviews in

Applied Sciences, 1(1). 1-8.

86. Paulk, M. (2001). Extreme

Programming from a CMM

Perspective. IEEE Software, 18(6),

19-26.

87. Dingsøyr, T., Nerur, S., Balijepally,

V., & Moe, N. B. (2012). A decade of

agile methodologies: Towards

explaining agile software

development. Journal of Systems and

Software, 85(6), 1213-1221.
88. Sfetsos, P., Angelis, L., & Stamelos, I.

(2006). Investigating the extreme

programming system–An empirical

study. Empirical Software

Engineering,11(2), 269-301.

89. Omar, M., Syed-Abdullah, S.-L., &

Yasin, A. (2010). Adopting Agile

Approach: A Case in Malaysia
90. Haider, M. T., & Ali, I. (2011).

Evaluation of the Effects of Pair

Programming on Performance and

Social Practices in Distributed

Software Development.
91. Ghani, I., Izzaty, N., & Firdaus, A.

(2013). Role-based Extreme

Programming (XP) for secure

software development. Science

International (Lahore), 25(4 (Spe),

1071-1074

92. Mohamed, P., Farvin, S., Baharom, F.,

& Deraman, A. (2014). An

Exploratory Study on Agile based

Software Development Practices.

International Journal of Security & Its

Applications, 8(5).
93. Omar, M., & Abdullah, S. L. S.

(2015). The Impact of Agile

Methodology on Software Team‘s

Work-Related Well-Being.

International Journal of Software

Engineering & Its Applications, 9(3).

