

Plant Data Management for Phenotyping Experiments

Data standards and use cases for plant scientists

Cyril Pommier, Célia Michotey, Anne Françoise Adam Blondon

GenRes Bridge

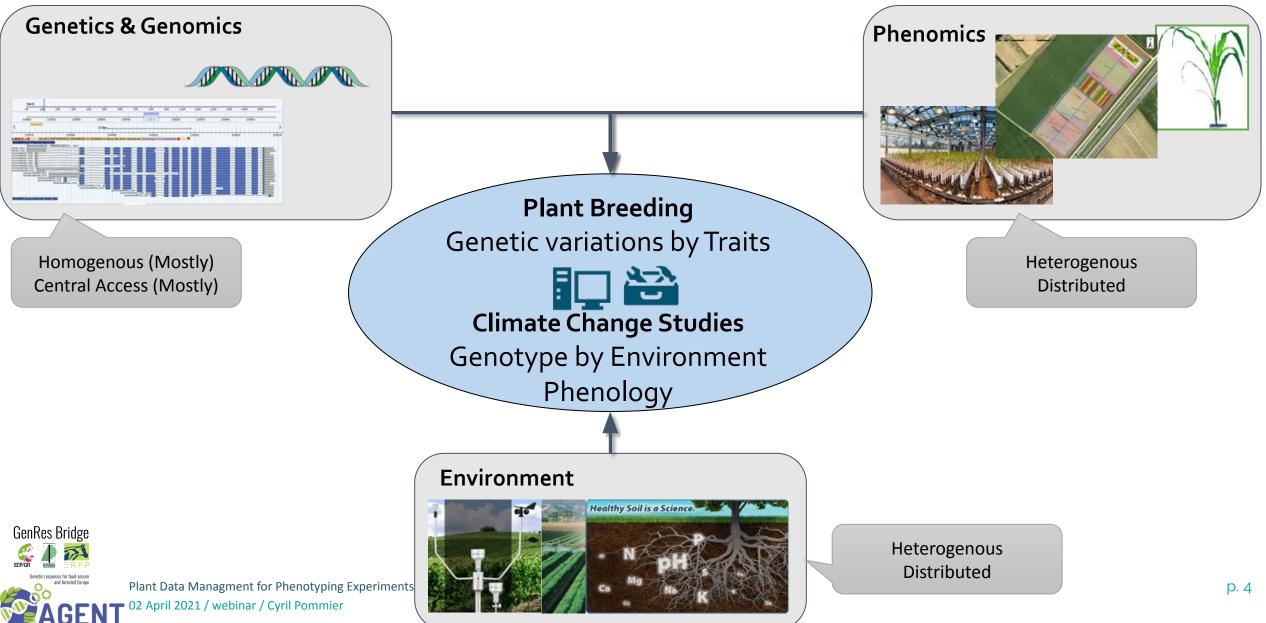
Plant Data Managment for Phenotyping Experiments 02 April 2021 / webinar / Cyril Pommier

GenRes Bridge and AGENT have received funding from the European Union's Horizon 2020 research and innovation programme respectively under grant agreements No 817580 and 862613

PLANT PHENOTYPING STANDARDS : WHY

Why should we standardize research data?

- EMPHASIS Crop Ontology
- To enable anyone (including yourself) to reuse it: metadata about the experiment (who did it, for what purpose, where and how)
- To enable the (automatic) integration with other types of data: unique identification of the concepts used to link different data sets


Phenotype 1 = measurement on a cultivar in an environment-GPS1-time1 Phenotype 2 = measurement on a cultivar in an environment-GPS2-time2 Genotype = observed marker's alleles on a cultivar Climate 1 = climatic data at GPS1-time1

• To enable knowledge discovery: metadata about the experiment, controlled vocabularies, ontologies

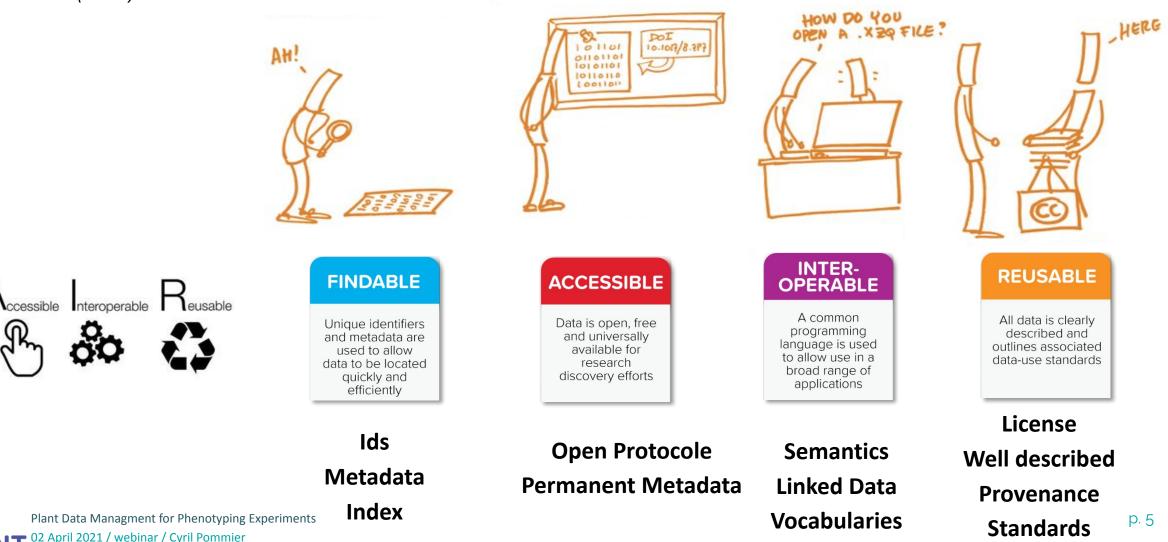
GenRes Bridge

Genome / Environment / Phenome

FAIR Data Principles

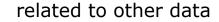
Wilkinson et al., **The FAIR Guiding Principles for** scientific data management and stewardship. *Scientific Data 3 (2016)*

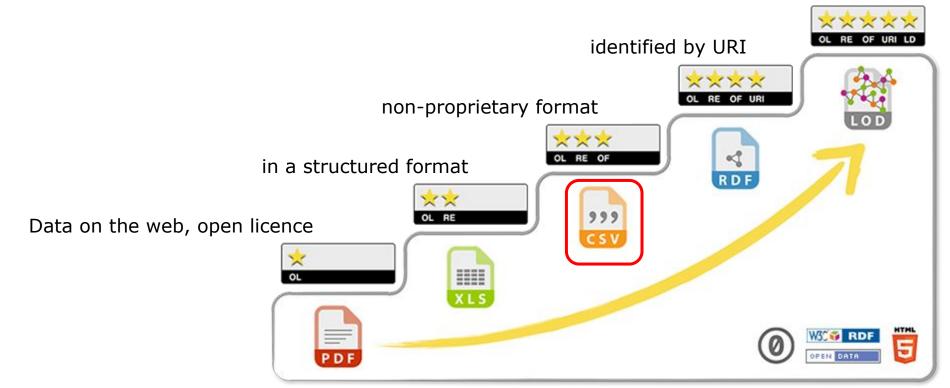
Findable A


GenRes Bridge

T

ources for food-secu


and forested Europ


GEN

5 stars Open Data

Progressing towards FAIR and Open Data requires a multidisciplinary cooperation :

- Biologists
- Bioinformaticians
- Specialists of ontologies/semantics

Plant Data Managment for Phenotyping Experiments O2 April 2021 / webinar / Cyril Pommier

GenRes Bridge

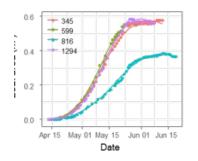
F

Plant phenomics Data

- Heterogenous data
- Different spatial scales
 - Metabolites
 - organ (leaf)
 - group of group of plants
 - whole experimental field
- Different time scales
 - Single measure
 - Time series : every 15 minutes
- Environment
- Complex life cycle

Phenotyping data life cycle

Raw data


Soissons	Charger x	Charger x
x high N	high N	low input
Soissons x low input	Soissons x low input	Soissons x high N
Charger x	Soissons	Soissons
high N	x high N	x high N

Expe	Genotype	Treatme nt	Nitrogen	Date	Rep	Height
De	Soissons	low input	15,32	15/11/2011	1	5
De	Soissons	low input	15,31	16/11/2011	2	7
Cz	Soissons	low input	10	16/11/2011	5	6

Soissons x high N	Charger x high N	
Soissons x low input	Charger x low input	

Expe	Genotype	Treatment	Height
De	Soissons	low input	6
Cz	Soissons	low input	6

p. 8

GenRes Bridge

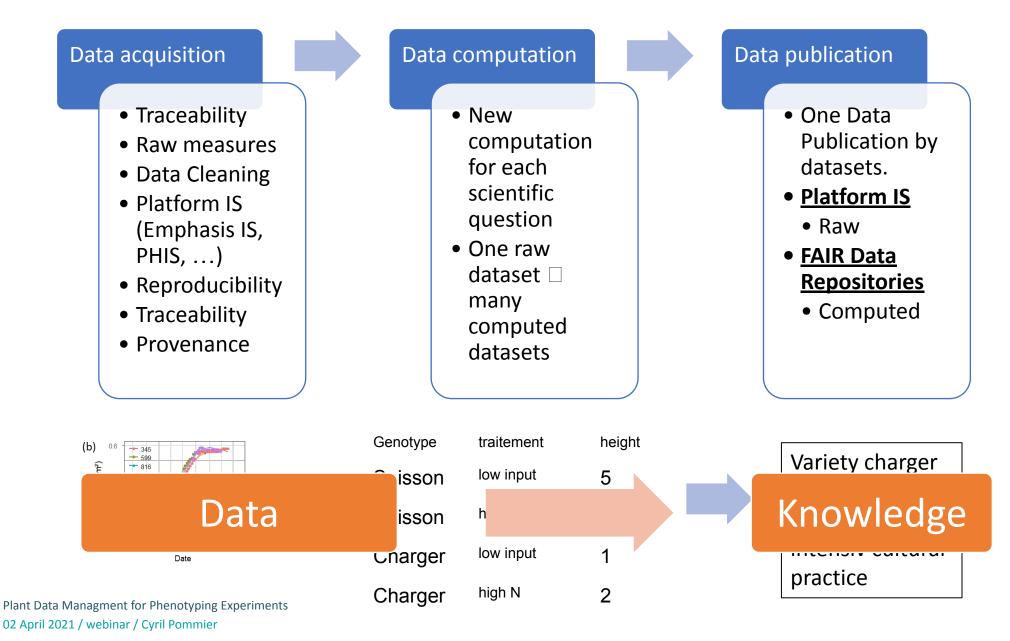
C.

T

and forested Europe

GEN

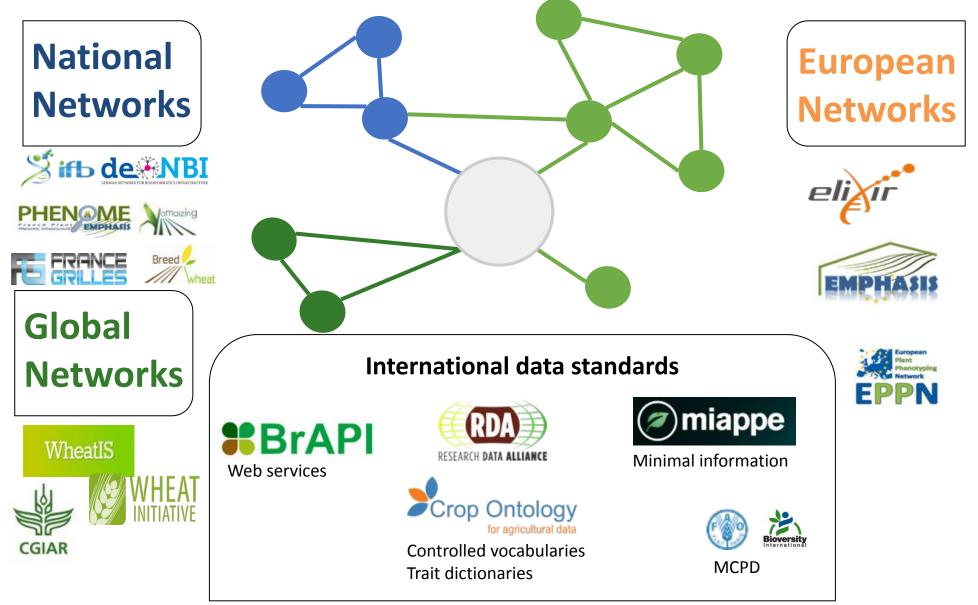
netic resources for food-secure


Plant Phenotyping Life cycle

GenRes Bridge

GEN

Raw data long term conservation


PLANT DATA STANDARDS : WHO

Interoperability is an International endeavour

Plant Data Managment for Phenotyping Experiments

02 April 2021 / webinar / Cyril Pommier

GenRes Bridge

GEN

Sharing standards: standards registries

standards, databases, policies	Q Search all of FAIRsharing	Standards D	Databases Policies	Collections	Add/Claim Content	Stats
How to cite this record FAIRsharing.o a.m.; Last accessed: Jun 12 2018 9	rg: GnpIS; Genetic and Genomic Informa :23 p.m. ⁹	ation System; DOI:	10.25504/FAIRsh	naring.dw22y3	3; Last edited: May	8, 2018
This record is maintained by cpommier	ORCID and ThomasLetellier					
Record added: March 2, 2016, 5:59 a.r Record updated: May 7, 2018, 11:29 a						
In Collections			d Standards			
In Collections Wheat Data Interoperability Guidelines		Reporti	ng Guidelines	ut Diret Direct		
		Reporti Minimu	ing Guidelines m Information abo	ut Plant Pheno	otyping Experiment	
Wheat Data Interoperability Guidelines		Reporti Minimu	ing Guidelines m Information abo ology Artifacts ntology	ut Plant Pheno	otyping Experiment	
Wheat Data Interoperability Guidelines		Reporti Minimu Termino Crop O Plant O	ing Guidelines m Information abo ology Artifacts ntology	ut Plant Pheno	otyping Experiment	

GenRes Bridge

E R F P

and forested Europe

GFN

Community driven recommendations

WheatIS: <u>http://wheatis.org/DataStandards.php</u>

Wheat Data Interoperability Guidelines

These recommendations have been prepared by members of the Wheat Data Interoperability Working Group (WG), one of the WGs of the Research Data Alliance and the only WG of the Agriculture Data Interoperability Interest Group. The group is coordinated by members of the Wheat Initiative is clobal.

Community story

F100	O Research Open for Science		Search
BROWSE	GATEWAYS & COLLECTIONS	HOW TO PUBLISH ~	ABOUT ~

OPINION ARTICLE

REVISED Developing data interoperability using standards: A wheat community use case [version 2; referees: 2 approved]

Esther Dzale Yeumo¹, Michael Alaux (p)², Elizabeth Arnaud³, Sophie Aubin¹, Ute Baumann⁴, Patrice Buche⁵, Laurel Cooper (p)⁶, Hanna Ćwiek-Kupczyńska⁷, Robert P. Davey (p)⁸, Richard Allan Fulss⁹, Clement Jonquet (p)^{10,11}, Marie-Angélique Laporte³, Pierre Larmande (p)^{12,13}, Cyril Pommier (p)², Vassilis Protonotarios (p)¹⁴, Carmen Reverte (p)¹⁵, Rosemary Shrestha⁹, Imma Subirats¹⁶, Aravind Venkatesan (p)¹², Alex Whan¹⁷, Kata Hadi Quesneville (p)²

Author details

This article is included in the Global Open Data for Agriculture and Nutrition gateway.

PLANT DATA STANDARDS

Data standards for FAIR

Semantic

- Description of the data
- Controlled vocabularies: term name and definitions
- Ontologies: semantic links between terms

The

Sequence Ontology

Crop Ontology

Persistent Unique

accessions ID, Trait

GA4GH

Identifiers

ID, DOI,...

URI, gene ID,

Biologist driven

Plant Data Managment for Phenotyping Experiments 02 April 2021 / webinar / Cyril Pommier

Structure

BrAPI

- Formatting and Organizing the data
- Data Models

Technical

Interoperability : tools and systems

• Breeding API <u>www.brapi.org</u>

Data integration and sharing

Computer scientist driven

- Standards : CSV, VCF, GFF, MIAPPE (<u>www.miappe.org</u>), etc...
- Biologist & Computer scientist driven

p. 15

Phenotype Semantic Standard: Ontologies

Phenotype <u>Semantic</u> Standard: Ontologies

- Describing traits/features in specific plant species
- Crop Ontology Trait + Method + Scale Semantic model
- Dedicated presentation

Context

• Need

- Data annotation and FAIRness (reusability, findability)
- Must capture crop specificities

Study	Genotype	CIR	HT	SUR
Domaine de Valcros	6579	600	17	1
Domaine de Valcros	6580	482	14	1

Study	Genotype	Н	CIR
La Nerthe	6579	23	650
La Nerthe	6580	28	514

Solution

- Controlled vocabularies & ontologies to annotate phenotypes: "Crop Ontology"
- Crop-specific vocabulary, community established
- 31 ontologies crop-specific available (including woody plants): <u>www.cropontology.org</u>

A Phenotype and Trait Ontology

Bambara groundnut 134 variables LANDRES version Dec 2019

Banana 370 variables RCRICHTON

Banana Trait Dictionary in template 5 - Bioversity & IITA - April 2019

Barley 148 variables MALAPORTE ICARDA - TDv5 - Sept 2018

Barley Trait POLAPGEN Ontology 148 traits HCWI

Barley Trait Ontology template v 4, 6 June 2013 submitted by the Institu Plant Genetics Poznan on behalf of Polapgen Consortium Poland

Beet Ontology 369 variables URG

This ontology was built as part of the AKER project. It describes variable used in beet phenotyping (experimental properties and measurement so for each institution (INRAE, Geves, ITB) and breeding companies (Florin Desprez). Curator: Dorothee Charruaud (ADRINORD - URGI) Daphne Verdelet (Florimond Desprez) - First submission in November 2017.

Brachiaria 82 variables CMEDINA

Brachiaria (forages) ontology TD v5 - Version Oct 2016

Brassica 155 variables WIKTOR

Brassica Trait Ontology (BRaTO) hosts trait information to describe bras crop data. Terms are collected from various projects including OREGIN, RIPR (UK) and Rapsodyn (France). BRATO development is conducted Earlham Institute (UK), Southern Cross University (Australia) and INRA (France).

Cassava 245 variables AAFOLABI

Cassava Trait Dictionary in template 5 - IITA - July 2015, updated in February 2016

Castor bean 75 variables MALAPORTE March 2017 version

Chickpea 89 variables PRASAD Chickpea Trait Dictionary in template v5 - ICRISAT - July 2015

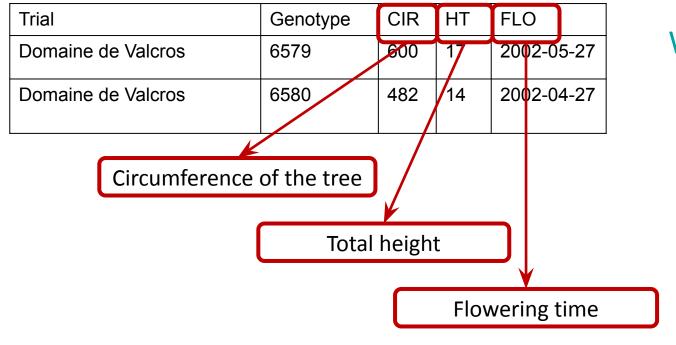
Common Bean 184 traits AGUERRERO CIAT Common bean trait dictionary - version August 2014

Cotton 282 variables ING Cotton ontology from CottonGen database - June 2019

Variable = trait + method + scale

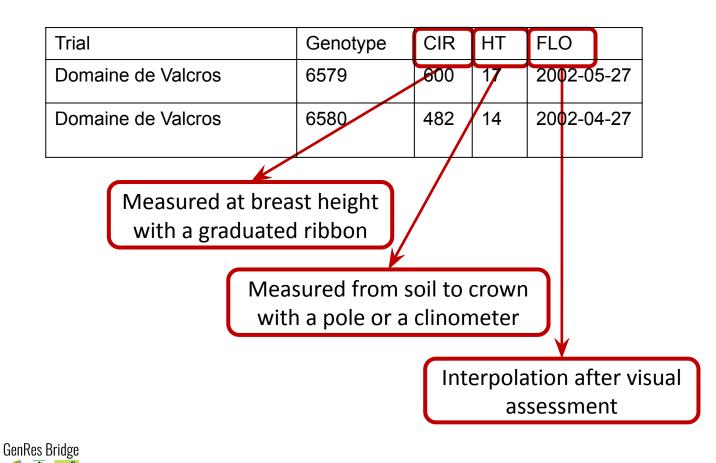
Trial	Genotype	CIR	HT	FLO	
Domaine de Valcros	6579	600	17	2002-0	5-27
Domaine de Valcros	6580	482	14	2002-04	4-27

The phenotypic observation

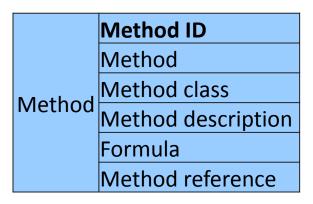

	<u> </u>			
	Variable ID			
	Variable name			
	Variable synonyms			
	Context of use			
	Growth stage			
/ariable	Variable status			
	Variable Xref			
	Institution			
	Scientist			
	Date			
	Language			
	Crop			

Plant Data Managment for Phenotyping Experiments 02 April 2021 / webinar / Cyril Pommier

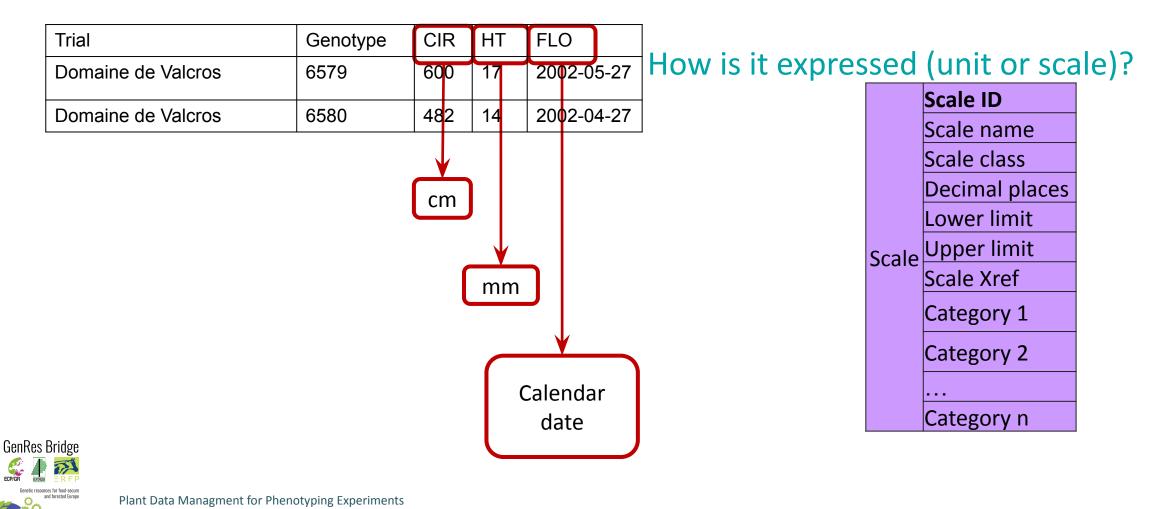
Variable = **trait** + method + scale


What is the studied character?

	Trait ID
	Trait
	Trait class
	Trait description
	Trait synonyms
Irait	Main trait abbreviation
	Alternative trait abbreviations
	Entity
	Attribute
	Trait status
	Trait Xref

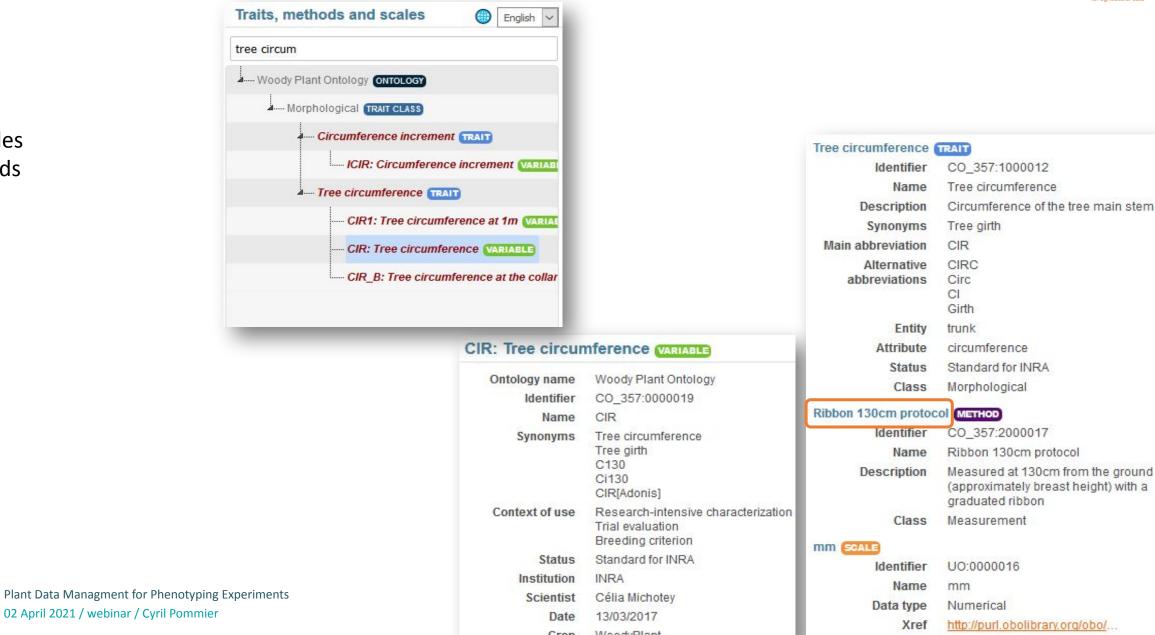


Variable = trait + **method** + scale



02 April 2021 / webinar / Cyril Pommier

GEN



Variable = trait + method + scale

Tree Variable example1

https://urgi.versailles.inra.fr/ontologyportal#termIdentifier=CO_357:0000019

FURG

Ontology

1 Trait 3 Variables 3 methods

GenRes Bridge

and forested Europe

GEN

Tree Variable example2

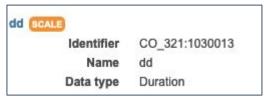
urces for food-secure and forested Europe

Plant Data Managment for Phenotyping Experiments

02 April 2021 / webinar / Cyril Pommier

https://urgi.versailles.inra.fr/ontologyportal#termIdentifier=CO_357:000082

ırvival	Ontology name Identifier	Woody Plant Ontolo CO_357:0000082	ogy			
	Name	SUR				
Stress TRAIT CLASS	Synonyms	Survival Health status ES	Survival TRAIT Identifier	CO_357:1000070		
		S MOR SUR[Adonis]	Name Description	Survival Assessment of the survithe tree	vival state of	
SUR_Rate: Survival rate (VARIABLE)	Context of use Status	Trial evaluation Standard for INRA	Synonyms Main abbreviation	Health status SUR	Visual scoring METH	
Terminal bud status TRAIT	Institution Scientist	INRA/IBET Célia Michotey	Alternative abbreviations	S SR Survival	Identifier Name Description	CO_357:2000003 Visual scoring Visual assessment with a referen
providered leaves TRAIT	Date Crop	13/03/2017 WoodyPlant		Survie Etat sanitaire ES Vivants	Class	scoring scale Estimation
			Entity Attribute	MOR tree survival	Survival scoring scal Identifier Name Data type	CO_357:3000036 Survival scoring scale Nominal
			Status Class	Standard for INRA Stress	Decimal places Min	0 0
ν υπαξυ					Max Categories	2 0 = Alive 1 = Dead 2 = Doubtful


Wheat phenology : Ear emergence

https://urgi.versailles.inra.fr/ontologyportal#termIdentifier=CO_321:1000035

Traits, methods and scales (English -		Ear emergence (Z55) / M_jj/mm/aa (variable)
Search terms	– Ontology name Identifier	Wheat Crop Ontology CO_321:1000035
Booting time TRAIT	Name	D.Z55_jj/mm/aa
Double ridge time TRAIT	Synonyms	Ear emergence (Z55) / D.Z55.DAYS_SUM_jj/mm/aa
Ear at 1cm TRAIT	Growth stage Xref	Z55 (Ear half emerged) WIPO:0000035
Ear emergence TRAIT	Institution	INRA
D.Z55_d: Ear emergence (Z55) / D.Z55.DAYS_SUM_d	Scientist Date	Jacques Le Gouis 15/06/2016
D.Z55_dd: Ear emergence (Z55) / D.Z55.DAYS_SUM_dd 💟	Crop	Wheat
D.Z55_jj/mm/aa: Ear emergence (Z55) / D.Z55.DAYS_SUM_	Ear emergence TRAIT	CO_321:1010012
Emergence time (TRAIT)	Name	Ear emergence

Raw data: Emergence date Identifier CO_321:1030008 Name jj/mm/aa Data type Time

Computed: degree days

Contraction of the second and the se

GenRes Bridge

Plant Data Managment for Phenotyping Experiments 02 April 2021 / webinar / Cyril Pommier

Vitis Phenology : Flowering

https://urgi.versailles.inra.fr/ontologyportal#termIdentifier=CO_356:1000011

Phenological TRAIT CLASS

Autumn coloration of leaves TRAIT
Budbreak TRAIT
Flowering TRAIT
DOY_FLO: Day of Year Flowering (50%) VARIABLE
FLO_50: Flowering date (50%) (VARIABLE)
FLO_END: Flowering end VARIABLE
FLO_OIV_302: Time of full bloom VARIABLE
FLO_START: Flowering start VARIABLE
HS_Tmax_B10_BudFlo: Heat sums with Tmax VARIA
MI-FLO-relativ: Flowering date (50%) relative to Char

Raw data: Flowering date

Calendar date SCALE							
Identifier	CO_356:4000003						
Name	Calendar date						
Data type	Time						

Computed: degree days

Tmax_Heatsummatio	and the second second second second second
Identifier	CO_356:3000172
Name	Tmax_Heatsummations
Description	Heat summation with maximum tempŽratures
Formula	=sum(max(Tmax-tb),0)
Class	Measurement
Degree.days SCALE	
Identifier	CO_356:4000038
Name	Degree.days
Data type	Numerical

Phenotype Structure Standard : MIAPPE MINIMUM INFORMATION ABOUT A PLANT PHENOTYPING EXPERIMENT

Methods 🗇 Open Access 💿 🗿

Enabling reusability of plant phenomic datasets with MIAPPE 1.1

Evangelia A. Papoutsoglou , Daniel Faria, Daniel Arend, Elizabeth Arnaud, Ioannis N. Athanasiadis, Inês Chaves, Frederik Coppens, Guillaume Cornut, Bruno V. Costa, Hanna Ówiek-Kupczyńska, Bert Droesbeke, Richard Finkers, Kristina Gruden, Astrid Junker, Graham J. King, Paweł Krajewski, Matthias Lange, Marie-Angélique Laporte, Célia Michotey, Markus Oppermann, Richard Ostler, Hendrik Poorter, Ricardo Ramírez-Gonzalez, Živa Ramšak, Jochen C. Reif, Philippe Rocca-Serra, Susanna-Assunta Sansone , Uwe Scholz, François Tardieu, Cristobal Uauy, Björn Usadel, Richard G. F. Visser, Stephan Weise, Paul J. Kersey, Célia M. Miguel, Anne-Françoise Adam-Blondon, Cyril Pommier ... See fewer authors

First published: 14 March 2020 | https://doi.org/10.1111/nph.16544 | Citations: 10

Phenotype <u>Structure</u> Standard

Minimum Information for Biological and Biomedical Investigations

A collection of the historical MIBBI foundry reporting guidelines. The minimum information standard is a set of guidelines for reporting data derived by relevant methods in biosciences. If followed, it ensures that the data can be easily verified, analysed and clearly

• Biologist Friendly

• ...

- Minimal and sufficient list of metadata:
 - The objective of the experiment
 - Who contributed to the experiment
 - What were the experimental procedures
 - What was the biological material experimented

Phenotype <u>Structure</u> Standard

Minimal Information About Plant Phenotyping Experiment : version 1.1

www.miappe.org

- Many stakeholders
 - Elixir, Emphasis, Bioversity, North American PPN
- Open Community:
 - Request for comments
 - Github Feature requests
 - Mailing lists
 - Meetings & Workgroups
- Crops and woody plants

Papoutsoglou *et al.* (2020) Enabling reusability and interoperability of plant phenomic datasets with MIAPPE 1.1. New Phytol, 227:260-273; <u>https://doi.org/10.1111/nph.16544</u>

			1					MIAP	PE						
		line #	MIAF	PPE Check list		Definition	Example			Format	Cardinali				
		OM-1 Investigation work, the various components comprising a peer-review					aims. They can exist at various scales (for example, livey could encompass a grant-funded programme of eved publication, or a single experiment).					1 per MIAPPE submission			
Investigation unique ID Investigation unique not the submission of the investigation data, and the act DM-2 Investigation in the investigation in that restatution.					EBI 121	M5678		Unique identifier 0-1		D-1					
			Investigation	n title		radiable string summarising the investigat	ion.	Adaptation of Maze to Temperate Climates Md- Density Genome-Wide Association Genetics and Diversity Patterns Reveal Key Genomic Regions, with		Free last (short)	1				
	line#					Environment									
	ENV-	1 Nor	n-exhaustive	list of Environment	of Environment Parameters.										
	ENV-3	2	Enviror	nment parame	ters	Definitio	on	Example		Format					
	ENV-3	3				Gr	owth facil	lity					1		
	ENV-		temperatu	ure		List of hourly air temperature t experiment.	throughout the			lumeric					
	ENV-	5 Or	gan tempe	rature		List of hourly organ temperatu experiment	res throughou	t the	the 18 °C N		lumeric		I		
e #	Constant of the	1			2	Experimental	Factors						1		
-1	Non-exhau	stive	list of Exper	rimental Factors th	at can be	applied.							1		
-2	Fac	tor ty	ype		Defi	nition	Example factor values			Format		-			
-3	A plant treatment (EO:0001001) involving an exposure to a given conditions of regional seasons.			Spring season; dry season Plant Enviro Ontology."E		rironment		westgation .							
4	Air treatment regime Air treatment regime depend on the study type or the reg environment.				mperature, which may	28/25°C (Day/Night)		Plant Environment Ontology.'EO_0007161'							
-5	Soil temperature A physical plant treatment an exposure to varying de				legree of temperature,	27/25 ⁱ C (Day/Night)			Plant Environment Ontology: "EO_0007161"						

Capturing important information about phenotyping experiments using the MIAPPE standard

Two examples to illustrate how to capture important information about the phenotyping experiments:

- <u>MAIZE: [1]</u> Millet *et al.* 2019 (<u>https://doi.org/10.15454/IASSTN</u>): A multi-site experiment in a network of European fields for assessing the maize yield response to environmental scenarios.
- <u>**POPLAR:**</u> [2] Monclus *et al.* 2012 (<u>http://dx.doi.org/10.1186/1471-2229-12-173</u>): Integrating genome annotation and QTL position to identify candidate genes for productivity, architecture and water-use efficiency in Populus spp

Millet et al 2019 [1] - Material&methods section on phenotyping experiments

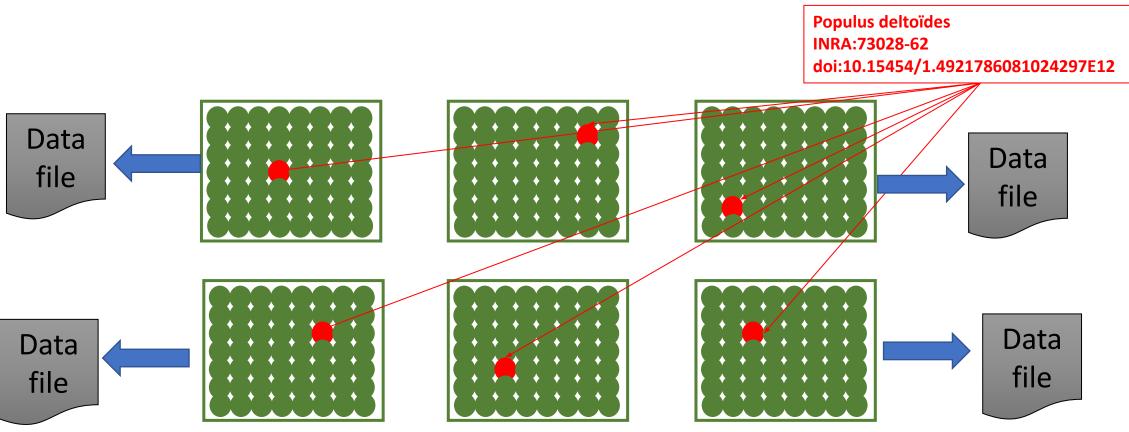
- A panel of **256 maize hybrids** was grown with **two water regimes** (irrigated or rainfed).
- Location: seven fields in 2012 and 2013, plus one site in Chile in 2013
- This resulted in 29 experiments defined as the combination of one year, one site and one water regime, with two and three repetitions for rainfed and irrigated treatments, respectively.
- A detailed **environmental characterisation** was carried out, with hourly records of micrometeorological data and soil water status, and associated with precise measurement of phenology.
- « grain.yield»: yield adjusted at 15% grain moisture, in ton per hectare (t ha-1). «grain.number»: number of grain per square meter. «grain.weight»: individual grain weight (mg). «anthesis»: male flowering (pollen shed), in thermal time cumulated since emergence (d20°C). «silking»: female flowering (silking emergence), in thermal time cumulated since emergence (d20°C). «plant.height»: plant height, from ground level to the base of the flag leaf (highest) leaf (cm). «tassel.height»: plant height including tassel, from ground level to the highest point of the tassel (cm). «ear.height»: ear insertion height, from ground level to ligule of the highest ear leaf (cm).

Monclus et al 2012 [2] - Material&methods section on phenotyping experiments

- 3 Field trial established in April 2003 located in France (Ardon, 47°49'41"N, 1°54'39"E, 110 m), Italy Cavallermaggiore ((44° 43' 0" N), (7° 41' 0" E)), UK Headley ((51° 7' 0" N), (-1° 10' 0" W))
- The biological material consisted of a cloned 336 F1 progeny from an interspecific cross between the female *Populus deltoides* (Bartr. Ex Marsh.) '73028-62' from Illinois and the male *P. trichocarpa* (Torr. and Gray) '101-74' from Washington State.
- The trial was established from 25 cm- homogenous hardwood cuttings planted at a plant density of 6670 trees per ha. The trial was and consisted in 6 randomized complete blocks where each F1 genotype and each parent was represented by one replicate.
- **Circumference and stem height** were measured at the end of the first (winter 2003–2004) and second (winter 2004–2005) as described in Dillen et al. Forest Ecol Manag. 2007, 252 (1–3): 12-23). Growth increment in height and circumference during the second growing season were calculated.
- Leaf traits where measured in 2003: one fully illuminated mature leaf was collected on each tree according to Monclus et al. <u>http://doi.org/10.1111/j.1469-8137.2005.01407.x</u>). Six calibrated discs of lamina were cut from this leaf, dried at 50 °C during 48 °C and weighed, and specific leaf area (SLA, cm² g⁻¹) was computed. Leaf discs were ground to fine powder for analysis of leaf carbon isotope composition (δ¹³C), carbon (C_M) and nitrogen (N_M) contents. One-milligram subsamples of ground material were used for measuring the CO₂ produced by combustion and its ¹³CO₂/¹²CO₂ ratio by a continuous flux isotope ratio mass spectrometer. The discrimination between atmospheric CO₂ and plant material was calculated.

MIAPPE 1.1 Overview

Typical Dataset: Monclus et al., 2012, [2]


GenRes Bridge

7

and forested Europ

GEN

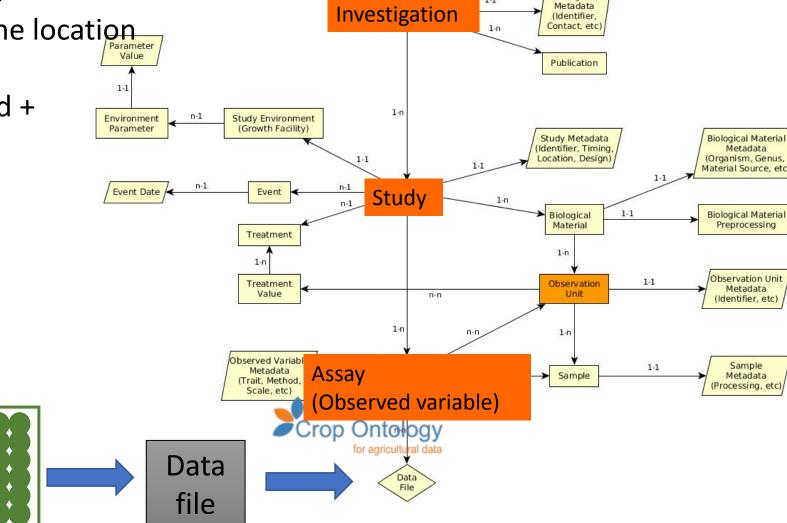
6 randomized blocks 1 observation unit = one tree No treatment 6 replicates defined by their position in each block: row and column Plant Data Managment for Phenotyping Experiments 02 April 2021 / webinar / Cyril Pommier

MIAPPE V1.1 Overview: the (ISA) backbone

nvestigation

1-1

- Investigation: whole dataset
- Study : one <u>experiment</u> in one location for one to several year
- Assay: Level + Trait + Method + Scale/Unit
- Level:


GenRes Bridge

ERFP aurces for food-secure and forested Europe

GEN

- Plant
- Microplot
- Block
- Trial

. . .

O2 April 2021 / webinar / Cyril Pommier

Plant Data Managment for

MIAPPE V1.1 Overview: Data file content

- Any format (Near Infra Red Spectrum, Images, Image Archives references,)
- Mostly tabular
- Metadata on each column header

A	В	С	D	E	F	G	Н	-1
Accession Number	Trial Site	Campaign	Circum1: Tree circumference at 1 year	Date [Circum1]	Height1: Tree total height at 1 year	Date [Height1]	Shoots3: Number of resprouts at 3 years	Date [Shoots3]
661300270	Ardon	2004	45.645632645603683	12/01/2004	284.3	12/01/2004		
661300270	Ardon	2005					14.630625	12/05/2005
661300444	Ardon	2004	38.96112577281653	12/01/2004	228.8	12/01/2004		
661300444	Ardon	2005					8.5030559999999991	12/05/2005
661300312	Cavallermaggiore	2004	52.4	01/01/2004	249.9	01/01/2004		
661300312	Cavallermaggiore	2005					12.98160900000001	01/05/2005
661300371	Cavallermaggiore	2004	45.74	01/01/2004	230.2	01/01/2004		
661300371	Cavallermaggiore	2005					10.3041	01/05/2005
661300487	Cavallermaggiore	2004	72.52	01/01/2004	309.8	01/01/2004		
661300487	Cavallermaggiore	2005					10.67982399999998	01/05/2005
661300585	Cavallermaggiore	2004	71.739999999999995	01/01/2004	305.7	01/01/2004		
661300585	Cavallermaggiore	2005					10.95610000000001	01/05/2005
661300468	Headley	2004	45.27	01/01/2004	247	01/01/2004		
661300468	Headley	2005					15.88819600000002	01/05/2005
661300469	Headley	2004	70.93000000000007	01/01/2004	313	01/01/2004		
661300469	Headley	2005					13.271448999999999	01/05/2005
661300533	Headley	2004	57.67	01/01/2004	258.8	01/01/2004		
								· · · ·

Genetic resources for food-secure

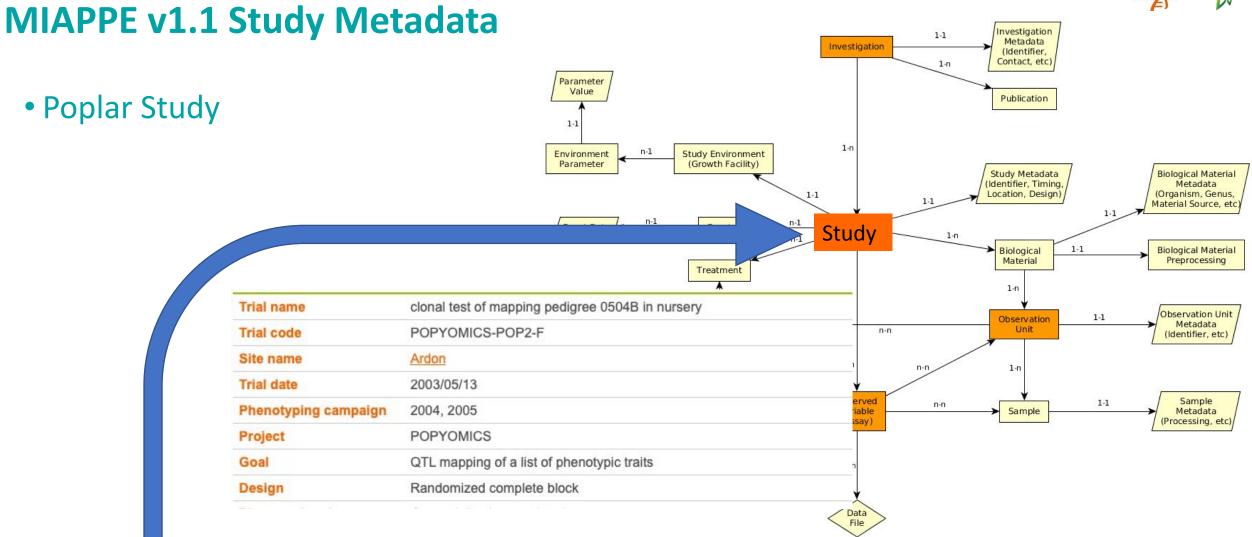
Plant Data Managment for Phenotyping Experiments

02 April 2021 / webinar / Cyril Pommier

MIAPPE main sections – Investigation

- Investigations are research programmes with defined aims. They can exist at various scales: e.g. grant-funded programme of work with various published components; a single experiment.
- One investigation holds one to many studies.
- Metadata
 - Similar to Archive deposition
 - DOI, title, description, associated publications/people, ...
- Examples Investigation :
 - MAIZE [1]: the whole set of multilocal and pluriannual phenotyping experiments
 - POPLAR [2]: the whole set of multilocal measurements over three years

MIAPPE main sections – Study



• A "study" (or <u>experiment</u>)

- One study = one location
- comprises a series of assays (or measurements) undertaken to answer a particular biological question.
- Metadata
 - experiment as a whole
 - timing, location, statistical design, cultural pratices (but not event lists), etc...
- Examples of Studies:
 - MAIZE [1] : 37 studies: year x location x treatment (Gaillac 2012 rain, Gaillac 2013 watered, ...)
 - POPLAR [2] : 3 locations over one to several years (Ardon_2003) (Ardon_2003-2005)

A	В	С	D	E	F	G	Н	1
Accession Number	Expe location	Campaign	Circum1: Tree circumference at 1 year	Date [Circum1]	Height1: Tree total height at 1 year	Date [Height1]	Shoots3: Number of resprouts at 3 years	Date [Shoots3]
66130027	Ardon	2004	45.645632645603683	12/01/2004	284.3	12/01/2004	4	
66130027	Ardon	2005	j			/	14.630625	12/05/2005
661300444	Ardon	2004	4 38.96112577281653	12/01/2004	228.8	12/01/2004	A	
661300444	Ardon	2005				/	8.5030559999999991	12/05/2005

• MIAPPE main sections – Biological material

- Biological material being studied
- Plus its source (stock center, gen bank, etc...).
- <u>Crucial</u> for integrating phenotyping data with genomic or genetic data.
- Metadata
 - Minimal fields from Multicrop Passport Descriptor (MCPD) standard
 - GPS location for forest tree / in situ material provenance

Source of the material used: accession, cultivar/variety, region

of provenance, laboratory cross, ...

Biological material used in the study: seed lot, cuttings...

Plant Samples used in the study: detached leaves, ...

Plant Data Managment for Phenotyping Experiments

02 April 2021 / webinar / Cyril Pommier

MCPD identification system:

- <u>Genebank/Lab + Species +</u> <u>accession number (mandatory)</u>
- DOI
- <u>Lab + internal accession number</u> (mandatory)
- URI
- <u>Lab + internal accession number</u> (mandatory)
- BioSample ID

MIAPPE main sections – Biological Investigation material 1-1 Metadata Investigation (Identifier, Contact, etc. 1-n Plant Material Parameter Value Publication Identification 1-1 1-n Description n-1 Study Environment Environment ٠ (Growth Facility) Parameter Study Metadata **Biological Material** (Identifier, Timing, Metadata Location, Design) (Organism, Genus, Multi Crop Passport Descriptor 1-1 1-1 Material Source, etc 1-1 n-1 n-1 Event Date Event Study **Biological material** ical Material processing **IDENTIFICATION** Treatment 1-n Accession number 661300333 1-n Accession name 661300333 Observation Unit Treatment **Observation Unit** Metadata Value n-n (Identifier, etc.) **Permanent Unique Identifier** https://doi.org/10.15454/HXSRBP 0054B115 Synonyms 1-n n-n 1-n species Populus x generosa bserved Variable Observed Sample 1-1 1-1 n-n Sample Pedigree Metadata Variable Metadata (Trait, Method, (Assay) (Processing, etc) Interspecific cross Scale, etc) **Biological status Genetic nature** Clone n-r Comment Data File HOLDING Holding stock center Forest BRC (I Presence status C G н A B F Circum1: Tree circumference at 1 year Date [Circum1] Height1: Tree total height at 1 year Date [Height1] Shoots3: Number of resprouts at 3 years Date [Shoots3] Accession Number **Trial Site** Campaign 661300270 Ardon 2004 45.645632645603683 12/01/2004 284.3 12/01/2004 12/05/2005 661300270 Ardon 2005 14.630625 2004 38.96112577281653 12/01/2004 228.8 12/01/2004 661300444 Ardon 661300444 Ardon 2005 12/05/2005 8.50305599999999991

MIAPPE main sections – Observed Variable (Assay)

An Observed Variable (assay)

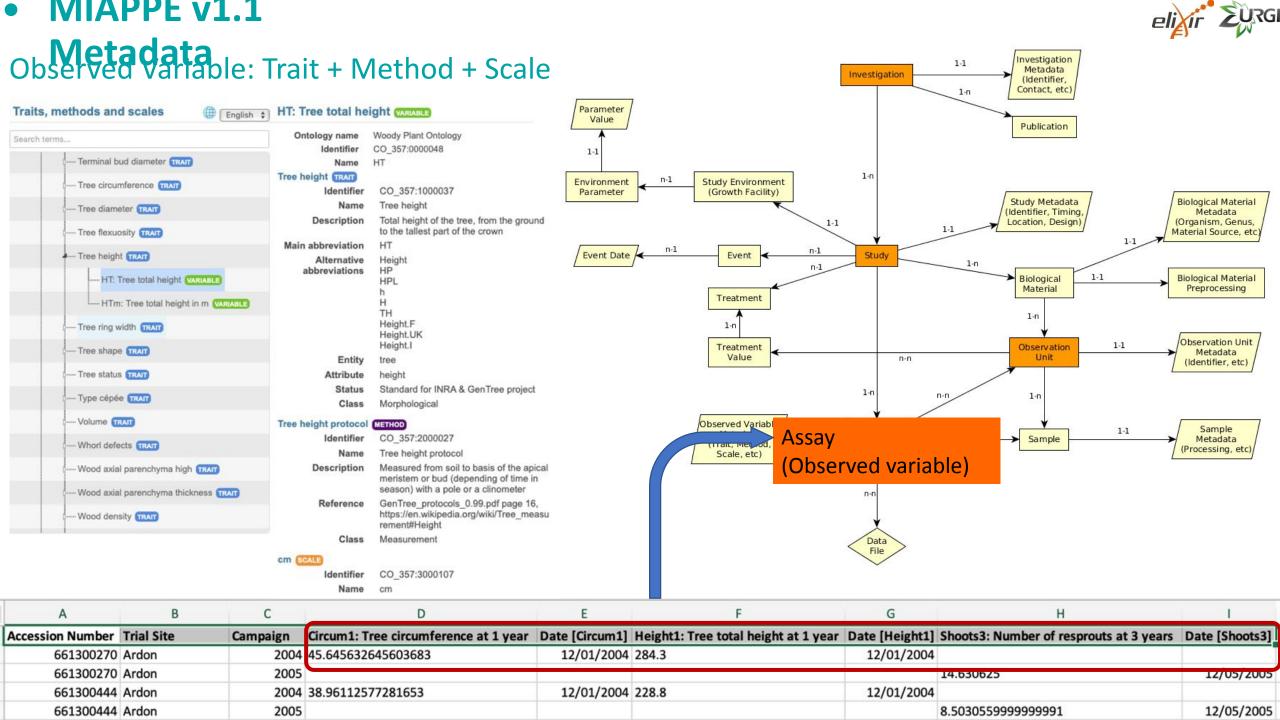
- specific measurement.
- Targets a trait
- with a method and a scale.
- **Trait: Phenotype or Environment**

Metadata

- **Crop Ontology Trait Dictionary:**
- trait, method, scale

• Example:

- In each study of Millet *et al.* [1] :
 - Plant level: 20 variables
 - Genotype/ Study level: 19 variable both phenotype and environment
 - Plot level: 9 variables
 - E.g. Female flowering days to silking D20deg
 - E.g. Plant height (cm)


FFLW_D20deg: silking D20deg	Female flowering days to		
Synonyms	Female flowering days to silking D20deg FFLW		
Growth stage	Flowering		
Crop	Maize		
Silking time TRAIT			
Identifier	CO_322:0000031		
Name	Silking time		
Description	Silking time		
Synonyms	Female flowering time		
Main abbreviation	Silk		
Alternative abbreviations	S FFIw	PTHT: Plant hei	aht (cm) (VARIABLE)
Entity	Flower	<u>k</u>	
Attribute	Silking time	Ontology name	Maize Traits
Class	Phenological	Identifier	MIPO:000006
Thermal time between Computation	n emergence and sliking –	Name Synonyms	PTHT Plant height (cm)
Identifier	MIPO:0000027	Xref	CO_322:0000994
Name	Thermal time between emergence and silking – Computation	Crop	Maize
Description	Calculated as equivalent days at 20 °C unit between emergence and 50% anthesis.	Plant height TRAIT Identifier Name	CO_322:0000994 Plant height
Reference	B. Parent, O. Turc, Y. Gibon, M. Stitt and F. Tardieu (2010) Modelling temperature- compensated physiological rates, based	Description	Plant height from the (in reproductive stag tassel).
	on the co-ordination of responses to temperature of developmental	Main abbreviation	PH
	processes. Journal of Experimental	Entity	Plant
	Botany	Attribute	height
Class	Computation	Class	Agronomical
D20deg: days equiva	alent time at 20 °C SCALE	DH Masaurant	
Identifier	MIPO:0000030	PH - Measurement M Identifier	and the second
Name	D20deg: days equivalent time at 20 °C		CO_322:0000995
Data type	Numerical	Name	PH - Measurement

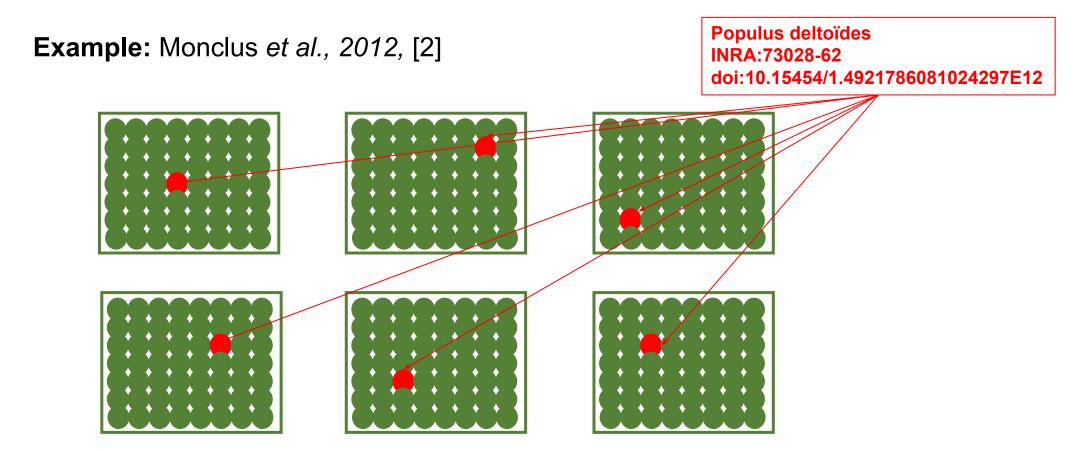
Identifier	MIPO:0000006
Name	PTHT
Synonyms	Plant height (cm)
Xref	CO_322:0000994
Crop	Maize
nt height TRAIT	
Identifier	CO_322:0000994
Name	Plant height
Description	Plant height from the base to the top part (in reproductive stages to the top of the tassel).
ain abbreviation	PH
Entity	Plant
Attribute	height
Class	Agronomical
- Measurement 🚺	ЕТНОД
Identifier	CO_322:0000995
Name	PH - Measurement
Description	Recommended to take multiple plants and measure the height from the base of a plant to the top of the tassel, enter the data individually in the FieldBook and calculate the average.
Reference	DTMA drought phenotyping protocol.

2009. CIMMYT. Magorokosho et al 2010. Characterization of maize permplasm grown in eastern and southern Africa: Results of the 2009 regional trials coordinated by CIMMYT. Zimbabwe

41

• MIAPPE main sections – Observation Unit, Samples

Observation units


- objects in the study
- Observations/measures are made on observation units
- Treatments values are made on observation units
- Also used for environmental variables.
- Metadata are specific to MIAPPE: identifiers, location, replication, treatments, ...

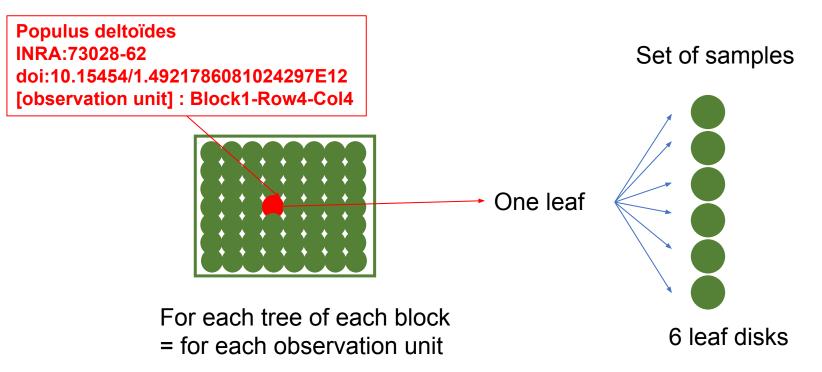
• A sample

- portion of plant tissue <u>extracted from an observation unit</u>
- sub-plant observations and/or molecular studies.
- Metadata : identifiers, information about processing, ...

• MIAPPE main sections – Observation Unit, Samples

6 randomized blocks 1 observation unit = one tree No treatment 6 replicates defined by their position in each block: row and column Plant Data Managment for Phenotyping Experiments

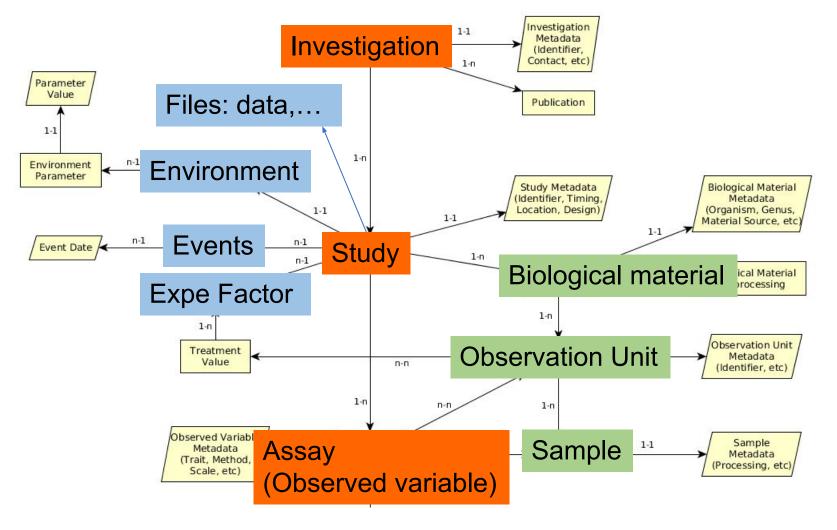
02 April 2021 / webinar / Cyril Pommier


GenRes Bridge

URG

• MIAPPE main sections – Observation Unit, Samples

Example: Monclus et al., 2012, [2]



Different types of processing of the leaf disks depending on the measurement: can be captured by different sets of samples (e.g. if subsampling generates repetitions) or in the method of the observed variable.

Plant Data Managment for Phenotyping Experiments 02 April 2021 / webinar / Cyril Pommier

GenRes Bridge

• MIAPPE V1.1 data model – Other Important sections Crop Ontology

eli ir Eurg

• MIAPPE main sections – Experimental Factor

- Biotic or abiotic experimental factor
 - Its effects are evaluated in the study.
 - Takes different values in the observation units
- Metadata: name, description and value
- Example : Maize dataset [2]
 - Two Experimental factors/treatments: Rainfed, Watered
 - Identified by dedicated metadata
 - Block organisation

GenRes Bridg

Study the effect of Environment/Drought on the Biological material

	GENOTYPE ID Accession Number	Accession Name	TREATMENT water_regime	Trial Name	Trial Site	BLOCK	PLOT	REPLICATE
	FR19_H	FR19_H	rainfed	KWS Karlsruhe 2011	Karlsruhe	5	124	1
е	FR19_H	FR19_H	rainfed	KWS Karlsruhe 2011	Karlsruhe	10	250	3
5	FR19 H	FR19_H	rainfed	KWS Karlsruhe 2013	Karlsruhe	11	401503	2
P	FR19 H	FR19_H	watered	KWS Karlsruhe 2012	Karlsruhe	23	400353	1
^{ure} Plar	nt Dat FR19 H	FR19_H	watered	KWS Karlsruhe 2011	Karlsruhe	2	6	1
	April 2 FR19 H	FR19 H	rainfed	KWS Karlsruhe 2012	Karlsruhe	16	401451	2

• MIAPPE main sections – Event

• Event

- Discrete occurrence at a particular time
- Natural, e.g. rain, unwanted pathogen attack
- Cultural practice, e.g. planting, watering, etc.
- Whole study level or at the observation unit level
- It is not the studied Factor but an additional information
- Metadata: name, description, time/date
- Examples: In Poplar, [2]
- the field establishment date, 2003.
- the orchard was subjected to 15mm of rain on March 15, 2012 (fiction).

• MIAPPE main sections – Environment

Environment parameters

- Constant throughout the study
- Did not change between observation units or assays.
- Environment characteristics that vary over time, i.e. environmental variables, should be recorded as Observed Variables
- Metadata :name, value
- Example:

Environment parameter					
Sowing density					
Rooting medium composition					

Environment parameter Value 20 seeds/m2 Ca (XEO:00058): 5 mg/L; ...

GenRes Bridge Conference for the Secret Afforsted Europe Plant Data O2 April 20

Take home message

Semantic

- Description of the data ٠
- Controlled vocabularies: term name and definitions
- Ontologies: semantic links between terms
- *Biologist* driven ٠

Structure

URG

miappe

- Formatting and Organizing the data
- Data Models •
- Standards : CSV, VCF, GFF, MIAPPE (<u>www.miappe.org</u>), etc...
- Biologist & Computer scientist driven

Persistent Unique Identifiers accessions ID, Trait ID, DOI,	BrAPI Study Comparison Requires: D3, jQuery
rAPI	Study Comparison BrApp Example Internations Juncoos Passwort Internations Juncoos Internations Juncoos Internations International Internation

Technical

- Data integration and sharing
- Interoperability : tools and systems
 - GA4GH

GenRes Bridge

GEN

Breeding API <u>www.brapi.org</u>
BrAPI

Computer scientist driven

Plant Data Managment for Phenotyping Experiments 02 April 2021 / webinar / Cyril Pommier

Take Home message

- Standardizing your data is
- -Good for you
- -Good for others
- -Getting easier
- -Contribution Welcomed !

Thank you!

