
  

  

Abstract— Individuals with neuromuscular injuries may fully 
benefit from wearable robots if a new class of wearable 
technologies is devised to assist complex movements seamlessly 
in everyday tasks. Among the most important tasks are 
locomotion activities. Current human-machine interfaces (HMI) 
are challenged in enabling assistance across wide ranges of 
locomoting tasks. Electromyography (EMG) and computational 
modelling can be used to establish an interface with the 
neuromuscular system. We propose an HMI based on EMG-
driven musculoskeletal modelling that estimates biological joint 
torques in real-time and uses a percentage of these to 
dynamically control exoskeleton-generated torques in a task-
independent manner, i.e. no need to classify locomotion modes. 
Proof of principle results on one subject showed that this 
approach could reduce EMGs during exoskeleton-assisted even 
ground locomotion compared to transparent mode (i.e. zero 
impedance). Importantly, results showed that a substantial 
portion of the biological ankle joint torque needed to walk was 
transferred from the human to the exoskeleton. That is, while the 
total human-exoskeleton ankle joint was always similar between 
assisted and zero-impedance modes, the ratio between 
exoskeleton-generated and human-generated torque varied 
substantially, with human-generated torques being dynamically 
compensated by the exoskeleton during assisted mode. This is a 
first step towards natural, continuous assistance in a large 
variety of movements.  

I. INTRODUCTION 

Human-exoskeleton interaction underlies a complex 
interplay between hardware, software and biological 
structures. Exoskeletons should enable navigation in complex 
unstructured environments i.e. home and outdoor 
environment (see Cybathlon competition [1]) to assist in 
everyday motor tasks. To achieve this, a direct neuro-
mechanical link needs to be established between the 
exoskeleton and the human. Current human-machine 
interfaces (HMIs) rely on pre-generated joint position or 
torque profiles prescribed to the exoskeleton motors during at 
pre-determined gait phases [2] or online optimized joint 
torque patterns that minimize metabolic energy consumption 
[3]. However, these methods do not offer user’s voluntary 
control over the exoskeleton and lack of adaptability to the 
external environment. Electromyograms (EMGs) have been 
incorporated into HMIs and combined with ground reaction 
force (GRF) data [4]. Other works incorporated EMGs in 
optimal controller objective functions [5] where assistance 
was modulated depending on EMG-exoskeleton synergies. 
However, these methods are designed for a specific and pre-
defined locomotion mode and do not rapidly and dynamically 
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adapt to locomotion mode changes. Moreover, these methods 
are bound to sensors that are not always fully wearable (e.g. 
GRF sensors) or use classification algorithms that need to be 
retrained for each new task. Furthermore, these methods do 
not provide information about the neuromusculoskeletal 
(NMS) states of the user, which can be valuable to provide 
personalized robotic assistance.  

We recently proposed a subject-specific NMS model 
driven by EMG signals that can estimate human-generated 
muscles force and resulting joints torques in real-time [6] over 
a wide range of tasks (walking, calf rise, jump,  backward 
walking and side stepping) and degrees of freedom (DOFs) 
with a single offline calibration step. We further extended this 
approach to control a multi-DOF exoskeleton [7], [8] to 
support post-stroke and incomplete spinal cord injury patients 
performing sited tasks.  

In this paper, we further extend our HMI to support 
locomotion tasks by a model-based controlled bi-lateral ankle 
exoskeleton newly developed to assist healthy and SCI (i.e. 
Cybathlon competition). Our proposed HMI provides user’s 
voluntary control of the exoskeleton. We conducted 
controlled experiments that show that the developed HMI can 
reduce EMG levels when compared to the minimal impedance 
modality (i.e. transparent mode). Importantly, results showed 
that across assisted and non-assisted conditions the total 
human-exoskeleton torque was approximately the same but 
the ratio between exo-generated and human-generated torque 
varied substantially, i.e. human-generated torques decreased 
during assisted conditions. This suggests that the user and the 
exoskeleton always successfully reached a mechanical 
equilibrium where locomoting became more economical for 
the human. We first present our HMI as well as the 
exoskeleton used to conduct the experiment and the low-level 
torque control. We then present the experimental protocol and 
the results.  

II. METHOD 

A. Bilateral ankle exoskeleton hardware and low-level 
control 

For this study, we used the ankle module of the Symbitron  
exoskeleton [9], a full lower limb exoskeleton developed for 
paraplegic users, as a standalone ankle exoskeleton: Both 
ankles have two degrees of freedom, active plantarflexion and 
dorsiflexion as well as passive inversion and eversion, and 
weigh 4.56 kg each. Plantarflexion angle was measured with 
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absolute rotary encoders (AksIM, RLS, Renishaw, Slovenia). 
The ankles are actuated with custom Series Elastic Actuators 
(SEA) that can deliver a peak interaction torque of 100Nm. 
The interaction torque was computed from the spring 
deflection, which was measured with an absolute rotary 
encoder ( AksIM, RLS, Renishaw, Slovenia). The motor 
position was measured with an absolute angle hall encoder 
(MHM, IC Haus, Germany). The SEAs are controlled from a 
computer (NUC, Intel, USA) in the backpack that also 
contains the batteries and weighs 8kg. The controller is 
running in TwinCAT (Beckhoff, Germany) and 
communicates with the SEAs over Ethercat.  

Each actuator controls for the interaction torque between 
user and exoskeleton using a controller specifically developed 
for the use in lower limb exoskeletons [10]. This torque 
controller achieves accurate torque tracking with a bandwidth 
of 30Hz as well as a low and passive apparent impedance. The 
low apparent impedance is equivalent to high transparency to 
user motions, while its passivity guarantees controller 
stability during impacts such as heel strike.  

B. EMG-driven neuromusculoskeletal controller 
Our HMIs provides assistance based on joint torque 

computed by a real-time EMG-driven model previously 
developed [6], [8]. This torque is multiplied by a support ratio 
and sent to the exoskeleton. In Fig 1, we present a schematic 
of our HMI. It consists of the following stages: 
 
1. Input stage (Fig. 1-A): the inputs of the controller are 

EMG and joint position. The EMG is directly provided 
by the exoskeleton to the controller via Ethercat 
(TwinCat, Beckhoff, Germany). The EMG envelop is 
computed by the electrodes (AxonMaster 13E500, 
Ottobock, Germany) and was normalized by the 
maximum voluntary contraction (MVC) of the user 
previously recorded. The ankle joint positions are 
provided also by the exoskeleton via Ethercat and the 
knees joint position are provided by an IMU suit (MVN 

Link, Xsens Technologies B.V, The Netherlands) via 
TCP/IP. 

2. Moment arm (MA) and muscle tendon length (LMT) 
surrogates stage (Fig. 1-B): The joint position is 
transformed into muscle MA and LMT using a Bspline 
algorithm [11]. The Bspline coefficients are computed 
using a scaled model of the user and the OpenSim [12] 
muscle analysis tool. 

3. EMG-driven model stage (Fig. 1-C): The LMT and 
EMG of the tibialis anterior, soleus, gastrocnemius 
(lateral and medial) from the left and right leg are 
transformed into muscle force with a Hill type muscle 
model using the following equation: 
Eq.1 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) = 𝐹𝐹𝑀𝑀 = 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀�𝑓𝑓(𝐿𝐿𝑀𝑀)𝑓𝑓(𝑉𝑉𝑀𝑀)𝐸𝐸(𝑡𝑡) +
𝑓𝑓𝑝𝑝(𝐿𝐿𝑀𝑀)� 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑀𝑀(𝑡𝑡))  
With 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) the MTU force at instant t,  𝐹𝐹𝑀𝑀 the tendon 
force, 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 the maximal isometric force, 𝑓𝑓(𝐿𝐿𝑀𝑀) the 
force-length relationship, 𝑓𝑓(𝑉𝑉𝑀𝑀) the force-velocity 
relationship, 𝐸𝐸(𝑡𝑡) the normalized muscle activation at 
instant t. 𝑓𝑓𝑝𝑝(𝐿𝐿𝑀𝑀) is the passive force length relationship 
and 𝛼𝛼𝑀𝑀(𝑡𝑡) the pennation angle. More information can be 
found in [13].The muscle force is then projected at the 
joint to compute joint torque using MA.  

4. Assistance stage (Fig. 1-D): The right and left ankle 
torque computed in real-time by the EMG-driven HMI 
are multiplied by a gain selected by the user. The 
assistance is then send to the low-level torque controller 
via Ethercat. 

C. Personalization of the model for subject specific 
assistance 

To offer natural and task independent assistance, the NMS 
model needs to be personalized at multiple level. We first scale 
an OpenSim model using the scaling tool so that the standard 
model [14] fits the anthropomorphic subject proportion 
(bodies length, inertia and mass). For this, markers data of a 
static trial recorded from a motion capture system are used 

  
Figure 1: Schematic representation of our HMI. 

 



  

(Qualisys Oqus, Qualisys AB, Sweden). We then use a pre-
tuning algorithm to precompute optimal fiber length and 
tendon slack length for each considerate muscles [15]. We 
finally calibrate optimal fiber length, tendon slack length, 
maximal muscle forces and activation shape factor using an 
optimization procedure based on the simulated annealing 
algorithm. The objective function consists of reducing the 
error between experimental joints torque computed by the 
inverse dynamic tool from OpenSim and the joints torque 
computed by the EMG-driven model. The experimental joint 
torque is computed from joint position from the inverse 
kinematic tool from OpemSim and ground reaction forces 
(GRF) recorded by an instrumentalized treadmill (M-Gait, 
MotekForce Link, The Netherlands). 

D. Data processing 
Gait cycles were automatically segmented via a peak 

detection algorithm on the knee joint angle. The root mean 
squared (RMS) value for each gait cycle of each muscles’ 
EMG, joints torque computed from our HMI and interaction 
torques (assistance given by the exoskeleton) were computed. 
Abnormal values were then removed if there were superior to 
three time the interquartile value. Finally, percentage of 
change between conditions (assistance and minimal 
impedance) was calculated as well as the t-test (t-test function 
from the python scipy library). 

III. EXPERIMENTS 

A. Experimental protocol 
One healthy subject (age 38, mass 72 kg, height 180 cm) 

was recruited for this experimentation, which was based on a 
three-day protocol. The first day consisted on recording data 
for the personalization of the NMS model. Marker data, GRF 
data and EMG data were recorded at 128 Hz, 2048 Hz and 

2048 Hz respectively during different tasks. The tasks 
consisted of one static pose at the beginning and the end of 
the recording, MVC, calf rise, toe rise and walking at a speed 
of 1.8 km/h and 2.8 km/h without the exoskeleton. The 
recorded data were processed using MotoNMS [16] Matlab 
(Matlab 2016B, MathWorks, USA) scripts.  
The data were then used for scaling and calibrating the NMS 
model as explained in the Methods Section. The second day 
consisted of a preparation and testing session. In this session, 
we first let the subject wore the exoskeleton and walked on a 
treadmill (Thera-Treadpro, Sportplus) with the exoskeleton in 
minimal impedance mode. This was done with the purpose of 
letting the user get used to the exoskeleton’s added weight and 
inertia. The minimal impedance mode is a transparent mode 
where the exoskeleton’s controller minimizes the interaction 
torque between the user and the exoskeleton. When the user 

  
Figure 3: Torque reduction between the two tested conditions (minimal 

impedance mode (purple) and 60 % support ratio (blue)) and in dark 
the predicted joint torque form the model and in light the recorded 

interaction joint torque. Results are reported for the right ankle plantar-
dorsiflexion joint. The bar represents the  root mean squared of all gait 

and the stick the standard deviation. * represents significance (P < 0.05) 
 

 

 
Figure 2: EMG reduction between the two tested conditions (minimal impedance mode (purple) and 60 % support ratio (blue)). Results are reported for 

the four recorded muscle on the right side. The bar represents the mean of all gait and the stick the standard deviation. * represents significance (P < 
0.05). 

 



  

would feel comfortable and the user’s gait looked natural, we 
would then run our HMI in real-time and in open-loop 
(without providing assistance). We then would visually 
inspect the torque profile of the predicted torque using the 
graphical user interface (GUI) of our HMI. If the torque 
prediction quality was judged good (similar to literature gait 
torques profile), we would then close the loop and provide 
assistance to the user. As our subject was a naïve user of 
exoskeleton, we started with low assistance (20 % of the joint 
torque back to the user) and slowly increase the assistance to 
a maximum of  60% support ratio. The last day consisted of 
the recordings. The trial consisted of one task of 3 minutes of 
walking at 1.8 km/h without any inclination. The task was 
repeated for each condition with 10 min rest in between. The 
tested condition are minimal impedance and 60% assistance 
from our HMI. The participant was asked to follow the 
rhythm of a metronomes to control for step length (found 
during day 2). During all experiments where the user had to 
walk with the exoskeleton a fall prevention device (ZeroG, 
Aretech LLC, USA) was used which give a body weight 
support of 5 Kg. 

IV. RESULTS 

A. EMG reduction 
In Fig. 2, we present the EMG reduction between the two 

conditions tested, minimal impedance and assistance from our 
HMI. We can see in Fig. 2, that we obtained a reduction in 
EMG level for the gastrocnemius medial (20.4% 
(significant)) and the soleus (38.2% (significant)). The 
gastrocnemius lateral underwent an increase of 7.6% (not 
significant) as well as the tibias anterior (37% (significant)). 

B. Torque reduction 
In Fig. 3, we show the overall reduction in predicted joint 

torque as well as the added joint torque given by the 
exoskeleton’s assistance (recorded interaction torque). The 
predicted joint torque about ankle plantar-dorsiflexion DOF 
was reduced by 48.4% (significant) between minimal 
impedance and assisted condition. When the interaction 
torque recorded by the exoskeleton was added to the predicted 
joint torque the overall torque is identical (difference of only 
1.4%). 

V. DISCUSSION 
We proposed a model-based human-exoskeleton interface 

that reduced the human-generated EMG and ankle joint 
torques needed to locomote. Fig. 3 shows that total human-
exoskeleton ankle joint torque, with and without assistance 
are approximately the same. This demonstrates that the 
exoskeleton assistance is directly integrated by the user, 
thereby lowering biological joint torque levels by the same 
amount as the received torque from the exoskeleton. This 
demonstrates that a force generation transfer was established 
from the human to the exoskeleton, thereby underlying a 
symbiotic relation between the human and the exoskeleton 
mediated by our proposed HMI. This also highlights the 
natural aspect of our HMI as otherwise the overall joint torque 
(user’s own torque plus assistance) would be different than 

the one without assistance, i.e. due to possible additional 
torque required by the user to counteract for ill-timed 
assistance. 

Results showed that 60% support ratio levels resulted in a 
48% reduction of the predicted joint torque during 
locomotion. In this, 12% of the assistance is lost, which can 
be due to misalignment, sensor error/noise or fat tissue. Future 
work will investigate how to maximize force transfer between 
the exoskeleton and the user. 

Fig. 2 shows that the provided assistance offered a 
reduction in EMG for the soleus and gastrocnemius medial, 
the gastrocnemius lateral had a small increase, which was not 
significant. The tibialis anterior underwent a small increase 
during the swing phase, which was due to off-ground ankle 
joint instability. This instability may result from the low 
stiffness of the user during swing, which allows for small 
angular oscillations when exposed to external force (i.e. the 
provided assistance). Future work will investigate the 
difference in EMG reduction across muscles and reduce the 
instability during swing phase assistance via joint stiffness 
estimation [17], i.e. with an assistance changing depending on 
how stiff the joint is.  

We previously demonstrated that our HMI can extrapolate 
outside of the calibration data [6]. In [8], we showed that we 
can give assistance during sited tasks using only a model 
calibrated with isometrics contraction. For walking, which is 
a more complex task, we could not use such simple calibration 
successfully during this pilot. This can maybe due to the 
muscle working in a more dynamic range as well as by the 
added weight (4.5 Kg on each leg and 10 Kg for the backpack) 
and inertia to the leg. That is why we used walking tasks 
without wearing the exoskeleton for calibration. Further 
research will be conducted to determine the minimal 
calibration dataset that can be used for robustly controlling an 
exoskeleton.  
Our proposed HMI relies on EMG signal detection to be 
reliable, i.e. free of movement artefact or disconnection. This 
required to integrate EMG sensors tightly with the 
exoskeleton. Future work will employ predicting modelling 
for reducing dependency on bio-electrical sensors. This 
experiment was a proof of concept for our HMI. We will 
conduct further experiments on more subjects and more 
walking tasks (different speed and inclination). 

VI. CONCLUSION 
We presented a new HMI based on EMG-driven 

musculoskeletal modelling that enabled user’s voluntary 
control of a bi-lateral ankle exoskeleton during locomotion. 
Results indicated assistive torques being transferred to the 
human that made locomotion more economical for the user, 
i.e. with EMG and biological torque reduction. These results 
could open new opportunities for enabling exoskeleton 
voluntary control in both industry and rehabilitation 
scenarios. 
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