
A novel simulator for extended Hodgkin-Huxley
neural networks

Sotirios Panagiotou∗, Rene Miedema†, Harry Sidiropoulos†,
George Smaragdos†, Christos Strydis† and Dimitrios Soudris ∗

∗ MicroLab, School of Electrical and Computer Engineering, National Technical University of Athens

Athens, Greece

Email: [spanagiotou, dsoudris]@microlab.ntua.gr
† Neuroscience Department, Erasmus Medical Center

Rotterdam, The Netherlands

Email: [r.miedema, c.sidiropoulos, g.smaragdos, c.strydis]@erasmusmc.nl

Abstract—Computational neuroscience aims to investigate and
explain the behaviour and functions of neural structures, through
mathematical models. Due to the models’ complexity, they can
only be explored through computer simulation. Modern research
in this field is increasingly adopting large networks of neurons,
and diverse, physiologically-detailed neuron models, based on the
extended Hodgkin-Huxley (eHH) formalism. However, existing
eHH simulators either support highly specific neuron models,
or they provide low computational performance, making model
exploration costly in time and effort. This work introduces a
simulator for extended Hodgkin-Huxley neural networks, on
multiprocessing platforms. This simulator supports a broad
range of neuron models, while still providing high performance.
Simulator performance is evaluated against varying neuron
complexity parameters, network size and density, and thread-
level parallelism. Results indicate performance is within existing
literature for single-model eHH codes, and scales well for large
CPU core counts. Ultimately, this application combines model
flexibility with high performance, and can serve as a new tool in
computational neuroscience.

Index Terms—Biological neural networks, extended Hodgkin-
Huxley neuron model, gap junctions, parallel processing,
OpenMP, electrophysiology, in silico medicine

I. INTRODUCTION

Computational neuroscience studies how neural structures

demonstrate systemic and computational aspects. Advances in

this field have yielded innovations in neurophysiology, brain

function and interfacing, and artificial intelligence.

Exploring large neural networks with rich, conductance-

level models, like the extended Hodgkin-Huxley (eHH) for-

mulation, is increasingly gaining traction in brain research.

This turn toward increasingly more sophisticated models is

due to the superior simulation quality they offer. Most im-

portantly, real neurons exhibit subtle features that radically

affect network activity, such as spike synchronization and sub-

threshold oscillations. Simplified models often cannot express

such features, due to their inherent assumptions. Addition-

ally, the physiological quality of simulation results greatly

facilitates model validation through experimental data, such

as fluorescence imaging. Another benefit of physiological

modelling is that simulation results are directly associated

with the biological processes taking place. This way, off-

nominal physiological factors, such as drug effects or medical

conditions, can be explored in silico without having to design

new neuron models.

Mathematical modelling of neuron physiology is an open

question, due to the extent and complexity of the underlying

biochemical processes, and the difficulties in inspecting these

processes as they happen. Current research attempts to elimi-

nate this knowledge gap, by proposing new models for these

processes, indirectly determining their parameters through

experiments, and augmenting the existing neuron models with

the resulting model components. In silico simulation is widely

used in the research process, in order to constrain the param-

eters being searched and investigate model limitations, in turn

making wet-lab experimentation more efficient.

The neuroscientific methods described above present an

important requirement for neural simulation tools; to support

an extensible, general class of models, instead of supporting

only a particular neuron model or brain region. This way,

the value, usability and long-term relevance of the tools can

be maintained, as the cutting-edge models evolve with new

components and dynamics[1].

Simulation of neuron models is a computationally expensive

task, due to the non-linear functions and the amount of

parameters and state variables involved.This computational

load becomes even greater when networks of multiple neurons

are considered, and computational effort is also added for each

synapse present in the network. The scale of the computational

load, combined with the models’ inherent parallelization op-

portunities and high scientific relevance, makes simulation of

biophysically-detailed neural networks an appropriate applica-

tion for high-performance computing.

The immense known and unknown complexity of the human

brain has motivated researchers to adopt various simplifica-

tions when modelling neural structures. The most common

simplification is to ignore spatial variability of neurons and

model them as single-compartment entities, with all activity

taking place at an abstract point in space; models following

this technique are called point neuron models, and almost all

neural network simulators support only variations of this class

of models.

395
DOI 10.1109/BIBE50027.2020.00071

One simplification approach is to replace the (often obscure)

physiological mechanisms with abstract, low-dimensional dy-

namical systems that mimic neuronal activity. Common exam-

ples are the Morris-Lecar[2] and Hindmarsh–Rose[3] models.

Considering that the action potential is the most salient

part of neural activity, another simplification path can be

taken; the continuous-time behaviour of a neuron can be

reduced to a series of discrete spiking events. This way, the

object of simulation is just the timing between each neuron’s

consecutive action potentials, and communication between

neurons happens only when action potentials are generated

and transmitted. However, this approach eschews electrical

synapses, which effect continuous-time interaction between

neurons.

Simplification of spiking activity can also be combined

with simplified neuronal dynamics, to produce even less com-

putationally demanding models; the GLIF and Izhikevich[4]

models are very prominent examples of this approach.

In this paper, we present a new simulator for conductance-

based eHH, multicompartmental neural network models

(called GenEHH from now on), that combines model flex-

ibility with high computational performance. The simulator

receives a human-readable description of the experiment to

simulate, and runs the requested simulation, effectively utiliz-

ing multicore CPU resources.

The paper is organized as follows: In Section II, an overview

of neuron models and simulation implementations for large-

network simulation is presented. In Section III, our simu-

lator’s features are compared to existing conductance-based

model simulators . In Section IV, we present our simulator’s

computational workload, the software architecture, and the

parallelization techniques applied. In Section V, we present

the experiments conducted to evaluate the simulator’s compu-

tational performance and scalability using generic server-grade

resources, and discuss the resulting performance data and the

effect of computer hardware on performance. Finally, Section

VI contains an overview of our work, experimental results,

and the work’s relevance to neuroscience research.

II. RELATED WORK

Many high-performance computing projects have produced

neural network simulators; the most common runtime plat-

forms are the versatile and ubiquitous x64 CPUs, and high-

throughput but relatively cumbersome CUDA GPUs.

A Beowulf cluster of commodity general purpose computers

has been used for simulations based on anatomical data, from

slice scans of rat, cat and human brain tissue, containing

22 different types of cells as they are laminated on cortical

columns, and spontaneously expressing behavioural regimes of

normal brain activity.[6] However, the compartments of each

modelled cell followed Izhikevich instead of conductance-

based dynamics, and the implementation took tens of days

to simulate a few seconds using the cluster, which is a

prohibitive run time for research. In the desktop computer

scale, a highly efficient GPU-based simulator is available for

Izhikevich neuron models with plastic synapses[7].

In [8] authors simulated on a GPU a basic Hodgkin-Huxley

point neuron model. The performance impact of electrical

synapses was mitigated through a slow rate of voltage updates

between neurons, and accelerating resting-state neuron simula-

tion through telescopic projective integration, combining small

transient timesteps with longer ones.

Simulation performance of Inferior Olive model cells with

arbitrary gap junction connectivity has been investigated on

clusters of Xeon Phi-accelerated nodes, as well as specialized

architectures like Xeon Phi [5], GPUs and reconfigurable

dataflow engines[9]. Those cells were multicompartmental

cells and not point neurons.

Since performance requirements mandate extremely fast

interaction between simulated neurons, many designs have

also been tried out on bespoke, low-latency interconnec-

tion hardware. The SpiNNaker project[10] has developed a

massive-scale ASIC-based neuromorphic architecture, where

ARM processor cores send spike events each other through

asynchronous digital logic, providing quick, broad and low-

power exchange of spike event messages. Neuron dynamics

can be customized through processor code, but still only spike-

based, point-neuron models can be supported. Another class of

ASIC implementations combines analog operation of single,

simplified neurons, with electrical synapses between neurons

in the same silicon die, and digital spike message passing

between dies[11]. The analog implementation means only

simplified Adaptive Exponential neuron models are supported.

Another approach to neural net simulation is extremely

parametrizable, general purpose neural simulation software.

Such packages provide simulation capability for an as diverse

as possible range of neural models. This way, researchers can

run simulations on the most detailed and highest quality neural

models available, and propose new extensions to the existing

types of models, without the need to create a new software or

hardware application from scratch.

Common such packages are NEURON, NEST, BRIAN,

MOOSE, and GENESIS. Many of these packages have been

extended to support large-scale computer systems. However

a lot of the parallelization burden is passed to the model

designers, making simulation of a large network a whole

project in itself, and precluding rapid model prototyping.

As shown in this section there is high trade-off between

performance and level of model detail in the domain of neu-

ronal simulators. The research works that focus on acceleration

and high performance, support simulation of only simplified

models, while the more generic, parametrizable simulators

lack performance. In the following sections we will present

our solution that bridges that gap.

III. CONTRIBUTION

The neural network simulator introduced in this paper runs

extended Hodgkin-Huxley (eHH) multicompartmental neuron

models, simulates continuous-time gap junction interaction

between neurons, supports a customizable set of compartments

and a variable amount of highly customizable ion channels for

396

TABLE I
AN INDICATIVE COMPARISON OF SIMULATORS SUPPORTING CONDUCTANCE-BASED NEURAL NETWORKS.

Simulator

NEURON NEST Chatzikonstantis et al. [5] GenEHH

Model support

Basic Hodgkin-Huxley dynamics � � � �
HH dynamics + Gap junctions (GJ) � � �
HH dynamics + Custom ion channels (CC) � � � �
HH dynamics + GJ + CC + Multicompartment model � �
Performance

Automatic parallelization � � �
Multi-node parallelization � � �
Scalable performance � �

each compartments, and parallelizes the simulation workload

across multiple processor cores.

As seen in the previous section, research has focused

in simplified neuron models that are spike message-passing

models, which require significantly less communication traffic

than continuous-time interaction models with gap junctions.

To assess the existing simulation landscape, a brief repre-

sentative set of conductance-based neural network simulators

and supported features is compared in Table I. Each simulator

is compared regarding the model types it supports: support

for the classical Hodgkin-Huxley (HH) model, support for

gap junction interaction, support for custom ion channel dy-

namics extending the HH model, and support for extensible

multicompartmental models. In addition, the capabilities of

each simulator to scale with available parallel resources are

compared; namely, automatic distribution of computations to

parallel threads, architectural support for parallelization in

multi-node clusters, and scalability as model. Our simulator’s

scalability against parallel threads and network complexity

has been confirmed through performance experiments, as

described below. The system architecture also makes it easy

to support a multi-node extension.

IV. PROPOSED SOLUTION

A. Multicompartmental neuron and network modelling

The GenEHH simulator assumes the compartmental level

of neuron modelling. This level assumes that neural tissue

consists of individual cells, and these cells are made up

of distinct anatomical features(called compartments), across

which the cell matter varies little.

Some anatomical features may be lumped into a single

compartments, as long as simulation results remain accurate,

to simplify analysis and reduce computational load. The dy-

namics of the internal state of each compartment are then ex-

plicitly defined directly through first-order ordinary differential

equations; for each state variable present in the model, the

corresponding rate of change is a directly evaluable function.

In the case of coarse or lumped compartments, the models

are empirical, and the model’s coefficients are extracted by

fitting against experimental data. In finer decompositions,

the tubular parts of neurons are modelled after the cable

equation[12], typically using its first-order approximation for

discrete compartments. The active mechanisms present in

neuron compartments are modeled after the eHH model[13].
Each neuron is also modelled to interact with adjacent

neurons, through electrical synapses(also called electrical gap

junctions). These are physical connections between adjacent

neurons, adding a continuous, reciprocal interaction between

the connected neurons. The intensity of this interaction can

be described in terms of maximum electrical conductance

between the two connected neuronal compartments.
Electrical flow through the cell’s membrane passes through

current probes, passive leaks, ion channels, and electrical

synapses:

1) Current probes inject artificial current into cells, to induce

or inhibit action potentials, or to simulate synaptic input

from brain regions not included in the model.

2) Passive leaks behave equivalently to an ohmic leak be-

tween the membrane’s two sides, in series with a reversal

potential caused by the connection’s molecular properties

and polarity.

3) Each ion channel is modelled as a voltage source in series

with a linear, time-varying resistor. Effective ion chan-

nel conductance is then a fixed maximum conductance

coefficient, multiplied by gate variables as previously

described.

4) Electrical synapse current is generally an antisymmetric,

non-linear function of the local voltage difference be-

tween the connected cells, scaled by a conductance factor

described above.

There are many other types of synapses also present in neu-

ral tissue; we chose to model specifically electrical synapses

in the present simulator version. This is because electrical

synapses tightly couple the behaviour of connected neurons,

through continuous-time interaction; the continuous informa-

tion transfer this interaction entails makes them by far the most

computationally expensive synapse type. Also, simulation of

event-based synapses has already been extensively studied and

397

optimized in the existing literature; however, few works have

tackled the computational issues of electrical synapses / gap

junctions, and those that did either used fixed neuron models,

or require the user to explicitly handle the parallelization of

the simulation[14].

Fig. 1. A compartmental neuron decomposition example. A fine segmentation
is denoted by the thin lines inside the neuron body, while the coarser parts
of the neuron are coloured differently.

Lipid
bilayer

e

Cytoplasm Sodium
channels

Potassium
channel

Passive
leak

Open
channels

m gate

h gate

n gate
Na K

Fig. 2. Active and passive channels on a cell membrane and the effect of
gates.

Lumped dendrites Lumped soma Lumped axon

Fig. 3. A simplified catenary neuron model, supported by the simulator.

B. Computational model

The GenEHH simulator implements a certain subset of

multicompartmental, eHH models. Some concessions were

made due to the enormous variety of possible models, but

the simulator implements a set of features that is common

in literature, and captures the performance challenges this

computational workload presents.

Each compartment’s state is modelled as a set of scalar vari-

ables; its intracellular electrical potential, the concentrations of

ions and other molecules that affect the cell’s dynamics, and

the gate variables of each ion channel.

The neural net model consists of a population of intercon-

nected neurons. The network’s neurons may all share the same

neuron model, to quickly design an uniform population net-

work. Alternatively, each neuron can be modelled differently.

In this case, the model of each individual neuron is explicitly

stated in the input files.

Each neuron is currently modelled in the simulator as a

linear chain of interconnected cell compartments (Figure 1),

each representing a portion of the cell. For example, dendritic

tubes of a similar diameter may be lumped together (Figure 3),

flattening the dendritic tree to a cylinder chain, as described

by Rall [15]. A simple example is the commonly used ball-

and-stick neuron model, that segments a neuron into the soma

part, where most complex chemical processes take place, and

the dendrites part, which roughly models the kinetics of all

stimuli received and emitted by the cell.

Each ion channel gate has a set of parameters describing

the behaviour of its activation variable. A gate variable may be

dynamic, or static (Figure 2). A dynamic gate variable follows

Hodgkin-Huxley dynamics: the variable’s rate of change is

a function of the variable’s value and the compartment’s

membrane potential. Calcium concentration may also affect

gate dynamics, to support the calcium activated ion channels

common in literature. A static gate variable is a function of

instant membrane potential, presenting no memory effect.

Hodgkin-Huxley gate variable dynamics follow the alpha-

beta or tau-inf models, where alpha and beta, or tau and inf

are functions of membrane potential. Some types of these

functions are very common in published ion channel models,

such as exponential, linear-by-exponential, and sigmoid fucn-

tions. A web-accessible list of ion channel dynamics models is

available at [16] . A set of these common function types was

included in the simulator. To evaluate the rate of change of

each ion channel gate variable, the alpha and beta or tau and

inf functions it involves are evaluated, based on the supported

set of function types.

The simulator supports connectivity between neurons, in

the form of electrical synapses between lumped dendritic

edge compartments. Since the compartments containing the

synapses are lumped and gap junctions work symmetrically,

gap junction connectivity between cells in the network can

be described as a symmetric connectivity matrix W, with

each element representing total gap junction base conductance

between each pair of cells. (No connectivity between a pair

of cells is equivalent to zero base conductance.)

In addition, the simulator supports external stimulation of

neurons in the network, in the form of DC pulses injected into

any neuron’s lumped dendritic compartment.

C. Program architecture

The simulator presented in this paper is a standalone appli-

cation running simulations in non-interactive, ‘batch’ mode.

The simulator’s target platform is the multicore x64 computer

architecture. This platform suits the application best, since:

(a) it is ubiquitous in workstations and HPC settings alike;

398

(b) provides solid performance for the simulator’s compute-

heavy, random-access computational load under a wide

variety of network models;

(c) allows efficient simulation of heterogeneous network

models with disparate cell types, and changing the neuron

models with no reconfiguration cost;

(d) places the least restrictions on what type of models can

be efficiently simulated, making it easy to extend model

support in future versions.

The GenEHH simulator is implemented as a non-interactive

program, reading input files describing a simulation and

producing data files containing the results of the specified

simulation. Specifically, input files provide the model of the

neural net to be simulated: the neurons present and their

initial state, the synapses connecting the neurons to each

other, the stimulation each neuron receives externally, and

experiment duration and timestep used for simulation. All

parameters of the model are defined through human- and

machine- readable JSON[17] files, whose structure follows the

well known -to field experts- Hodgkin-Huxley formulation.

They also provide auxiliary simulator configuration such as

input and output file redirection, performance hints for the

simulator core, etc. Output files contain the model’s state

variables for each simulated timestep, and meta-information

about the simulation, such as run time and memory usage.

Once the internal simulation data structures are constructed,

the behaviour of the simulated model is calculated over the

specified experiment time duration, through successive discrete

timesteps. As simulation proceeds, its results (i.e. state variable

trajectories) are also concurrently streamed to the output data

files. When simulation is finished, experiment metadata and

performance metrics are also stored for further analysis.

D. Computational workload

The main computational effort for a GenEHH run lies

in the iterative progression of the model’s state, through

successive timesteps. For each simulation iteration, model state

progresses by a fixed timestep; for each state variable in the

model (i.e. each state variable of each compartment of each

neuron in the net), its rate of change is evaluated, and then the

for the next timestep is extrapolated using the Forward Euler

method.

For each neuron, as seen in Figure 4, the required cal-

culations can be separated into two groups. The first group

concerns each neuron’s internal mechanisms and state. This

group consists of currents between compartments of the same

neuron, passive leaks, current probe inputs, and ion channel

dynamics. The required computational effort scales linearly

with the number of compartments and associated mecha-

nisms. The second group involves interaction between neurons

through electrical synapses; the required computational effort

per timestep scaled linearly with the amount of electrical

synapses present in the network.

Computations for each neuron’s internal dynamics need to

be performed for each neuron independently from each other’s

state. Internal neuron complexity is given by the model defini-

tion and, for phenomenological compartment decomposition,

is independent from neural net size. So the computational load

for internal neuron dynamics calculations scales with O(N)
for increasing net size N.

For a given population size N , the number of possible

synapses is
N ·(N−1)

2 = O(N2). The number of realized

synapses, under the fixed probability model, is a fraction D
of total possible synapses, where D ∈ [0, 1] is equal to the

probability each synapse may exist.

Thus, when a neuronal network has a fixed synaptic density,

the total computational load scales with O(D ∗N2) for large

neuron populations.

In realistic network models, the amount of synapses per neu-

ron is generally considered to reach a maximum value; thus the

network becomes increasingly sparser as the network grows

beyond a certain size. Thus, in order to keep computational

load and memory requirements scalable, the simulator uses

a sparse representation for the synaptic connectivity matrix

described above.

E. Simulation code parallelization

The GenEHH workflow described above was enhanced with

OpenMP directives, in order to utilize the parallel processing

ability of multiprocessor systems.

For two or more computational tasks to be simultaneously

performed on separate threads, the calculations in each task

must not depend on the other’s results in any way. At the

same time, each separate task assigned to be performed in

parallel with others incurs computational and synchronization

overhead. Therefore, these tasks must be many enough to

minimize load imbalance, keeping all processors busy, but

also few enough to keep the OpenMP scheduler’s overhead

negligible. For example, when a loop is parallelized, the

OpenMP scheduler may assign whole contiguous blocks of

iterations, as single tasks, to processors. If the iterations take

roughly the same time, the workload is balanced and this will

maximize system efficiency.

For these reasons, parallelization was performed across

simulation of entire neurons in the net, as seen in Figure 4.

This analysis is expected to be efficient, since:

• the computational effort to simulate one timestep for a

neuron is much larger than OpenMP task overhead;

• in large neural networks, the amount of neurons is much

larger than the amount of concurrent threads, and the

networks exhibit self-similar topologies. Thus the per-

neuron work can be distributed evenly among threads.

Due to the conductance-based, continuous-time modelling

of electrical synapses, each neuron must communicate its

voltage state to all the neurons it is connected to, in every

single timestep.

From a graph-theory perspective, neural networks are tightly

connected, even when the direct connectivity matrix is sparse;

the graph diameter (i.e. the upper bound for the closest chain

of neurons, connecting any two neurons) is characteristically

low. For fixed-probability connectivity models common in

399

literature, maximum graph diameter can be shown to converge

to 2 for large population sizes. For more realistic[18], fixed-

expected-degree models, graph diameter is expected double

logarithmic, and at most logarithmic to population size[19].

Since the communication paths among any pair of neurons

are so small, no performance gains are expected from inde-

pendently advancing the simulation state for selected groups

of neurons, in the same network.

In addition, the Hodgkin-Huxley dynamics are highly non-

linear and chaotic, therefore the model is unsuitable for

algorithms that can parallelize across time for non-stiff mod-

els. Therefore, in this implementation, all computations per

timestep are interlocked with a global synchronization barrier

between timesteps.

In case the simulation results buffer is about to fill, the I/O

operation flushing the results to the file can be performed in

parallel with the new timestep. This operation is specified as

an independent sibling task to simulation of all neurons inside

a timestep, to mitigate possible I/O and file system delays.

Fig. 4. The parallelized version of the simulator core.

V. PERFORMANCE EXPERIMENTATION AND EVALUATION

A. Experimental setup

To evaluate simulation performance under generic sever-

grade resources, a set of runtime performance tests was run

on multi-processor, virtual machine instances, allocated from

the Amazon Elastic Cloud infrastructure.

Allocations were made on the c5 tier of instances.

This specific tier guarantees the class of CPU architec-

ture physically running the virtual machine, meaning it of-

fers guaranteed performance. The allocation sizes used were

c5.xlarge, c5.2xlarge, c5.4xlarge, c5.9xlarge,

c5.18xlarge instances, each with 4, 8, 16, 36, 72 available

vCPUs respectively. The physical CPUs used for the sim-

ulations were Intel Xeon Platinum 8124M @ 3.0 GHz (18

cores, 36 threads each). All simulations were run to utilize all

available vCPUs on each instance.

In all runs, performance was measured through the wall

time required to run 10,000 simulation steps of the simulation.

(Preliminary tests showed that data structure initialization had

an insignificant impact on total run time.) We measured the

core simulation time, and the internal matrix representation

was set to sparse in all experiments, so that algorithmic per-

formance could be directly compared. In order to investigate

neural structure processing performance, synthetic truncated

models were generated for the given compartments/neuron and

ion channel gates/compartment parameters. A simulation was

run and timed for each combination of the vCPU count, neuron

population count, net density, compartments per neuron, ion

channel gates per neuron parameters specified below :

• The simulation timestep was selected at 10 microseconds,

to ensure model stability.

• Simulation time was 100 milliseconds (10,000 simulation

steps) for all runs.

• The vCPU count is: 4, 8, 16, 36, 72 vCPUs running in

parallel.

• Neuron counts considered are: 1000, 2000, 4000, 8000,

16000 neurons.

• Neuron connectivity densities considered are: 0%, 25%,

50%, 100% of total possible synapses.

• Neuron compartment counts considered are: 1, 2, 4, 8,

16 compartments per neuron.

• Compartment gate counts considered are: 1, 2, 4, 8 gates

per compartment.

In total, 2000 simulation runs were performed to cover

the explored parameter grid. Although we present results

from homogeneous cell populations, if the neuronal network

was composed of heterogeneous populations, the performance

results apply also to these kind of populations.

B. Results and discussion

Due to the high volume and dimensionality of the parameter

space explored, specific combinations of parameters will be

presented, keeping the remaining parameters fixed. In most

figures, internal neural complexity was set to maximum (16

compartments, 8 gates per neuron), since the simulator targets

high-complexity models.

Figure 5 shows how run time increases with neuron pop-

ulation size, under various connection density factors. The

results show clearly that run time increases quadratically with

population size, as a naïve analysis of the computational

workload would suggest. Under this type of analysis, which is

also used in the algorithmic complexity and worst-case anal-

ysis domains, any fundamental calculation step takes constant

time, regardless of the code path taken, cache misses, out-

of-execution functional unit utilization, or other instruction

execution context.

For an unconnected population, run time was measured to

be linear to population size. That is also consistent with the

type of analysis mentioned above, since in that case there are

400

2000 4000 6000 8000 10000 12000 14000 16000

Neurons

0

100

200

300

400

500

T
im

e
(s
e
c
)

0% density

25% density

50% density

100% density

Fig. 5. Run time for 72 vCPUs, as a function of population size.

4 8 16 36 72

vCPUs

0

2000

4000

6000

8000

T
im

e
(s
e
c
)

0% density

25% density

50% density

100% density

Fig. 6. Run time for a population size of 16000 neurons.

zero synapses, and computation is performed regarding each

neuron’s internal dynamics only.

Figure 6 shows how parallelization on a problem with

maximum net population size scales ideally with the number

of processors tested.

For larger population sizes, measured run time is inversely

proportional to the number of vCPUs used, modulo a very

small constant factor (typically less than 50 seconds, no

correlation to model size or complexity). This means the

simulator displays ideal strong scalability, up to the maximum

problem size and number of processors tested.

The conditions for this ideal scalability under the per-neuron

parallelization implemented in the GenEHH simulator requires

that for each simulation timestep, the computational load of

neurons is evenly distributed among the processors, so that

all processors finish their assigned work at the same time and

no time is wasted in processor idling. The even distribution

of work per neuron is an effect of uniformly distributing

synapses across neurons and uniformly distributing neurons

among parallel processors. Thus statistically the workload is

balanced among processors. In addition, the delay between

start of a timestep and start of parallel processing (due to

per-timestep result buffer management and OpenMP parallel

section initiation) and the delay of the synchronization process

have to be negligible.

Analysis of the experimental results showed that the relative

20 40 60 80 100 120

Total gates per neuron

0

100

200

300

400

500

600

700

T
im

e
(s
e
c
)

4 vCPUs

8 vCPUs

16 vCPUs

36 vCPUs

72 vCPUs

Fig. 7. Run time for 8000 neurons and 25% density, over total amounts of
gates, for 8 gates per compartment.

effect of additional intra-neuron complexity on run time is an

additive factor that is linear on the number of state variables

added per cell. This is expected, since currently each variable

depends on at most one other state variable for dynamics

computations. Total run time remains inversely proportional

to number of processors used. This is also expected, since

the previous figures already show perfect distribution of per-

neuron load, and no additional neuron interactions exist in the

intra-neuron mechanisms. Figure 7 shows this linear scaling,

for a representative neural net with maximum number of gates

per compartment and varying the number of compartments per

neuron and vCPUs in use.

Figure 8 demonstrates the relation between network density

and run time, under different amounts of thread-level paral-

lelism. Run time is normalized against maximum, which natu-

rally occurs at full synaptic connectivity. These figures demon-

strate three distinct performance regions: density close to zero,

density close to full, and low density . When connectivity is

close to zero, efficiency increases as network size increases.

This also expresses the proportion between synchronization

overhead and useful work in each case. When connectivity is

close to full, the simulator processes synapses more efficiently

than under low network density . This could be explained

by the cache and prefetch mechanisms of high-performance

CPUs ; as density increases, there is a higher probability of

following synapses already being in cache; in addition, at

full density, the memory pattern becomes fully predictable, so

automatic prefetching can optimize memory accesses. When

connectivity is less than fifty percent, simulation efficiency

decreases even more. This is to be expected since consecutive

memory accesses are even less likely to share cache lines, but

they are still not few enough for the lower amount of memory

accesses to outweigh cache miss penalties.

VI. CONCLUSION

This paper has presented GenEHH, a highly-configurable,

conductance-based neuronal network simulator, and discussed

its computational performance on the multicore x64 platform.

401

0% 25% 50% 100%

Network density

0.0

0.2

0.4

0.6

0.8

1.0

R
u
n
t
im

e
fr
a
c
t
io
n

1000 neurons

2000 neurons

4000 neurons

8000 neurons

16000 neurons

ideal

(a) Relative run time for 4 vCPUs

0% 25% 50% 100%

Network density

0.0

0.2

0.4

0.6

0.8

1.0

R
u
n
ti
m
e
fr
a
c
ti
o
n

1000 neurons

2000 neurons

4000 neurons

8000 neurons

16000 neurons

ideal

(b) Relative run time for 72 vCPUs

Fig. 8. Normalized run time, over network density and population size, for
maximum internal neuron complexity.

Use of the OpenMP parallelization library and generic C++

code allows the simulator to be easily targeted for other

multiprocessor and/or manycore platforms.

The GeneHH simulator presented in this work is flexible

enough to support a wide variety of detailed, biophysically

accurate models of neuronal network. Each neuron can be

independently modelled, with a rich set of biophysical features

and a variable amount of discretized compartments and ion

mechanisms for each neuron. At the same time, the simulator

exhibits high performance, by demonstrating strong scalability

in distributing the computational load to multiple threads, and

executes the computational load with high efficiency.

An analysis of the computational load factors and their

impact on run time was conducted. Then the hypotheses

made were juxtaposed with the results of the performance

experiments, highlighting the emergent effects of the model

characteristics onto the GenEHH performance.

ACKNOWLEDGMENTS

This research is supported by the European Commis-

sion Horizon2020 Framework Programme Project EXA2PRO

(Grant Agreement No. 801015).

REFERENCES

[1] G. T. Einevoll, A. Destexhe, M. Diesmann, S. Grün, V. Jirsa,
M. de Kamps, M. Migliore, T. V. Ness, H. E. Plesser, and
F. Schürmann, “The scientific case for brain simulations,” Neuron,
vol. 102, no. 4, pp. 735 – 744, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0896627319302909

[2] L. H. Morris C, “Voltage oscillations in the barnacle giant muscle fiber.”
Biophys Journal, vol. 35, pp. 193–213, 1981.

[3] J. Hindmarsh and R. Rose, “A model of neuronal bursting using three
coupled first order differential equations,” Proceedings of the Royal
Society of London. Series B, Biological sciences, vol. 221, no. 1222,
p. 87—102, March 1984.

[4] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[5] G. Chatzikonstantis, H. Sidiropoulos, C. Strydis, M. Negrello,
G. Smaragdos, C. D. Zeeuw, and D. Soudris, “Multinode implementation
of an extended hodgkin–huxley simulator,” Neurocomputing, vol. 329,
pp. 370 – 383, 2019. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0925231218312906

[6] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha,
“The cat is out of the bag: cortical simulations with 109 neurons,
1013 synapses,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, Nov 2009, pp. 1–12.

[7] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. V.
Veidenbaum, “A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on graphics proces-
sors,” Neural Networks, vol. 22, no. 5, pp. 791 – 800, 2009, advances
in Neural Networks Research: IJCNN2009.

[8] M. Wang, B. Yan, J. Hu, and P. Li, “Simulation of large neuronal
networks with biophysically accurate models on graphics processors,”
in The 2011 International Joint Conference on Neural Networks, July
2011, pp. 3184–3193.

[9] G. Smaragdos, G. Chatzikostantis, S. Nomikou, D. Rodopoulos, I. Sour-
dis, D. Soudris, C. I. D. Zeeuw, and C. Strydis, “Performance analysis
of accelerated biophysically-meaningful neuron simulations,” in 2016
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2016, pp. 1–11.

[10] S. Kunkel, M. Schmidt, J. M. Eppler, H. E. Plesser, G. Masumoto,
J. Igarashi, S. Ishii, T. Fukai, A. Morrison, M. Diesmann, and
M. Helias, “Spiking network simulation code for petascale computers,”
Frontiers in Neuroinformatics, vol. 8, p. 78, 2014. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fninf.2014.00078

[11] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of analog
neural networks,” in 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence),
June 2008, pp. 431–438.

[12] R. D. Traub, R. K. Wong, R. Miles, and H. Michelson, “A model of
a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data
on intrinsic conductances,” J. Neurophysiol., vol. 66, no. 2, pp. 635–650,
Aug 1991.

[13] E. Lewis, “Neuroelectric potentials derived from an extended version
of the hodgkin-huxley model,” Journal of Theoretical Biology, vol. 10,
no. 1, pp. 125 – 158, 1966.

[14] M. Migliore, C. Cannia, W. W. Lytton, H. Markram, and M. L. Hines,
“Parallel network simulations with neuron,” Journal of Computational
Neuroscience, vol. 21, no. 2, p. 119, May 2006. [Online]. Available:
https://doi.org/10.1007/s10827-006-7949-5

[15] W. Rall, “Electrophysiology of a dendritic neuron model,” Biophys. J.,
vol. 2, no. 2 Pt 2, pp. 145–167, Mar 1962.

[16] R. Ranjan, G. Khazen, L. Gambazzi, S. Ramaswamy, S. L. Hill,
F. Schürmann, and H. Markram, “Channelpedia: An integrative and
interactive database for ion channels,” Frontiers in Neuroinformatics,
vol. 5, 2011. [Online]. Available: https://doi.org/10.3389/fninf.2011.
00036

[17] “The javascript object notation (json) data interchange format.”
[Online]. Available: https://tools.ietf.org/html/rfc8259

[18] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems,” Nat. Rev. Neurosci.,
vol. 10, no. 3, pp. 186–198, Mar 2009.

[19] F. Chung and L. Lu, “The average distances in random graphs with
given expected degrees,” Proceedings of the National Academy of
Sciences, vol. 99, no. 25, pp. 15 879–15 882, 2002. [Online]. Available:
http://www.pnas.org/content/99/25/15879

402

