From tasks graphs to asynchronous distributed
checkpointing with local restart

1 Romain Lion
University of Bordeaux
Inria Bordeaux - Sud-Ouest
Bordeaux, France
ORCID 0000-0002-4768-7036

Abstract—The ever-increasing number of computation units
assembled in current HPC platforms leads to a concerning in-
crease in fault probability. Traditional checkpoint/restart strate-
gies avoid wasting large amounts of computation time when
such fault occurs. With the increasing amount of data dealt
with by current applications, these strategies however suffer
from their data transfer demand becoming unreasonable, or
the entailed global synchronizations. Meanwhile, the current
trend towards task-based programming is an opportunity to
revisit the principles of the checkpoint/restart strategies. We
here propose a checkpointing scheme which is closely tied to the
execution of task graphs. We describe how it allows for completely
asynchronous and distributed checkpointing, as well as localized
node restart, thus opening up for very large scalability. We also
show how a synergy between the application data transfers and
the checkpointing transfers can lead to a reasonable additional
network load, measured to be lower than +10% on a dense linear
algebra example.

Index Terms—Fault tolerance,
checkpoint-restart, buddy in-memory

task-based programming,

I. INTRODUCTION

As the scale of supercomputers widens, the failure prob-
ability increases, and it is thus not uncommon for a large
computation job to encounter the complete loss of one of its
computation nodes. The default reaction of traditional stacks
is to abort the whole job, thus losing all the benefits of
the computations already performed. A spectrum of solutions
has been proposed in the literature. At one end, Algorithm-
Based Fault Tolerance (ABFT) rethinks the whole application
algorithm so that it can cope by itself with the loss of the
node and its data, and continue with the remaining nodes.
At the other end, transparent checkpointing periodically saves
the whole state of the job on external storage, so that it
can be restarted from the latest checkpoint instead of from
its very starting point, thus reducing the amount of repeated
computation down to at most the computations of a checkpoint
period.

While ABFT is a very effective solution, it requires intrusive
application changes which can make it much less maintainable
and lowers programmer productivity. Conversely, transparent
checkpointing exempts the programmer from any application
modification, but saving the whole job state to external storage
can be prohibitive, making the checkpointing duration very
long and thus strongly affecting the job completion time.

2" Samuel Thibault
University of Bordeaux
Inria Bordeaux - Sud-Ouest
Bordeaux, France
ORCID 0000-0001-6411-809X

Tracking application data modification during computation
allows to save to a checkpoint only the data which changed
since last checkpoint, but this also brings a significant tracking
overhead. Some frameworks let the application itself express
which data should be saved, but this requires significant
application modification.

On the other hand, the task-based programming paradigm
trend has emerged to make parallel programming more ef-
fective and to automatically address the management of
the complex composition of current platforms. Task-based
programming introduces new synergy opportunities between
applications and the task-based runtime system they are lever-
aging. The task graph gives the runtime a lot of insight and
flexibility in the computation management.

In this paper, we propose to refine the classical checkpoint
methods by introducing checkpoints as cuts in the task graph
rather than cuts in the execution time. This enables the
runtime to perform them completely asynchronously along
the application computation, without stalling the program
execution, and in a completely distributed way without global
synchronization, thus opening for scalability on extremely
large platforms. Since the task graph gives the runtime an exact
view of the computation, this even allows it to restart failed
nodes locally, i.e. without even interrupting computations
progressing on other nodes. In this paper, we focus on the
checkpointing mechanism itself, to explain how task-based
programming makes it strongly effective and scalable, and to
show how reasonable its overhead can be.

We start with giving more details on the context and related
work. We then introduce the proposed checkpointing principle
for task graphs, how it avoids many classical concerns of
checkpointing frameworks, and some additional optimizations.
Some experimental results are then presented, opening up to
a discussion over the the checkpointing policy possibilities.

II. CONTEXT AND RELATED WORK

One of the many challenges brought by the future extreme
scale computing systems is reliability. As the number of
computing cores grows, the global failure rate increases as
well. The MTBF of the system will inevitably decrease with
the increasing number of used cores and we can expect tens of
failures during a few hours computation job [12]. The future

[Node 0 ‘ Node 1 ‘

task_insert(&f1, 0, W, A);
task_insert(&f2, 1, W, B);
task_insert(&f3, 1, RW, B, R, A, W, C);
task_wait_for_all();

Fig. 1. Example of a simple distributed STF program over 2 nodes 0 and 1.

need for resilience is no more to demonstrate and poses a real
challenge.

A first set of solutions comprises system-level checkpoint
strategies that do not make assumptions about which data con-
tains critical state for the distributed application. They are thus
meant to make large-size checkpoints simply comprising all
application data. While the transparency of these approaches
is interesting for the programmers, the size of checkpoints is
becoming more and more a no-go.

Some other solutions emphasize on incremental checkpoint-
ing [19], i.e. they avoid saving redundant data among check-
points by computing differences between them or deducing it
from memory pages access, but this comes with large runtime
overhead. We will see that in our approach, it is possible
to achieve this change detection for free, using mechanisms
already implemented in task-based runtimes.

On the other hand, some application-level approaches such
as FTI [4] or VeloC [14] are less affected by overhead issues,
since they make the programmer specify the critical data in
order to take more efficient checkpoints. Some of them offer
to buffer application data prior to continuing computation
in order to provide non-blocking checkpoints. The buffering
however comes with significant time and memory overhead.
While FTI and VeloC allow to save checkpoints among
several storage media, we investigate an in-memory “buddy”
checkpointing approach [10] since such an approach is the one
which benefits the most from the task-based programming,
as we will detail in this paper. Our proposal also does not
preclude from future extension to on-disk checkpointing.

Buddy in-memory checkpointing can be a limiting aspect
as it does not cover multiple-node failure scenarios, but it still
provides efficient resilience as these scenarios are unlikely.
This approach also makes it possible to adopt a local restart
strategy such as [13], with computation kept running on the
surviving nodes. This is made possible thanks to the ULFM
MPI proposal implementation [5] and by using message
logging [3], [7]. In this paper, we emphasize only on the
checkpoint aspects, the rollback and the message logging are
not evaluated.

III. INTRODUCING CHECKPOINTS IN TASK GRAPHS

We here describe our proposal for introducing checkpoints
in task graphs, and the immediate benefits in the checkpoint
principles themselves.

A. Programming paradigm

In previous work [2], we have shown that task-based
programming allows to achieve high performance over large

task_insert(&f1, 0, W, A);
task_insert(&f2, 1, W, B);

checkpoint();

task_insert(&f3, 1, RW, B, R, A, W, C);
task_insert(&f4, 1, RW, B, R, A);
task_insert(&f5, 0, RW, A, R, B);
checkpoint();
task_insert(&f6, 1, R
task_insert(&f7, 0, R
task_wait_for_all();

z

9 B? R’ A7 R? C);
9 A? R’ B);

=

Fig. 2. Example of a distributed STF program with inserted checkpoints cuts
as the violet dashed curves.

computation platforms, with a high productivity thanks to the
Sequential Task Flow programming model. Its principle is
to express distributed applications with a sequential-looking
source code, as shown on Figure 1. This example expresses
that fl is to be executed on node O !, and will write its
result to data A. Meanwhile, f2 is to be executed on node
1, and will write its result to data B. Eventually, f3 is to be
executed on node 1, and will read from and write to data B,
but also read from data A, and write to data C. The runtime
will automatically infer, from the A and B data dependencies,
the task dependency between the first two tasks and the third
task, and thus the resulting task graph shown on the right. It
will also infer that data A has to be transferred from node O
to node 1, more precisely that node O has to send data A to
node 1 (i.e. an MPI_Isend call), and node 1 has to receive
data A from node O (i.e. an MPI_TIrecv call).

In the end, all nodes unroll the whole task graph 2 and
each node determines by itself which tasks of the graph it
will execute, but also which data it has to send or receive so
as to fulfill data dependencies over the network. All of this
is thus achieved deterministically in a completely distributed
way without any global synchronization between nodes. Tasks
can be affected to nodes as in this example, but they can also
be bound dynamically as long it follows a deterministic policy
in order to have the same task graph among all nodes, without
requiring consensus between the nodes.

As shown on Figure 2, adding checkpoints to this pro-
gramming model consists in introducing checkpoint ()
calls within the program. They effectively cut the task graph
inferred by the STF model, between the tasks inserted before
the call, and the tasks inserted after the call. Here, at the first
checkpoint, node 0 will thus save data A produced by task
1, while node 1 will save data B produced by task 2. At the
second checkpoint, node 0 will save the new value of data A
produced by task 5, and node 1 will save data C produced by

"Here the placement on nodes is made explicit for simplicity, but STF
allows it to be implicitly inferred from data placement for even more
productivity.

2 As explained in [2], pruning can be used to reduce the cost. This pruning
can be adapted to the context of this work.

| Node 0 |

Fig. 3. Resulting asynchronous checkpoints.

task 3, and data B as produced by task 4. It is worth noticing
that while the application didn’t specify precisely which data
should be saved, the runtime can determine that data C does
not need to be saved in the first checkpoint, since no task has
written any value in it yet at that “time” of the task graph.

Again, since this is done identically on every node, all nodes
agree on exactly what will be saved in the checkpoints, without
any need for synchronization at run time.

The placement of the checkpoint () calls is quite nat-
ural for e.g. iterative applications such as conjugate gradient
methods or stencils: the calls can simply be placed at the end
of each iteration, and the periodicity of checkpoints can be
controlled by ignoring all calls except one every N. The check-
pointing addition for existing task-based iterative applications
thus reduces to a one-liner. For more convoluted applications,
the placement is more questionable; we experimented with the
Cholesky factorization, as discussed in Sections V and VL

In this preliminary work, each node sends the content of its
checkpoints through the network to another buddy node, where
it is simply kept in memory. Saving the checkpoints to external
storage will be addressed in future work. Saving checkpoints
to the memory of other nodes actually brings interesting
questions of synergy with the actual transfers already required
by the application, discussed in Section IV-A. The choice of
the buddy node (i.e. the checkpoint mapping) is discussed
in Section VI-A. To give an initial idea, a simple choice is
to save checkpoints of node n on node (n + 1)%nb_nodes,
thus conveniently distributing both the additional memory and
network load.

B. Avoided pitfalls

Checkpointing techniques typically suffer from various
drawbacks, as described by Elnozahy et al. [11]. Introducing
checkpoints as cuts in the task graph however solves most of
them.

Firstly, the actual data transfers for checkpoints can be
achieved completely asynchronously, since they are mere
additions to the task graph, as shown on Figure 3. There
is indeed no requirement for nodes to start sending their
respective checkpoints at the same time; and even for a given
node, the actual transfers can be dispersed over time. For
instance, on Figure 3, we can notice that since data C is the
output of task 3, it can be sent to the buddy node as soon as
task 3 terminates, without having to wait for task 4, whose
output in data B will have to be transferred for the same
checkpoint. This gives the runtime a lot of latitude to perform
the data transfer, between the time when the data is produced,
and the time when it is overwritten by another task (unless
copy-on-write is used, as discussed in Section IV-B). The
checkpoint thus synchronizes with the application progression
with a very fine grain, unlike other approaches which require
at least a complete synchronization with the application on
each node. Different checkpoint instances may even overlap,
as discussed in Section V. The checkpointing transfers can also
be left as a background duty, to tend to avoid slowing down
the communications required for the application progress. For
a given node, the completion of a given checkpoint can be
recorded (and thus the the previous checkpoint be discarded)
when all the data transfers for the checkpoint are completed,
completely independently from the completion of checkpoints
for other nodes, i.e. the output commit is completely local.

Secondly, the obtained checkpoints are non-coordinated, or
more precisely, they are only implicitly coordinated. Indeed,
since each node unrolls the task graph, each node knows which
buddy node it will save its checkpoints to, and each node
knows which nodes it will buddy for, and thus the checkpoints
it will save, without any need for synchronization before the
actual checkpoint data transfers. The cuts in the task graph thus
provide consistent restarting lines in the task graph which are
actually noticed in a completely distributed way.

Eventually, with the addition of message logging® the
rollback of a failed node can be performed locally, without
involving other nodes beyond the buddy node and the nodes
which have exchanged data with the failed node. Indeed, when
the replacement node starts, it only has to receive the latest
complete checkpoint from the buddy node, and receive data
messages from the nodes which had exchanged data with the
failed node since the point in the graph of the checkpoint.
Conversely, the buddy node knows the complete checkpoint
it can send to the replacement node, and the nodes which
had exchanged data with the failed node can be notified by
the buddy node from which point in their message log they
should re-emit the previous data messages to the replacement
node. In other words, the failed node rollback is as local as
the application algorithm is. This also circumvents the domino
effect: at worse the progression of the replacement node
will be very late, which may delay the progression of other
nodes through data dependencies, but that can be mitigated

3 This is not covered in this paper, but it essentially follows classical
message logging principles [3], [7]

through load rebalancing. Load rebalancing can be performed
by choosing a new task-over-node distribution, as long as this
distribution is agreed in consensus among all nodes to ensure a
global consistency of the task graph [18]. The submission has
to reach a barrier to ensure all nodes are synchronized, but
this can be made while the previously-submitted tasks keep
executing, thanks to the asynchronicity of the runtime.

It is noticeable that working with this kind of runtime, we
are only saving application-related data into the checkpoints.
The runtime system’s state is only defined by these data,
so there is no runtime data to save into the checkpoint. For
example on performing a restart, the application declares the
data into the runtime system, and the runtime initializes it
according to the checkpoint content. The application then
submits the tasks after the checkpoint line and the execution
is resumed. The data contained in a checkpoint are therefore
only the ones specified into the application code.

To summarize, in the proposed scheme, both the checkpoint
data transfers and the recovery are completely distributed. A
global consistency is insured to avoid domino effects, but this
consistency is built implicitly from the task graph, the implicit
coordination comes from all nodes unrolling the same graph in
a deterministic way, thus providing Piece Wise Determinism
[15]. Additionally, as discussed in Section VI-A, the choice
of the buddy nodes can be arbitrary, so it can be easily
tuned to follow the actual platform network links, for maximal
localization of the checkpoint transfers.

C. Implementation

The checkpointing scheme proposed above was imple-
mented in the StarPU task-based distributed runtime system.
The support for distributed execution of StarPU resides in its
StarPU-MPI layer, which is based on the MPI communication
interface. The support for checkpointing was implemented on
top of this layer, it is composed of about 1500 lines of C code,
and initially did not require modifications of the core of the
StarPU runtime, the existing data acquisition core primitives
were sufficient to implement it. It should thus be easy to
transpose this checkpoint proposal to other runtime systems.
Some optimizations described below however required some
extensions. Besides, this checkpointing support is essentially
independent from the MPI standard, and would be easily
ported on top of other communication standards, provided that
they have support for error reporting and failure recovery.

IV. OPTIMIZATION OPPORTUNITIES

The principles described above lead to scalability thanks
to all operations being local and asynchronous. Some further
optimizations are made possible thanks to the knowledge of
the task graph.

A. Cache integration

In previous work [2], we have shown that caching data as
implemented in StarPU-MPI is an essential part of distributed
runtime systems. For instance on Figure 2, both tasks 3 and
4 read data A, but StarPU-MPI transfers data A only once

| Node 0 |

Fig. 4. Eventual data transfers between nodes 0 and 1.

from node O to node 1, thus saving network bandwidth. Our
checkpointing implementation completely integrates with this
cache support: if some data of a checkpoint happens to be also
used by a task on the buddy node, only one transfer is required.
For instance in the case of Figure 2, saving the checkpoints
for node O (i.e. data A) on node 1 is actually costless, since
node 1 already needs data A for its own computations, so the
checkpoint does not introduce any additional network transfer.
Conversely, saving the checkpoints for node 1 (i.e. data B and
data C) on node O is not so costly, since data B is already
required for tasks 5 and 7.

Furthermore, integrating checkpoints with the existing cache
support provides the factorization of data transfers across
checkpoints. For instance in the case of Figure 2, if data C
is not modified by tasks in the remainder of the program,
further checkpoints will include it but not involve any new
transfer over the network: the same cached copy will be
carried over between checkpoints. The existing support for
caching already notices the submission of tasks which modify
the data to invalidate outdated copies. As a consequence,
checkpoints naturally only trigger transfers for data which have
been modified by tasks since the last checkpoint.

As a result, in the case of Figure 2, only two additional
transfers are required for the checkpoints, as shown on Fig-
ure 4: data B as output by task 2, and data C as output (early)
by task 3. This shows that there can actually be a synergy
between the application algorithm (how its tasks and data
are distributed), and the checkpointing (how it distributes the
checkpoints data). We further discuss this in Section VI-A.
This is also an argument, in some cases, in favor of saving
checkpoints in the memory of another computation node rather
than external storage, since for some application algorithms,
some other nodes may already require the data for the com-
putation itself anyway.

B. Copy-on-write

As explained in Section III-B, the asynchronicity of the
proposed checkpoint principle can provide a lot of latitude
to perform the checkpoint transfers, between the production
by a task of the data to be checkpointed, and the overwrite of
the data by another task. In our example, node 0 has ample
time to send data A to node 1, before data A is overwritten by
task 5. In other cases however, the checkpoint transfers may
stall the execution of tasks. Node 1 indeed has to defer the
execution of task 3 until after data B is transferred to node
0 for the first checkpoint, since task 3 overwrites the content
of data B. A solution, to avoid such stalling of the execution
of the application, is to create a duplicate of the output of
task 1 in data B, so that this duplicate can be transferred to
node 0 while task 3 can execute. Performing such a duplicate
in the case of data A on node 0 would however be a waste
of memory. We thus introduce a copy-on-write strategy, in
the same sense as Operating Systems’ memory management:
when sending data for a checkpoint, we actually send an alias
of data B, the latter being marked as copy-on-write. In the
case of data B on node 1, when task 3 is ready to execute,
a duplicate of data B is automatically created to separate the
alias from the real data. In the case of data A on node 0, when
task 5 is ready to execute, the transfer of data A to node 1 will
already be largely over, and thus the alias dropped, so data A
can be overwritten and no duplicate will have been created.

The support for copy-on-write is further helpful for optimiz-
ing the support of message logging (not detailed in this paper).
When nodes save to the message log some data that they send
over the network, they actually save an alias of the data, the
latter being marked as copy-on-write. If no subsequent task
modifies the data until the log gets cleared, no duplicate is
actually performed.

More generally, the support for copy-on-write can be useful
in task-based runtime systems. Some in-place algorithms such
as QR [1] indeed need to make a duplicate of some matrix
tiles to avoid an anti-dependency that would otherwise limit
parallelism. But such copy can be useless depending on
the scheduling order. Support for copy-on-write will nicely
optimize such a case.

V. RESULTS

To evaluate our approach we chose to perform a study on the
Cholesky decomposition application, as it provides interesting
graph properties, unlike iterative applications. These latter
applications (such as stencils or conjugate gradient) indeed
have a behaviour that is very regular, thus making it much
simpler to tune the checkpointing placement and frequency to
obtain an efficient result. The Cholesky decomposition, on the
contrary, produces a convoluted task graph which thus raises
checkpoint placement questions which we discuss in details
in Section VI-B. We eventually made the Cholesky task graph
submitted per column, with checkpoints being placed between
the submission of each column.

For our experiments we use 25 Miriel nodes from the
Plafrim experimentation platform. Each node has 2 Intel®

25

20

Performance [TFlops]
—
I
T

150

O....I...I 1 Y T
250

0 50 100 200
Matrix side size (x1000)

300

Fig. 5. Performance on 25 MPI nodes of the Cholesky column-wise task-
based algorithm, with different numbers of checkpoints.

Xeon® E5-2680 v3 Haswell 12cores @ 2.5 GHz and 128 GB
of memory (5.3 Go/core @2933 MHz), and the nodes are
interconnected with an Infiniband 40 Gb/s network. We use
MKL2019 with AVX2, and OpenMPI 4.0.3. The average
GEMM performance with the chosen tile size (320x320) is
60.2 GFlop/s per core, which allows a theoretical performance
bound of 36120 GFlops for the available 600 cores. We
performed the measures with the StarPU “lws” (local work
stealing) scheduling policy. This policy distributes initial tasks
evenly over available cores ; when a task terminates, its de-
pendent tasks are attributed to the core where the dependency
ran ; when a core runs out of tasks to perform, it steals tasks
from other cores, starting from the cores that are the closest
in the architecture topology. This is thus a policy that is very
effective at avoiding scheduling contention even with a high
number of cores.

A. Performance overhead

Figure 5 shows the application performance according to the
matrix side size, with different numbers of checkpoints taken
over the execution. The interesting part is that even if as the
matrix size grows the checkpoint size grows (since more tasks
will have produced results), the checkpoints overhead actually
reduces. This is majorly due to the fact that the computation
time increases and thus the checkpoints time period decreases.
For these measures, the checkpoint frequencies are actually far
greater than what would usually be used, except for the greater
matrix sizes. For instance for matrix side size 287 000, an ex-
ecution without checkpoints lasts 280s. For 16 checkpoints it
lasts 304 s (+24 s i.e. +8.6%) for an average checkpoint period
of 19s. The overhead is however more important for smaller
matrices; for the matrix side size 121 600, the 16 checkpoints
execution lasts 5.7 s more than the normal execution, that lasts
22.5s (this leads to an overhead of 25%, and a checkpoint
frequency of 1.76s). We thus get an idea how reasonable the
overhead would be for much longer checkpointing periods.

Blind CP data

No-redund. CP data

Real CP data

#CP (@ additional) (% additional) (% additional)
T T.18GB (+11.5%) 0892GB (+8.67%) 0239GB (+2.33%)
2 237GB (+23.1%) 1.055GB (+10.3%) 0423GB (+4.11%)
4 474GB (+46.1%) 1.143GB (+11.1%) 0.622GB (+6.05%)
8 949GB (+922%) 1.175GB (+11.4%) 0.776GB (+7.58%)
16 1898GB (+184%) 1.185GB (+11.5%) 0.888 GB (+8.64%)

TABLE I
AMOUNT OF CHECKPOINTING DATA TRANSFERS AVERAGED PER NODE
FOR MATRIX SIDE SIZE 121 600, FOR DIFFERENT NUMBERS OF
CHECKPOINTS. THE CHOLESKY ALGORITHM ITSELF ALREADY INDUCES
AN AVERAGE OF 10.28 GB DATA SENT PER NODE, THE PERCENTAGE IN
PARENTHESES PROVIDES HOW MUCH CHECKPOINT DATA IS
ADDITIONALLY SENT PER NODE RELATIVELY TO THAT.

B. Communication overhead

The amount of additional data transfers induced by these
checkpoints is expressed in Table I. There we show the average
quantity of Checkpoint Data exchanged per node, for matrix
side size 121 600. The table exhibits the results of different
approaches, to observe the benefit of the properties we dis-
cussed in the previous section. The “blind checkpoint data”
(“Blind CP Data” column) is the quantity of data which would
be transferred when the checkpoint mechanism is unaware of
actual data changes. In this case each checkpoint saves the
whole matrix triangle, which weights 29.57 GB, distributed
over 25 nodes, thus 1.18 GB per node. The no-redundancy
checkpoint (“No-redund. CP data” column) is the quantity of
data sent when using an incremental checkpointing system,
which does not transfer a data already present in previous
checkpoints, i.e. a system that tracks the data changes. For
instance when only one checkpoint is taken in the middle
of the submission, that induces saving the left half part of
the matrix triangle, which weights 3 quarters of the matrix
triangle, distributed over 25 nodes, thus 0.892 GB per node
on average. When two checkpoints are taken, at the first third
and the second third of the submission, the first saves the
left third of the matrix triangle, while the second saves the
middle third of the matrix triangle, thus 1.055GB per node on
average, and similarly for larger numbers of checkpoints. The
obtained transfers savings are dramatic. Finally the measured
amount of checkpointing data sent with our proposed check-
pointing principle is shown in column “Real CP data”. While
benefiting from the same reduction than the no-redundancy
checkpoints, we reach even further reduction, thanks to the
reuse of computational data. Some data are indeed needed for
computation purpose, and are thus already on the buddy node;
our proposal then avoids sending the data again, thus getting
a significant communication saving.

These results are limited because the Cholesky factorization
is only a small simple of the application spectrum that the
StarPU runtime can execute. Even if extra experiments have
not been conducted for this paper, we can anticipate some
potential results. The proposed checkpoint solution should be
efficient for iterative convergent application such as conjugate
gradient: the application dynamic state is only the converging
solution vector, so the checkpoint content is rather small. The

12
11
10
9
z2 8
g
2 7717
&
3 6
= 577
Q
4 1
3 <
2
1
0 10 20 30 40 50
Time [s]

Fig. 6. Begin and End times of 12 checkpoints taken linearly in the iterations
of the Cholesky column-wise algorithm.

performances for this kind of application should therefore
be better than with the evaluated Cholesky. For a stencil
based application however, the checkpoint communications
may deteriorate the performances. Each checkpoint has to
save the entire dataset, and this is not usually transferred by
the application (it only transfers the borders), so there is no
synergy with the application communications. Consequently
this kind of application may have less good result than the
ones presented here. The overhead can however still be tuned
down trivially by lowering the checkpointing frequency.

C. Checkpoints progress

As discussed in Section III-B, the progression of check-
points is completely asynchronous, and the data to be saved
in a given checkpoint can be transferred as soon as it is
produced by a task, thus spreading over time the additional
communications of the checkpoint. This effect is shown on
Figure 6 which shows for each of 12 checkpoints (numbered
from 1 to 12) when the first data for a given checkpoint is
transferred, and when the last data for the same checkpoint
is transferred. We notice a very large overlap between the
respective progressions of the checkpoints. Indeed some tasks
are executed very early in the execution because of their
high priority due to belonging to the critical path of the task
graph, and despite having been submitted at the end of the
task graph, and thus belonging to a later checkpoint. Since
the corresponding data is made available for checkpointing
immediately after the execution of these tasks, we observe
that the first data transfer for all checkpoints occurs very early.
This effect is however limited to the very few tasks which are
close to the critical path, other tasks mostly follow column-
wise completion order and thus column-wise checkpointing.
Another expression of the submission code would have given
another distribution; a submission that submits tasks by prior-
ity order would naturally see the checkpoints start later during
execution, and the checkpoint termination would be different
according to the task load evolution per checkpoint.

Another effect worth noticing on Figure 6 is that the period
of the checkpoint completion time is not fixed: checkpointing
progression becomes faster and faster. Indeed, the checkpoints
are submitted linearly during the submission of the task
graph, i.e. with a fixed iterative period; but in the Cholesky
decomposition algorithm the submission iterations submit a
decreasing number of tasks. This could be corrected by a
compensated checkpoint iteration period, which would lead
to a better checkpoint distribution over time, as discussed in
Section VI-C.

VI. TRADE-OFF DISCUSSION

The previous section provided a glimpse into the kind of
overhead and network bandwidth cost that can be expected
from the checkpointing principle proposed in this paper. We
here further discuss the trade-offs that can be made when
introducing checkpointing in a task-based application.

A. Checkpoint mapping over nodes

In previous work [2], we have shown that with the STF
programming paradigm, the data mapping over nodes can be
chosen at will, without having to modify the task submission
part of the application source code; this allows to easily tune
it to reduce data transfers. In the checkpointing principle
proposed here, the situation is similar: the application specifies
a checkpoint mapping, i.e. for each node specify which other
node it will save its checkpoints on (the buddy node), ahead
of the task submission loop. This makes it convenient and
safe for trying different checkpoint mapping strategies: the
execution will simply follow the provided mapping, and at
worse the performance will be degraded because e.g. the
mapping specifies to save the checkpoints of all nodes on just
a few nodes whose network links will thus be jammed.

The best choice for the checkpoint mapping depends on
the application and its data mapping. As mentioned in Sec-
tion IV-A, some synergy emerges between the application
algorithm and the checkpoint mapping. When for algorithmic
reasons some data needs to be transferred from some node %
to another node j, making node j the buddy node for node
comes at no extra network cost since the checkpoint will reuse
the received data.

This choice also depends on the platform network: since the
traffic between a node and its buddy node will be increased, the
checkpoint mapping would rather be chosen such that this traf-
fic will get routed e.g. through a direct link. For instance, with
the typical habit of making MPI rank numbering increment by
proximity, the simple choice of saving checkpoints of node n
on node (n+1)%nb_nodes will actually tend to generate such
close routing. In general, the application data mapping will
already be chosen so as to follow the platform network, thus
reinforcing the synergy mentioned in the previous paragraph.

For instance, for dense linear algebra, the 2D block-cyclic
tile mapping [16] maps tile (i,j) of a matrix on node
(i%P) * Q@ + j%Q where P and @ are chosen such as
Px(@Q = nb_nodes. This mapping is well-known for providing
reasonably-optimized distributed execution, by limiting the

amount of data transfers while keeping appropriate pipelin-
ing [9]. It indeed builds up an affinity between nodes that
have tiles on the same rows, and between nodes that have
tiles on the same columns, to benefit from the fact that linear
algebra often propagates results along rows and columns. The
checkpoint mapping can follow the same principle by e.g.
saving checkpoints of node n on node (n + 1)%Q. This
leverages the affinity of nodes that have tiles on the same
rows. In practice (and as shown in the previous section), the
buddy node will indeed most often have already received the
data to be saved in the checkpoint because the linear algebra
algorithm will have broadcasted it to all nodes of the same row.
And since there is affinity between several nodes within each
panel, it should potentially be easy to save the checkpoints
in several nodes in order to tolerate several failures. Another
interesting choice could be (n4Q)%(nb_nodes) which would
leverage the affinity of nodes that have tiles on the same
column. The former might however be preferable to better
match with the proximity-based numbering of the nodes in
the platform network.

For simplicity in this paper, we have assumed that the
checkpoint for a given node is saved on a single buddy
node. Our implementation however supports saving different
pieces of the checkpoint on different buddy nodes, which
provides even more flexibility to follow even more closely the
application data transfers patterns. Each node can collect the
acknowledgments that its buddy nodes send when they have
received all of their pieces of a checkpoint. When a node fails,
its buddy nodes can establish a consensus to determine which
checkpoint version should be sent to the replacement node.

B. Checkpoint placement in the task graph

The placement of the checkpoints among tasks, i.e. the
placement of the cuts in the task graph, is also up for
discussion. Again, the STF programming paradigm allows
to place it at will within the source code, independently
from the choice of the checkpoint mapping, to try different
strategies, with different resulting performance depending on
the application. The only constraint is that all nodes must insert
the checkpoints at the same place, for the checkpointing cuts
to be consistent.

To reduce the amount of data to be saved in the checkpoints,
they should rather be placed where the least amount of data is
live. For iterative solvers for instance, they should be placed
at the end of the iterations, to automatically avoid saving the
temporary data used inside an iteration. It is usually quite
natural to introduce checkpoints in such fork-join task-based
applications, whose source code will usually clearly exhibit the
join point at the end of the iteration, where the checkpoints
can thus be trivially inserted.

In other cases such as the Cholesky factorization taken
as example in Section V (and more generally linear algebra
algorithms notably), the placement of checkpoints is more
tricky. This is notably because iterations of the main loop of
the usual source code are supposed to overlap. For instance,
the usual task-based expression of the Cholesky factorization

k=0 k=1 k=2

Fig. 7. Task submission of triangular-wise expression from Algorithm 1.
White areas are initial state, hatched areas are submitted tasks during the
current iteration (one per tile), green areas are final states, brown areas are
intermediate states.

is triangle-wise, as shown on Algorithm 1 and Figure 7 be-
cause it is simple for numerical analysis experts to proofread.
Benefiting from most of the parallelism of the task graph
however requires overlapping the executions of the tasks of
several iterations of the k loop; scheduling tasks strictly in the
submission order would yield to low parallelism at the start of
each loop iteration. This overlapping is commonly achieved
by setting priorities on the tasks, so that e.g. GEMM tasks
with large 7 and m indices are executed late even with low &
indices, while POTRF and TRSM tasks are executed early to
unleash parallelism as early as possible, since they are on the
critical path.

Algorithm 1 STF tile Cholesky, triangle-wise
for (k = 0; k < NT; k++) do
task_insert(&POTRF, RW, A[k][k]);
for (m = k+1; m < NT; m++) do
task_insert(&TRSM, R, A[k][k], RW, A[m][k]);
for (n = k+1; n < NT; n++) do
task_insert(&SYRK, R, A[n][k], RW, A[n][n]);
for (m = n+1; m < NT; m++) do
task_insert(&GEMM, R, A[m][k], R, A[n][k],
RW, A[m][n]);
checkpoint();
task_wait_for_all();

Submitting all the non-prioritized GEMM tasks is however
a burden for the runtime to have to keep managing possibly
millions of tasks that will actually be executed very late. A
way to avoid such useless submissions is to use the polyhedral
analysis of a source-to-source compiler such as PPCG [20] to
rewrite the algorithm into a column-wise form as shown on
Algorithm 2 and 8, which produces the same task graph,
but column by column instead of triangle by triangle. This
allows to make the progressive task submission of our previous
work [2] behave much more efficiently. Another way would
be to use a parametric representation of the task graph, such
as used by PaRSEC [6], and unroll the task graph by columns,
the principle remains the same.

Inserting a checkpoint in Algorithm 1 at the end of the
k loop would be very problematic: after the first iteration
(k = 0) the checkpoint would have to save the whole matrix
triangle! After the second iteration (kK = 1) it would have
to save the whole matrix triangle but the first column of

Algorithm 2 STF tile Cholesky, column-wise
for (n = 0; n < NT; n++) do
for (k = 0; k < n; k++) do
task_insert(&SYRK, R, A[n][k], RW, A[n][n]);
task_insert(&POTRF, RW, A[n][n]);
for (m =n + I; m < NT; m++) do
for (k = 0; k < n; k++) do
task_insert(&GEMM, R, A[m][k], R, A[n][k],
RW, A[m][n]);
task_insert(&TRSM, R, A[n][n], RW, A[m][n]);
checkpoint();
task_wait_for_all();

n=0 n=1 n=2

Fig. 8. Task submission of column-wise expression from Algorithm 2. White
areas are initial states, hatched areas are submitted tasks during the current
iteration (n+1 per tile), green areas are final states.

tiles, etc. Also, if priorities are used to defer the execution of
GEMM tasks with high n and m indices, the corresponding
data for the checkpoints would be available almost at the end
of the execution only. Inserting a checkpoint in Algorithm 2
at the end of the n loop is however much more appropriate.
After the first iteration (n = 0) the checkpoint has to save
the first column of tiles of the matrix only; after the second
iteration (n = 1) the checkpoint has to save the second column
of tiles only; etc. This also much better follows the actual
execution order of tasks as observed with the usually-used task
priorities, so that the checkpoints complete progressively along
the execution. This is why we used this form of expressing
the Cholesky factorization for the results of Section V.

The behavior observed with this classical example yields to
the general principle that the placement of checkpoints should
be rather coherent with the actual task execution progression,
so that checkpoints can complete at regular times. It must
however be noted that the requirement is not strict. In the
case of Algorithm 2, the task priorities are typically set so
that the execution of POTRF and TRSM tasks do overlap
between iterations of n, so as to release parallelism early, so
we do have some amount of overlapping between the execution
of the tasks before the checkpoint to be completed and the
execution of the tasks after it. This overlapping is however
quite limited, as the regular completion time of checkpoints
shows in Section V.

C. Frequency of checkpoints

In the Subsection VI-B above, we typically introduced
a checkpointing slot at each iteration of the most external
for loop. Such a frequency may however be way too high
compared to the checkpointing management cost; we have

seen in Section V the cost of using a high checkpoint fre-
quency. Such high frequencies are generally not useful any-
way, compared to the cost of the checkpoint and of the restart.
Optimized checkpointing frequency can be determined [8],
[21] according to the platform and application caracteristics,
and the checkpointing calls inserted at each iteration of the
source code would be selectively enabled accordingly; in
our experiments we selectively enabled them by hand. The
models used for the optimization however generally assume
that the checkpointing steps are completely separate from each
other, while in our checkpointing principle, steps can overlap
(as seen in the Cholesky example). The overhead can still
be evaluated respectively for each checkpoint, and it is the
termination time of checkpoints that is to be observed. The
models also often assume that the sets of tasks separated by the
checkpoints are identical, so as to reach a steady-case scenario.
In the Cholesky example, this is not the case, the frequency
of checkpoints should be regulated along the loop over n.
Polyhedral analysis could however provide an estimation of
the amount of computation of each loop, that models could
take into account to provide a regulated frequency.

VII. CONCLUSION AND FUTURE WORK

We have proposed a checkpointing principle which inte-
grates closely with task-based programming. We have shown
that this leads to a completely asynchronous and distributed
checkpointing mechanism, and allows for a completely local
restart of failing nodes. This work hence opens potential for
very large-scale checkpointing support. We have also shown
that, in some application cases, a synergy can be found
between the data transfers for the application algorithm and the
data transfers for the checkpoints, thus reducing the additional
network pressure of the latter.

This work is only preliminary but very promising, and now
deserves experimentation on larger scales and with different
checkpoint mappings. This paper has not discussed the case
of losing several nodes simultaneously. If none of them is the
buddy node for another, the respective local recoveries can pro-
ceed concurrently, otherwise a secondary buddy node would be
needed, with the same general principles as described in this
paper. Instead of our proposed buddy in-memory checkpoints
approach, saving checkpoints to external disk storage (and e.g.
leverage libraries such as TAPIOCA [17]) would avoid the
memory load on the nodes. The same principles as shown in
this paper should be applicable so that integration with the task
graph would also allow to achieve progressive asynchronous
write-back to disk. Lastly, since a replacement node restarts
earlier in the task graph than the current progression of
the other (non-failed) nodes, dependencies in the task graph
may make this delay impact the other nodes, leading to
idle time there. Dynamic load rebalancing would be able to
compensate such a delay. The progressive submission of the
tasks allows for such a balancing to be done while respecting
the programming paradigm of STF.

VIII. ACKNOWLEDGMENTS

This work has received funding from the EU’s Horizon 2020
research and innovation program, under grant agreement No.
801015 (EXA2PRO, http://www.exa2pro.eu).

Experiments presented in this paper were carried out using
the PlaFRIM experimental testbed, supported by Inria, CNRS
(LABRI and IMB), Université de Bordeaux, Bordeaux INP
and Conseil Régional d’Aquitaine (see https://www.plafrim.
fr/).

REFERENCES

[1] Agullo, E., Augonnet, C., Dongarra, J., Faverge, M., Ltaief, H., Thibault,
S., Tomov, S.: “QR Factorization on a Multicore Node Enhanced with
Multiple GPU Accelerators”. In: IPDPS’11 - 25th IEEE International
Parallel & Distributed Processing Symposium. Anchorage, Alaska, USA
(May 2011)

[2] Agullo, E., Aumage, O., Faverge, M., Furmento, N., Pruvost, F., Sergent,
M., Thibault, S.: “Achieving High Performance on Supercomputers
with a Sequential Task-based Programming Model”. TPDS - IEEE
Transactions on Parallel and Distributed Systems (Dec 2017)

[3] Alvisi, L., Marzullo, K.: “Message logging: pessimistic, optimistic,
causal, and optimal”. IEEE Transactions on Software Engineering 24(2)
(Feb 1998), conference Name: IEEE Transactions on Software Engi-
neering

[4] Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F.,
Maruyama, N., Matsuoka, S.: “Fti: High performance fault tolerance
interface for hybrid systems”. In: SC ’11: Proceedings of 2011 In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis (2011)

[5] Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: “Post-
failure recovery of MPI communication capability: Design and ra-
tionale”. The International Journal of High Performance Computing
Applications 27(3) (Aug 2013)

[6] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., Don-
garra, J.: “PaRSEC: A programming paradigm exploiting heterogeneity
for enhancing scalability”. Computing in Science and Engineering 15(6)
(Nov 2013)

[7]1 Bouteiller, A., Bosilca, G., Dongarra, J.: “Redesigning the message
logging model for high performance”. Concurrency and Computation:
Practice and Experience 22(16) (Nov 2010)

[8] Di, S., Robert, Y., Vivien, F.,, Cappello, F.: “Toward an optimal online
checkpoint solution under a two-level hpc checkpoint model”. IEEE
Transactions on Parallel and Distributed Systems 28(1), 244-259 (2017)

[9] Dongarra, J., Walker, D.: “Software libraries for linear algebra compu-

tations on high performance computers”. SIAM Review 37(2) (1995)

Dongarra, J., Herault, T., Robert, Y.: “Revisiting the Double Checkpoint-

ing Algorithm”. In: 2013 IEEE International Symposium on Parallel &

Distributed Processing, Workshops and Pchd Forum. IEEE, Cambridge,

MA, USA (May 2013)

Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: “A Survey

of Rollback-recovery Protocols in Message-passing Systems”. ACM

Comput. Surv. 34(3), 375-408 (Sep 2002)

Gupta, S., Patel, T., Engelmann, C., Tiwari, D.: “Failures in large

scale systems: long-term measurement, analysis, and implications”. In:

Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis on - SC ’17. Denver,

Colorado (2017)

Losada, N., Bosilca, G., Bouteiller, A., Gonzilez, P., Martin, M.J.:

“Local rollback for resilient MPI applications with application-level

checkpointing and message logging”. Future Generation Computer Sys-

tems 91, 450-464 (Feb 2019)

Nicolae, B., Moody, A., Gonsiorowski, E., Mohror, K., Cappello, F.:

“VeloC: Towards High Performance Adaptive Asynchronous Check-

pointing at Large Scale”. In: 2019 IEEE International Parallel and

Distributed Processing Symposium (IPDPS) (May 2019), iSSN: 1530-

2075

Strom, R., Yemini, S.: “Optimistic recovery in distributed systems”.

ACM Transactions on Computer Systems (TOCS) 3(3), 204-226 (Aug

1985)

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

Susan Blackford: “The Two-dimensional Block-Cyclic Distribution”
(May 1997), http://www.netlib.org/scalapack/slug/node75.html

Tessier, F., Vishwanath, V., Jeannot, E.: “TAPIOCA: An I/O Library
for Optimized Topology-Aware Data Aggregation on Large-Scale Su-
percomputers”. In: CLUSTER 2017 - IEEE International Conference
on Cluster Computing. pp. 1-11. IEEE, Honolulu, United States (Sep
2017)

Thibault, S.: On Runtime Systems for Task-based Programming on Het-
erogeneous Platforms. Habilitation a diriger des recherches, Université
de Bordeaux (Dec 2018), https://hal.inria.fr/tel-01959127

Vasavada, M., Mueller, F., Hargrove, PH., Roman, E.: “Comparing
different approaches for Incremental Checkpointing: The Showdown”.
In: Ottawa Linux Symposium (2011)

Verdoolaege, S., Juega, J.C., Cohen, A., Gémez, J.I., Tenllado, C.,
Catthoor, F.: “Polyhedral parallel code generation for cuda”. ACM Trans.
Archit. Code Optim. 9(4), 54:1-54:23 (Jan 2013)

Young, J.W.: “A first order approximation to the optimum checkpoint
interval”. Commun. ACM 17(9), 530-531 (Sep 1974)

