

TRAINING AN INTELLIGENT

TUTORING SYSTEM USING

REINFORCEMENT LEARNING
Jezuina Koroveshi

University of Tirana, Faculty of Natural Sciences,

Albania,

jezuina.koroveshi@fshn.edu.al

Ana Ktona

University of Tirana, Faculty of Natural Sciences,

Albania,

ana.ktona@fshn.edu.al

Abstract: In this work we have applied reinforcement learning in building an intelligent tutoring system. An intelligent

tutoring system is a computer system that provides personalized learning material to the learner, based on his needs and

level of knowledge. Such a system may consist of the following components: the knowledge base, the student’s model, the

pedagogical module and the user interface. The role of the pedagogical module is to define what is the best learning material

to give to the students in order to help them reach their goal towards learning the material of the course. This is a

continuation of our previous work that models an intelligent tutoring system as a reinforcement learning problem for

teaching different lessons related to Python programming language [1]. In this work, we focus on building the pedagogical

module through applying reinforcement learning and the DQN algorithm. To model a problem as a reinforcement learning

problem, we should take special care in defining the following components: the state space, the actions and the rewards.

Here, we propose a way to organize the state space, the actions and the rewards, in order to train the pedagogical module

using reinforcement learning. After defining those elements, we train this module using different parameters and

conditions. The training is done in a simulated environment, by simulating the behavior of the student in order to help the

training process.

Keywords: intelligent tutoring system, reinforcement learning, DQN

1. INTRODUCTION

An overview on intelligent turning systems (ITS) is given in our previous study [1]. According to that, an ITS is a

system that adapts to every student based on factors such as pre-existing knowledge, learning style and student

progress, by making personalized decisions for everyone. In this way, the ITS can customize the learning experience

that the students perceive. Principles of artificial intelligence may be applied in the design of such systems in order to

make them more intelligent and we focus on applying reinforcement learning for doing so. This class of machine

learning algorithms has been applied in different approaches for designing ITS such as in the works from [2], [3], [5],

[6], [7], [8].

Here, we extend our previous work for modeling an ITS by focusing on the knowledge factor [1]. The student starts

learning the course materials and may or may not have some previous knowledge of the concepts that this course

teaches. Each lesson of the course teaches some concepts, and we define an order for the lessons that are to be taught.

We assume that the student cannot continue to the next lesson if he/she has not learned all the concepts that are

presented in the current lesson. So, it is the duty of the pedagogical module to decide what learning material to give

to the student, by determining if he/she should still stay in the current lesson or go to the next one. We model this

module using reinforcement learning and then train it to learn what are the best actions to take to help the student learn

the course material.

The remainder of this paper is organized as follows: in section 2 we describe the proposed model, in section 3 we

describe the simulation that we have done, in section 4 we detail the experiments and the results and in section 5 give

the conclusions of our work.

2. PROPOSED MODEL

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 19, No. 3, March 2021

10 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

mailto:jezuina.koroveshi@fshn.edu.al
mailto:ana.ktona@fshn.edu.al

The model that we propose here is a continuation of our previous work. As explained in [1], the learning material is

organized in lessons, where each lesson teaches some new concepts and requires some prior concepts to be known by

the student. Here, we have added another relation between the lessons where for each lesson we define what is the

next lesson to go. In this way, we create a sequence of lessons that the student must follow in order to complete the

learning path. The relation between lessons and concepts is given detailed in Figure 1. The idea presented here is

slightly different from the one given in our previous work: before starting the course, the student may or may not have

previous knowledge of the concepts that the course teaches; the student starts always from the first lesson; the system

should make sure that the student learns all the concepts that are presented in the current lesson before going to the

next one.

Figure 1. Relation between lessons and concepts

In [1], it is given a clear definition of the set of lessons, concepts and student knowledge. Based on that, we propose

here a new set of states, actions and rewards for implementing the pedagogical module as a reinforcement learning

problem:

1. State(CurrL, Tc1, Tc2, Tc3, Tc4, Tc5, HasRc1, HasRc2, HasRc3, HasRc4, HasRc5) where:
a. CurrL has values from the set (0, LI, L2, …, Ln) and shows what is the current lesson given to the

student.
b. TCi for i ∈ [1,5] has values from (0, C1, C2, … Cn) and shows what are the 5 concepts that are

taught by the current lesson. TCi may be 0 in cases when the lesson teaches less than 5 concepts. In

the implementation, this is translated into a vector with length 5, with values 1 or 0, having the

values [0,0,0,0,0] when the lesson teaches no concepts, and values [1,1,1,1,1] when the lesson

teaches all 5 concepts.
c. HasRci for i ∈ [1,5] has value 0 or 1. HasRci has the value 1 if the student knows TCi and 0 otherwise.

In the implementation, this is translated into a vector with length 5, with values 1 or 0, having the

values [0,0,0,0,0] when the student has not learned any concept from the current lesson, and values

[1,1,1,1,1] when the student has learned all 5 concepts of the current lesson.

Example of the state may be as follows:

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 19, No. 3, March 2021

11 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

[1,1,1,1,0,0,0,1,0,0,0,] where:

a. Element in index 0, with value 1 shows the current lesson is Lesson 1.
b. Elements from index 1 to 5, show that the lesson 1 teaches only 3 concepts.
c. Element from 6 to 10, show that the student has learned only the first concept that is taught by this

lesson.
2. Action (stay in current lesson, go to next lesson Li) where:

a. Stay means that the student will be given again the current lesson.
b. Li has values from (L1, L2, …. Ln). The system chooses the next lesson to give to the student based

on current lesson and what is the next lesson that comes after it
3. Rewards will be:

a. Negative value (-10) if the student has learned all the concepts that are taught by current lesson and

the system gives again this lesson.
b. Positive value (+10) if the student has learned all the concepts that are taught by current lesson and

the system gives the next lesson.
c. Negative value (-10) if the student has not learned all the concepts that are taught by current lesson

and the system gives the next lesson.
d. Positive value (+10) if the student has not learned all the concepts that are taught by current lesson

and the system gives again this lesson.

3. SIMULATION

Training an agent using reinforcement learning requires a very large number of episodes and trials that are not very

suitable to perform with real life students. Because of this, we have done the training in a simulated environment, by

simulating the behavior of real students. The system is composed of two parts: the tutor and the student. The tutor is

the agent that will be trained using the reinforcement learning algorithm and will learn what is the best action to take

in respect to the student’s current state. The student is a simulation of a real-life student. It has its knowledge base,

that consists of concepts that it has learned or not and a parameter-learning probability-that describes its ability to

learn new concepts. The learning probability gives the probability for learning a new concept. When the student is

given a lesson, for every concept that this lesson teaches, the student learns this concept with probability equal to

“learning probability” and does not learn this concept with probability equal to “1 - learning probability”. If the

learning probability is 1, this means that the student always learns the concepts and if it is 0 the student never learns

anything. In our simulation, when the student is given a lesson by the tutor, based on the learning probability, we

simulate the fact that the student did or did not learn that concept.

4. EXPERIMENTAL RESULTS

We have used the DQN algorithm as given by [4], using memory replay and target network. Figure 2 gives the

architecture of the target and train networks.

Figure 2. The architecture of the neural network

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 19, No. 3, March 2021

12 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

We have done the training using two scenarios: 1. the student starts with no knowledge of any of the concepts for

every episode, 2. the student starts with knowing random concepts for each episode. Regardless of which scenario is

used, there are some hyper parameters that we keep the same and these are shown in Table 1.

TABLE I

HYPER PARAMETERS

Train frequency (after how many episodes will happen

the training)

20

Maximal number of steps in episode 100

Learning probability of the simulated student 0.7

Learning rate 0.005

Batch size 64

Gamma 0.85

Maximal memory size 5000

One important aspect of the training process is the exploration of actions and states regardless of what the agent has

learned until now. We have done the training by varying the level of exploration using:

1. Epsilon value that shows the probability with which the agent chooses a random action.
2. Epsilon decay is a value used to decrease the value of epsilon.
3. Minimum epsilon is the minimum value that epsilon can have.

4. Epsilon decay frequency determines after how many steps the value of epsilon will decrease.

The training is done for the two scenarios, by varying the parameters that determine the exploration level. We start

with some parameters, perform the training for a certain number of episodes, then change the parameters and restart

the training again using the network weights from the previous round. For every training done, as a result we give the

total reward earned for each episode. Following we give the trainings that are done for each of the scenarios, the

parameters used, and the reward earned.

4.1 Student starts with knowing no concepts for every episode.

We have performed two sets of training for this scenario, by varying the number of episodes for each round.

a. The hyper parameters are given in Table 2.

TABLE 2

HYPER PARAMETERS FOR THE FIRST TRAINING OF THE FIRST SCENARIO

 1st

Round

2nd

Round

3rd

Round

4th

Round

5th

Round

6th Round

Number of episodes 1000 2000 2000 1000 1000 1000

Initial epsilon 0.9 0.9 0.6 0.2 0.2 0.1

Epsilon decay 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995

Minimum epsilon 0.01 0.01 0.01 0.01 0.01 0.01

Epsilon decay

frequency

100 100 50 50 50 50

Results Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 19, No. 3, March 2021

13 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

b. The hyper parameters are given in Table 3.
TABLE 3

HYPER PARAMETERS FOR THE SECOND TRAINING OF THE FIRST SCENARIO

 1st Round 2nd Round 3rd Round

Number of episodes 4000 4000 2000

Initial epsilon 0.9 0.5 0.2

Epsilon decay 0.9995 0.9995 0.9995

Minimum epsilon 0.01 0.01 0.01

Epsilon decay

frequency

100 100 100

Results Figure 9 Figure 10 Figure 11

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 19, No. 3, March 2021

14 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Figure 9.

Figure 10.

Figure 11.

4.2 Student starts with knowing random concepts for every episode. For this scenario, the hyper parameters are

given in Table 4.

TABLE 4

HYPER PARAMETERS FOR THE SECOND SCENARIO

 1st Round 2nd Round 3rd Round

Number of episodes 4000 4000 2000

Initial epsilon 0.9 0.6 0.2

Epsilon decay 0.9995 0.9995 0.9995

Minimum epsilon 0.01 0.01 0.01

Epsilon decay

frequency

100 100 100

Results Figure 12 Figure 13 Figure 14

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 19, No. 3, March 2021

15 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Figure 12.

Figure 13.

Figure 14.

4.3 Testing

After we performed the training for both scenarios, we have tested the performance of each of the models learned by

using them in simulations, for 100 episodes with a student with random concepts and learning probability the same as

the one used during the training process. For each of the tests, we show the total reward received and the length of

each episode. The results are given in the Figures 15 to 20.

Figure 15. Reward for every episode, for 1st set of the 1st scenario

Figure 16. Length for every episode, for 1st set of the 1st scenario

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 19, No. 3, March 2021

16 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Figure 17. Reward for every episode, for 2nd set of the 1st scenario

Figure 18. Length for every episode, for 2nd set of the 1st scenario

Figure 19. Reward for every episode, for the 2nd scenario

Figure 20. Length for every episode, for the 2nd scenario

5. CONCLUSION

In this work, we have presented a model for an intelligent tutoring system and trained it using reinforcement learning

with DQN algorithm. We performed the training in a simulated environment, by simulating the behavior of the student.

Also, the training was performed using different hyper parameters for the model and using different scenarios for the

student knowledge. As the training and the testing results show, we believe that it is better to perform the training with

a student that starts with knowing random concepts for every episode. In this way, there is higher probability to reach

more states, compared to the scenario where the student always starts with knowing no concepts. Also, as results

show, when using random concepts, the agent starts to get a positive reward earlier in time, meaning that it is learning

to take better decisions. Another important factor to keep into consideration is exploration. As we see from the results,

it is important to start with high levels of exploration in the beginning of the training and reduce the exploration

gradually as the agent starts to learn.

REFERENCES

[1] Koroveshi, J., & Ktona, A. (2020). MODELLING AN INTELLIGENT TUTORING SYSTEM USING REINFORCEMENT LEARNING.

Knowledge International Journal, 43(3), 483 - 487. Retrieved from https://ikm.mk/ojs/index.php/KIJ/article/view/4745

[2] Malpani, A., Ravindran, B., & Murthy, H. (2011). Personalized Intelligetn Tutoring System using Reinforcement Learning.In Florida Artificial

Intelligence Research Society Conference. Retrieved from https://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2597/3105

[3] Martin, K. N., & Arroyo, I. (2004). AgentX: Using Reinforcement Learning to Improve the Effectiveness of Intelligent Tutoring Systems.

Intelligent Tutoring Systems, 564–572. https://doi.org/10.1007/978-3-540-30139-4_53

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 19, No. 3, March 2021

17 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

https://ikm.mk/ojs/index.php/KIJ/article/view/4745
https://aaai.org/ocs/index.php/FLAIRS/FLAIRS11/paper/view/2597/3105
https://doi.org/10.1007/978-3-540-30139-4_53

[4] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,

Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control

through deep reinforcement learning. Nature, 518(7540), 529–533. https://doi.org/10.1038/nature14236

[5] Nasir, M., & Fellus, L. & Pitti, A. (2018). SPEAKY Project: Adaptive Tutoring System based on Reinforcement Learning for Driving Exercizes

and Analysis in ASD Children. ICDL-EpiRob Workshop on “Understanding Developmental Disorders: From Computational Models to Assistive

Technologies". Tokyo, Japan. ⟨hal-01976660⟩

[6] Sarma, B. H. S., & Ravindran, B. (2007). Intelligent Tutoring Systems using Reinforcement Learning to teach Autistic Students. Home

Informatics and Telematics: ICT for The Next Billion, 241, 65–78. https://doi.org/10.1007/978-0-387-73697-6_5

[7] Shawky, D., & Badawi, A. (2018). A Reinforcement Learning-Based Adaptive Learning System. The International Conference on Advanced

Machine Learning Technologies and Applications (AMLTA2018), 221–231. https://doi.org/10.1007/978-3-319-74690-6_22

[8] Wang, F. (2018). Reinforcement Learning in a POMDP Based Intelligent Tutoring System for Optimizing Teaching Strategies. International

Journal of Information and Education Technology, 8(8), 553–558. https://doi.org/10.18178/ijiet.2018.8.8.1098

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 19, No. 3, March 2021

18 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

https://doi.org/10.1038/nature14236
https://doi.org/10.1007/978-0-387-73697-6_5
https://doi.org/10.1007/978-3-319-74690-6_22
https://doi.org/10.18178/ijiet.2018.8.8.1098

