
Memory Footprint Optimization Techniques for
Machine Learning Applications in Embedded

Systems
Manolis Katsaragakis?α, Lazaros Papadopoulos?, Mario Konijnenburg•, Francky Catthoorα†◦, Dimitrios Soudris?

?Microprocessors and Digital Systems Laboratory, ECE , National Technical University of Athens, Greece
αKatholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

•IMEC-NL, Eindhoven, The Netherlands, †IMEC, Kapeldreef 75, 3001 Heverlee, Belgium.
?mkatsaragakis, lpapadop, dsoudris@microlab.ntua.gr, ◦francky.catthoor@esat.kuleuven.be, •mario.konijnenburg@imec.nl

Abstract—Effective memory management is an important
requirement for embedded devices that operate at the edges
of Internet of Things(IoT) networks. In this paper, we present
a set of memory optimization techniques for machine learning
applications developed in Python. The proposed techniques aim
to avoid the main drawbacks of static memory allocation and
to promote dynamic memory management, in order to optimize
memory usage and execution latency. The results of the presented
techniques are evaluated in a biomedical application, showing
significant memory utilization and performance improvements
(64% reduction in memory size requirements and 51% execution
time reduction). Additionally, we highlight the applicability of
the proposed techniques to a wide variety of IoT applications
that leverage machine learning algorithms. Finally, the results
of the optimized biomedical application in Python are compared
with the corresponding version of the application in C and we
identify trade-offs between software maintainability and memory
size requirements.

Index Terms—Embedded Systems, IoT, Machine Learning,
Resource Management, Memory Optimization, Python, C

I. INTRODUCTION

Embedded systems refer to a combination of computer
hardware and software, extending computation beyond tradi-
tional devices, such as desktops, laptops, smart-phones and
tablets, to any physical devices, everyday objects and wear-
ables, composing the world of Internet of Things (IoT). Each
platform is designed for a specific application or for specific
functions within a larger system. These applications require
to be executed under the corresponding embedded system’s
inherent constraints of strictly limited computing and memory
resources, while, on the same time, the execution latency is of
major importance.

Over the last years, machine learning (ML) paradigm in em-
bedded systems and IoT is the upward trend of research, both
in industrial and in academic community. Several researches
have been conducted on the implementation of machine learn-
ing applications and their adjustment on embedded systems.
Authors of [1] implemented an algorithm for ECG analysis and
classification on IoT, using Support Vector Machines (SVM),
while authors at [2] present a deep reinforcement learning
framework for autonomous driving, targeting its deployment
on embedded hardware.

In order to reduce the programming effort and the required
in-depth understanding of the many available and emerging

This work has received funding from the European Unions H2020 research
and innovation programme under grant agreement No 801015 (EXA2PRO,
www.exa2pro.eu).

ML techniques, many of those applications are implemented
in a high-level programming language, such as Python. Python
offers a variety of well established ML libraries, such as
the Scikit-learn [3] software library, which supports program-
mers in developing demanding applications, while minimizing
the programming effort required. However, Python program-
ming often imposes static memory management, leading to
increased memory requirements. Thus, applications imple-
mented using standard Python are not suitable for embedded
devices and IoT, as in many cases the required memory
resources skyrocket, making the execution of an application to
a resource constrained device prohibitive. Therefore, porting
Python applications in embedded systems is a significant
challenge. Approaches that enable dynamic memory manage-
ment by Python applications and optimize the overall memory
utilization enable the effective deployment of such applications
in embedded devices with limited memory.

There exists several systematic approaches that enhance the
dynamic memory behavior of applications. Authors of [4]
and [5] propose the Dynamic Data Type Refinement (DDTR)
methodology, which enables the systematic customization and
refinement of dynamic data types of applications. In [6], Dy-
namic Memory Management (DMM) is presented, which can
be used to construct dynamic memory allocators, according
to application requirements and system constraints. However,
such approaches have been developed only for C/C++ appli-
cations. Additionally, in [7], authors present a solution for
efficiently mapping arbitrary C code into hardware, while
in [8] authors describe and automatic framework for dynamic
data type optimization in C language. To the best of our
knowledge, very limited research has been conducted so far on
memory optimizations for applications developed in Python.

This paper proposes a set of memory optimizations for
Python applications that leverage machine learning techniques
and demonstrates the memory gains that can be obtained.
The techniques focus on enabling dynamic memory usage,
in order to avoid the pitfalls of static memory management,
i.e. high memory footprint and increased execution latency. To
demonstrate our results, we selected a real-life and biomedical
application for activity classification. It is a representative
application developed in Python that uses the Random Forest
algorithm to provide accurate classification. The novel con-
tributions of this work are the following:

• We present a set of techniques for dynamic memory



optimizations for Python applications enabled by machine
learning algorithms. The techniques are based on the
native characteristics of the application data structures
and its algorithm.

• An evaluation of the proposed techniques is presented,
highlighting their ability to significantly optimize the
memory management through dynamic behavior, while
achieving lower execution latency compared to the static
memory management approaches.

• Finally, trade-offs between maintainability of program-
ming and memory requirements are identified.

The rest of the paper is organized as follows: Section II
analyzes the memory optimization steps implemented in our
techniques, the basic principles and the characteristics of the
application optimized in this work. In section III we present
the experimental evaluation and the results of our proposed
techniques in the examined scenarios, while section IV con-
cludes this paper and provides future challenges and directions
in the dynamic memory management research area.

II. MEMORY OPTIMIZATION OF MACHINE LEARNING
PYTHON APPLICATIONS

A. Proposed Memory Optimization Techniques
We propose an optimization flow consisting of repeated

discrete steps, as illustrated in Figure 1.

1.	Profiling	&	Analysis

4.	Code	Hierarchy	Reduction

2.	Static	to	Dynamic	Memory	Management

5.	Python	Automatic	Optimizations

3.	Useless	Data	Removal

6.	E
valuation
Process

Initial	Python		Code

Optimized	Python	Code

Fig. 1: Memory Optimization Steps

The input of the methodology is the original source code of
the Python application. The optimization methodology consists
of the following steps:

1) Profiling and Analysis: In order to obtain a full per-
spective of the application’s behavior, a detailed profiling
and analysis is a process of major importance. Critical
spots in the code, concerning the memory consumption
of a program through time, the usage of particular
instructions and the frequency and duration of function
calls are extracted. There already exist mature auto-
mated tools, to analyse the memory performance of
Python applications, which provide information from
a different point of view. More specifically, Python’s
memory profiler [9] is used, which is a pure python
module based on the psutil module [10], for memory
monitoring of a process from operating system’s per-
spective. Additionally, we use Python’s Guppy-PE [11],

which is a library and programming environment that
offers object and heap detailed memory sizing, profiling
and debugging, while the Linux tool htop [12] provides
additional information about the running processes. All
these complementary data are fed into the next steps.

2) Static to Dynamic Memory Management: With re-
spect to the application’s functionality and its inherent
characteristics, the optimization of memory utilization
through dynamic memory usage aims at avoiding the
drawbacks of static memory management. Static mem-
ory management solutions are not suitable for embedded
applications, as worst-case size is assumed for every
data storage request, while, at the same time, effi-
cient memory block re-usability cannot be implemented.
Thus, resource requirements in terms of memory are
higher than the actual required. Through the insertion
of dynamic memory allocation constructs, the required
memory is allocated during the run time, which enables
programmers to declare only the memory required, with-
out worrying yet about possible wastage and overheads.
So this allows to keep a high level of maintainability
without paying the penalty of huge overhead due to the
presence of the subsequent steps.

3) Useless Data Removal: After a detailed profiling and
analysis, there can be detected parts of code, data
and imported modules that are useless in the actual
functionality of the application, or that are duplicated
versions of already existing parts. The former happens
in cases of inefficient development by the application’s
developer, while the latter is, usually, caused due to the
object-oriented nature of Python by creating instances
of the same object in function calls. Keeping alive only
the actual data and modules required, we will show that
significant memory optimizations can be obtained.

4) Code Hierarchy Reduction: Code hierarchy refers to
the different modules and sub-modules that the imple-
mented application is divided. An important factor that
affects the overall memory footprint of an application
is the memory overhead added by the interpreter for
the static memory allocation of modules in the begin-
ning of each program. Python’s memory manager, by
default, loads statically every single module used in the
application, without taking into account which functions
will be actually executed at run-time. Therefore, another
way to optimize the total memory footprint of an ap-
plication is to minimize the overhead added by these
data. In practice, without modifying Python’s memory
manager, moving the functionality of the actual useful
code from a module inside the application and reducing
code hierarchy, reduces this overhead. This has to be
applied selectively though to keep the maintainability at
a reasonable level while removing all relevant parts of
the incurred memory footprint overhead.

5) Python Automatic Optimizations: Python’s interpreter
offers automated flags and options in order to optimize
the executed application in terms of required computing
and memory resources.

6) Evaluation Process: Last but not least, an evaluation of
the applied optimizations is required. There is a possible
emergence of new parts of code and data that should be



transformed. The proposed method terminates when the
application is fully optimized and no other transforma-
tions can be applied, or at a specific memory/latency
threshold that satisfies the programmer’s and/or the
embedded device’s inherent requirements.

After the aforementioned steps are applied, the final output
of this process is the optimized source code of the correspond-
ing input application.

B. Representative Use Case Application
The use case application of this research is an IoT machine

learning application that belongs to the biomedical wearable
devices domain. In particular, the application provides activity
prediction of patients, given as input sensor coordinates (x, y,
z) placed on the patient’s chest and a set of features per patient.
The possible classification states are: lying(1), sedentary(2),
dynamic(3), walking(4), running(5) and biking(6).

The application uses a pre-trained python auto-regressive
model to provide predictions and the classifier used is the
Random Forest(RF). RF [13] is an ensemble machine learning
method that is often used for classification. Multiple decision
trees are constructed, each of which makes a prediction
according to the given input.

The final prediction is based on majority voting classifica-
tion of the individual trees. The RF classifier is implemented
in the Anaconda version of Python language using the scikit-
learn software library.

III. EXPERIMENTAL RESULTS AND EVALUATION

A. Experimental Setup
Our experiments were conducted on a machine with an

Intel i7-8700 processor at 3.2GHz and a dual in-line memory
module(DIMM) based on double data rate fourth generation
(DDR4) RAM. We used a data-set consisted of 197,633
coordinates, which are split into data blocks of 128 coordinates
each one, thus generating 1544 patients data points and 15
features per patient. The data blocks are independent (i.e.
there are no data dependencies between them). Therefore,
the output of the application is 1544 activity predictions,
which are produced sequentially. We used 20 estimators (i.e.
trees), without any limitations in terms of tree depth. All these
parameters settings were derived from the real-life application
context at IMEC.

B. Results and Evaluation
After a careful profiling and analysis(step 1.) and a the-

oretical analysis of the functionality of the algorithm, the
optimizations presented in section II-A were applied in prac-
tice and they are evaluated according to their optimization
impact. Figure 2 illustrates the footprint’s evolution through
the optimization process. The initial memory footprint was
measured at 258 MB in average, all statically allocated in the
beginning of the execution.

Figure 3 illustrates the comparison between the initial static
memory management and the functionality of the application
after applying the static to dynamic memory management
transformation (step 2.). The prediction phase of the random
forest algorithm is implemented as follows: As soon as the
data point is ready, it is fed to all the trees of the forest
and then the output of each tree is gathered to perform the

258
219

147.8
112 92.8

-15.12%

-32.51%

-24.22%

-17.14%

0

50

100

150

200

250

300

Initial State Static to
Dynamic

Transformation

Unused Data
Removal

Code Hierarchy
Reduction

Automatic
Optimizations

M
em

or
y 

Fo
ot

pr
in

t i
n 

M
B

Memory Optimization Steps

Fig. 2: Memory Footprint per Optimization Step

prediction. However, if the prediction is executed sequentially,
then only the information of a single tree is required to
be allocated in the memory at each point of the prediction
phase. Thus, possible performance can be traded for storage
requirements, respecting the functionality and the accuracy of
the algorithm. Furthermore, implementing this transformation
in practice showed that all classifiers information are not
required. The required functionality and the necessary data can
be transferred to the application and handled by the developer.
Experimental evaluation showed that this optimization step
reduced the overall memory footprint had an impact of 15.12%
on the initial memory, which corresponds to 39 MB in absolute
memory size, as shown in Figure 2.

Initial Application

Pre-trained Scikit 
Classifier and Trees 

197,633 
Sensor 

Coordinates 
Input

& 15 features 
per patient

TOTAL 5.1 MB

TOTAL 64 MB

Initial Version: Static Memory Management

Trained Model

Modified Application 

CHUNK 0

Transformed Version: Dyncamic Memory Management

Trained Model

Scikit library Scikit library

Functionaluty transferred from
 scikit to application

...

Classifier s Info (18 MB)

Transfer and 
handle required 

data to application

...

Load and unload 
dynamically trees and 

corresponding data

Load statically required 
classifier s info, trees and 

data in the beginning

Classifier s Info 
(18MB)

1544 Chunks of 0.41 M
B

Pre-trained Scikit Trees

Tree 0 
(2.3 MB)

Tree 1 
(2.3 MB)

Tree 18 
(2.3 MB)

Tree 19 
(2.3 MB)

...Tree0+Tree1+ + 

Tree19 (46MB)

CHUNK 2

CHUNK 1

CHUNK 1543

Fig. 3: High-level Static to Dynamic Transformations

Moreover, as a 2nd step (step 3.) of the memory optimiza-
tion process, useless or duplicated code, data and modules that
had been detected during the profiling phase, were deleted,
reducing the memory footprint of the application by 71.2MB,
setting it at 147.8 MB (32.51% less than the previous state, as
shown in 2). As far as the code hierarchy(step 4.) reduction
is concerned, in some cases the useful part functionality was
transferred inside the application to avoid memory overhead
by data duplication and interpreter’s management, while others
were not modified, providing a reduction of 35.8 MB. Finally,
Python’s automatic optimizations (step 5.) assisted in the
optimization of memory footprint by 19.2 MB, reducing it at
92.8 MB. By summing up the results from our experiments,
we extract that we achieved an overall memory improvement
of 64%, so a significant factor 3 compared to the initial state
of the application, as depicted in 2.

Further experiments are conducted, in order to evaluate
the gains of our proposed method. An additional key finding



438.8 415.3

231 216 215

0

50

100

150

200

250

300

350

400

450

500

Initial State Static to Dynamic
Transformation

Unused Data
Removal

Code Hierarchy
Reduction

Automatic
Optimizations

Ex
ec

ut
io

n 
La

te
nc

y 
in

 s
ec

Memory Optimization Steps

Fig. 4: Execution Latency per Optimization Step

of our research is the impact of the presented optimization
method to the execution latency of the examined application.
In particular, as illustrated in Figure 4, a reduction of 51%
on the average execution time is observed. Memory accesses
require higher execution latency, thus adding a significant
overhead in the overall execution time of the application. By
optimizing memory footprint, thus reducing RAM and cache
accesses, the execution latency is reduced.

C. Discussion

Considering, the wide usage of real-time applications in
low-resource embedded devices, we need to evaluate whether
the Python language is actually suitable for devices with such
limited resources. Therefore, the final version of the optimized
program was implemented from scratch in C language and exe-
cuted on Nvidia Tegra X1 with 4 ARM Cortex-A57 processors
running at 1.9 GHz and 4 GB of RAM as an embedded device
alternative.

In table I the experimental comparison between Python
and C implementations is illustrated, using the same input
data. C implementation outperforms the corresponding Python
implementation, requiring 96.8% less memory footprint, while
executing 1.5x times faster. The former is due to the nature
of the Python interpreter, the implementation of the machine
learning library and the available programming constructs in
Python, while in C no such behavior was observed. As far
as the execution latency is concerned, C is a compiler-based
language. Thus, in the compilation process, several optimiza-
tions can be implemented, while there is no time overhead
through the execution, in contrast to the interpreted approach
of Python, in which the source code translation is done at
run time. Furthermore, the C programming language allows
programmer to handle efficiently the dynamically allocated
data types and construct his own structs.

However, in order to achieve low memory requirements and
the execution time of the C implementation, the programming
effort required is significantly larger than the in the corre-
sponding Python implementation. Therefore, trade-offs be-
tween performance and programmability can be demonstrated.

TABLE I: Python and C Code Comparison

Memory
Footprint

Execution
Latency

Lines of Code
(LoC)

Python
Implementation 92.8 MB 215 sec 1x

C
Implementation 2.9 MB 142 sec 3.4x

Python offers high level software abstractions of ready-to-use
modules, which reduce the programming effort and the need
for in-depth understanding of the many available and emerging
machine learning techniques, in cost of increased memory
requirements. On the other hand, C code requires higher
programming effort and technical understanding of algorithms
that are manually implemented by developers. However, the C
implementation provides low memory utilization and increased
performance. By using Lines of Code (LoC) as a metric of
the required programming effort to develop the application,
the C implementation of the biomedical application requires
3.4x more LoC that the corresponding Python version (I).

IV. CONCLUSION

In this paper we addressed the problem of memory manage-
ment for machine learning Python applications in embedded
systems. We presented novel memory optimization techniques
for Python applications, achieving to avoid the main draw-
backs of static memory management and promote dynamic
memory transformations. The results of those techniques are
evaluated, reaching an optimization of 64% in terms of mem-
ory footprint and 51% in terms of execution latency and its
applicability to a variety of applications. Furthermore, the
corresponding results were compared with C programming
implementations, extracting trade-offs between programmabil-
ity and memory requirements. Our future research goal is to
examine strategically the possible expansion of our proposed
approach for further optimizations and apply more automated
processes.

REFERENCES

[1] D. Azariadi, V. Tsoutsouras, S. Xydis, and D. Soudris, “Ecg signal
analysis and arrhythmia detection on iot wearable medical devices,”
in 2016 5th International conference on modern circuits and systems
technologies (MOCAST), pp. 1–4, IEEE, 2016.

[2] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforce-
ment learning framework for autonomous driving,” Electronic Imaging,
vol. 2017, no. 19, pp. 70–76, 2017.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[4] A. Bartzas, S. Mamagkakis, G. Pouiklis, D. Atienza, F. Catthoor,
D. Soudris, and A. Thanailakis, “Dynamic data type refinement method-
ology for systematic performance-energy design exploration of network
applications,” in Proceedings of the Design Automation & Test in Europe
Conference, vol. 1, pp. 6–pp, IEEE, 2006.

[5] T. Papastergiou, L. Papadopoulos, and D. Soudris, “Platform-aware dy-
namic data type refinement methodology for radix tree data structures,”
in 2015 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), pp. 78–85, IEEE,
2015.

[6] D. A. Alonso, S. Mamagkakis, C. Poucet, M. Peón-Quirós, A. Bartzas,
F. Catthoor, and D. Soudris, Dynamic memory management for embed-
ded systems. Springer, 2015.

[7] L. Séméria, K. Sato, and G. De Micheli, “Resolution of dynamic
memory allocation and pointers for the behavioral synthesis from c,”
in Proceedings Design, Automation and Test in Europe Conference and
Exhibition 2000 (Cat. No. PR00537), pp. 312–319, IEEE, 2000.

[8] C. Baloukas, L. Papadopoulos, R. Pyka, D. Soudris, and P. Marwedel,
“An automatic framework for dynamic data structures optimization in c,”
in 2010 18th IEEE/IFIP International Conference on VLSI and System-
on-Chip, pp. 155–160, Sep. 2010.

[9] https://github.com/pythonprofilers/memory profiler.
[10] https://github.com/giampaolo/psutil.html.
[11] https://github.com/zhuyifei1999/guppy3/.
[12] https://github.com/hishamhm/htop.
[13] A. Liaw, M. Wiener, et al., “Classification and regression by random-

forest,” R news, vol. 2, no. 3, pp. 18–22, 2002.


