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Abstract

The time-harmonic propagation of waves in layered media is simulated numerically by means
of a modal-based Partition of Unity Finite Element Method (PUFEM). Instead of using typical
plane wave or Bessel solutions of the Helmholtz equation to design the discretization basis, the
proposed modal-based PUFEM uses explicitly the tensor-product expressions of the eigenmodes
(the so-called Love and interior modes) of a spectral transverse problem, which fulfil the coupling
conditions among layers. This modal-based PUFEM approach does not introduce quadrature errors
since the coefficients of the discrete matrices are computed in closed-form. An preliminary analysis
of the high condition number suffered by the proposed method is also analysed in terms of the mesh
size and the number of eigenmodes involved in the discretization. The numerical methodology is
validated through a number of test scenarios, where the reliability of the proposed PUFEM method
is discussed by considering different modal basis and source terms. Finally, some indicators are
introduced to select a convenient discrete PUFEM basis taking into account the observability of
cracks placed on a coupling boundary between two adjacent layers.

Keywords: Partition of Unity Finite Element Method, layered material, modal decomposition

1. Introduction

The development of engineering tools to find cracks on the interfaces between different lay-
ers materials is fundamental to the early detection of defects in some widely used mechanical
structures in industry (for example, pipes with a coating [29], multilayer panels in aeronautic
shields [8]). Currently, ultrasonic testing [4] and Foucault currents [1] propagating transversally
through the coupling interfaces are common inspection techniques. In both cases, their effective-
ness and practical application is limited by the fact that the excitation source must be placed close
to the crack location for its correct detection. In order to overcome that limitation, the use of Love
waves to find a defect far from the source has been recently analysed (see, for instance, [12, 16, 28],
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and references therein). In this framework, Love modes are surface waves associated with the cou-
pling interface, whose motion is transverse to the direction of wave propagation (see [25] for a
detailed description).

To achieve high crack detection rates by using Love waves (see [9]), it is crucial the a priori
knowledge of a high accurate prediction of the mechanical behaviour of the problem without a
crack. However, typical numerical approximations based on finite differences or finite element
methods suffer from the numerical pollution effects at high frequency regime [15], where despite
the grid or the mesh could be refined enough to capture the wave-like oscillations of the model
solution, the accumulation of phase-lag errors introduce spurious deviations on the approximated
numerical results [14]. Other high-order techniques such as high-order or spectral finite element
methods [3, 11] could mitigate these numerical pollution phenomena but they still involve a high
computational cost since the mesh used in the discretization problem should be conformal with
respect to the internal coupling interfaces of the multilayered media [26].

The present work is focused on the numerical approximation of the solution of a non-destructive
testing problem involving a bilayered medium without the presence of a crack. The proposed nu-
merical method deals with both challenging drawbacks described above. For this purpose, Love
and interior modes (computed in closed-form from a simplified auxiliary transverse problem) are
used in combination with a partition of unity finite element method (PUFEM) discretization. This
approach avoids any undesirable numerical pollution effects [13] and simultaneously does not re-
quire the use of refined meshes to obtain accurate numerical results even in the case of considering
thin layers.

The family of PUFEM methods was introduced in [21], where the standard polynomial-based
discretization of a classical finite element method (FEM), is used as a partition of unity. In that
manner, instead of computing a polynomial approximation of the exact solution, every local poly-
nomial basis is multiplied by an exact solution of a target model leading to an enriched discrete
space where some exact local solutions of the model are naturally included. Typically, in the
case of the two-dimensional Helmholtz model stated in a homogeneous medium (with a constant
wavenumber), this enrichment procedure involves the multiplication of piecewise polynomials
functions (defined on a triangular mesh) by plane waves [17, 22, 24], radial solutions (written
in terms of Bessel functions) [22], or two-dimensional eigenfunctions [2]. Further developments
on the use of the PUFEM technique applied to heterogeneous media have been analysed recently
(see [7] and [20]). However, those approaches use conformal meshes with respect to the position
of the coupling interfaces, and since the enriched functions used in the discretization are only lo-
cal solutions within a particular layer of the model, special treatments are required to impose the
coupling conditions among layers.

For the application of the proposed approach, the compatibility between the system of spa-
tial coordinates used to write the mechanical model (in this case, the Helmholtz equation) and the
mathematical description of the coupling boundaries of the layered material plays a key role. More
precisely, it is assumed that: (H1) the global governing partial differential equation (holding in the
entire computational domain) involves some piecewise (constant per layer) coefficients and (H2)
this equation admits a tensorial representation such that the normal and tangential spatial coordi-
nates with respect to the coupling boundaries can be identified. For instance, such assumptions are
usually fulfil in isolation sandwich panels utilized in building acoustics (where a Cartesian system
of coordinates is used and the coupling boundaries are planar) or in pipelines with coatings (where
cylindrical coordinates are applied to be compatible with the curved coating shape).
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Thanks to both assumptions (H1)-(H2) written above, the enriched modal-based PUFEM dis-
cretization can be designed as tensor products by using a splitting of eigenmodes derived from
an auxiliary spectral problem in the normal direction and a standard piecewise polynomial basis
acting on the tangential coordinates. For the sake of simplicity in the exposition, this work is fo-
cused on a Cartesian system of spatial coordinates in a two-dimensional setting, where a bilayered
material with planar coupling boundaries is studied.

The outline of this manuscript is as follows: the model problem and its variational formulation
is presented in Section 2. In Section 3, the computation of Loves and interior modes is described
in a detailed and pedagogical manner from an auxiliary spectral problem. The description of
the modal-based PUFEM approach, its associated discrete problem, and its matrix description is
included Section 4. Additionally, an analysis of the condition number of the PUFEM stiffness
matrix is included. Section 5 includes a wide variety of numerical tests in order to illustrate the
numerical behaviour of the proposed modal-based PUFEM method. Finally, a criterion to identify
a convenient combination of Love and interior modes in the PUFEM basis is described in Section 6
and some conclusions are discussed in Section 7.

2. Model problem

Throughout this work, a bilayered elastic material domain will be considered, where an excita-
tion will be imposed to polarize both layers transversally. So, the computational domain Ω ⊂ R2

is split in two layers, denoted respectively by Ω+ and Ω−, where different physical properties
are settled. More precisely, the transverse propagation speed c is defined as a piecewise-constant
function given by

c(x) =

{
c+ if x ∈Ω+,

c− if x ∈Ω−,

where it is assumed 0 < c− < c+. In addition, the exterior boundary of the computational domain
Ω is split in four disjoint parts, ∂Ω = Γe∪Γs∪Γ+∪Γ−.

Under the assumptions of small perturbations of the displacement field and the stress tensor, the
mechanical vibrations of bilayered structures can be modelled by a linear elastic mode,l where only
the transverse component of the displacement field is involved. Taking into account a frequency
domain model, i.e., if the external forces are harmonic in time with frequency ω > 0, the time-
harmonic problem is stated as follows: Find the displacement field u : Ω→ C such that it holds

−ω
2u−div

(
c2

∇u
)
= f in Ω+∪Ω−, (1)

c2 ∂u
∂ν

= g on Γ+∪Γ−, (2)

−iωβu+ c
∂u
∂ν

= r on Γe∪Γs, (3)

u|
Ω− = u|

Ω+
on ΓI, (4)

c2
−

∂u
∂ν

∣∣∣∣
Ω−

= c2
+

∂u
∂ν

∣∣∣∣
Ω+

on ΓI, (5)

where f ,g, and r are respectively volumetric and surface external loads. Here ν denotes the unit
normal vector outwards to Ω− and ΓI = Ω+∩Ω− is the coupling boundary. It is straightforward
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to derive the variational formulation of this frequency-domain problem: For given ω > 0, find
u ∈ H1(Ω) such that

Aβ(u,φ)−ω
2
∫

Ω

uφ̄dx= L(φ) (6)

for all φ ∈ H1(Ω), with

Aβ(u,φ) =
∫

Ω

c2
∇u ·∇φ̄dx− iωβ

∫
Γe∪Γs

cuφ̄dσ,

L(φ) =
∫

Ω

f φ̄dx+
∫

Γ+∪Γ−
gφ̄dσ+

∫
Γe∪Γs

crφ̄dσ.

All variational terms in this weak problem are well-posed assuming that f ∈ L2(Ω), and the
boundary loads r ∈H−

1
2 (Γe∪Γs) and g∈H−

1
2 (Γ+∪Γ−). The main goal of the present work is the

description of a modal-based PUFEM method to solve the variational problem (6) in a bilayered
setting. With this purpose, a basis consisting in eigenmodes of an auxiliary spectral problem will
be computed in the sections below.

3. Spectral characterization of the auxiliary problem

The key ingredient on the modal-based PUFEM discretization consists in the computation of
closed-form expressions for the eigenvalues and eigenfunctions of an auxiliary problem involving
the same partial differential equations and coupling conditions introduced in the target problem (1)-
(5), but possibly with different boundary conditions on the outer boundaries. In that manner, the
use of an eigenmode expansion for the solution of target problem (1)-(5) could be challenging an
potentially it would exhibit a poor asymptotic convergence with respect to the number of modes
used (since the target problem (1)-(5) could not be associated with a self-adjoint compact resolvent
operator). However, since the auxiliary problem will be stated in such a way that its eigenmodes
form a complete functional L2-basis, they will provide a suitable functional setting to be combined
locally with a partition of unity method.

In what follows, the spectral characterization of this new global problem is analysed, where
the Robin boundary conditions with β 6= 0 in problem (1)-(5) are replaced for simpler Neumann
boundary conditions (with β = 0), this is: Finding the eigenpairs (w,λ), w 6= 0, such that

λw−div
(
c2

∇w
)
= 0 in Ω, (7)

∂w
∂ν

= 0 on ∂Ω, (8)

w|
Ω− = w|

Ω+
on ΓI, (9)

c2
−

∂w
∂ν

∣∣∣∣
Ω−

= c2
+

∂w
∂ν

∣∣∣∣
Ω+

on ΓI. (10)

In comparison with the original model problem (1)-(5), this auxiliary problem (7)-(10) have Neu-
mann boundary conditions on ∂Ω and hence, the linear resolvent operator associated to this spectral
problem is self-adjoint and compact. Hence, a standard spectral analysis shows there is an infinity
numerable set of positive eigenvalues {λn, j}n, j∈N (without any accumulation point), which are as-

4



sociated with the angular resonance frequencies ωn, j = i
√

λn, j (see a detailed analysis in [19] for
further details).

3.1. Spectral analysis in the Cartesian system of coordinates
Despite the present modal-based PUFEM discretization is applicable to a wide variety of com-

putational domains and different governing partial differential equations, both the geometry and
the equations must be suitable for a description in a general local orthogonal system of coordi-
nates (such as polar or more general convex coordinates) fulfilling hypothesis (H1)-(H2). For
simplicity on the method description in this manuscript, a standard Cartesian system of coordi-
nates is used to introduce the computational domain. More precisely, throughout this work, a
bilayered computational domain is considered. More precisely, the layered media is given by
Ω = (−a,H)× (0,L) with a, L, H > 0, and the upper and lower layers are Ω+ = (0,H)× (0,L)
and Ω+ = (−a,0)× (0,L), respectively (see Figure 1).

Ω−

Ω+

Γ−

Γ+

Γe Γs

x2 = −a

x2 = H

x1 = 0 x1 = L

Figure 1: Computational domain of the bilayered elastic material described in terms of the Cartesian coordinates
(x1,x2).

Under assumptions (H1)-(H2), the analytic computation of the eigenpairs can be performed by
a classical separation of variables procedure. Then, if the non-null eigenfunctions are given by
w(x1,x2) = q(x1)p(x2), and since the profile of the speed of sound c is piecewise constant, then the
Helmholtz equation in Ω+ leads to −c2

+q′′p− c2
+p′′q = λqp. Since q and p depends on an unique

spatial variable, there exists a constant µ such that

q′′+µq = 0 in (0,L) and − c2
+p′′− (λ− c2

+µ)p = 0 in (0,H).

Similar arguments can be performed for Ω− = (0,L)× (−a,0). In both cases, the differential
equation satisfied by q is given by q′′ = µq, which is completed with the homogeneous Neumann
boundary conditions at x1 = 0 and x1 = L. Straightforward computations show that there exists a
sequence of eigenpairs {(µn,qn)}n∈N (normalized with respect the L2(0,L) norm) defined by

q0(x1) =

√
1
L
, µ0 = 0, (11)

qn(x1) =

√
2
L

cos(
√

µnx1) , µn =
(nπ

L

)2
, n ∈ N, n 6= 0. (12)
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For each eigenpair (µn,qn), the x2-dependent factor p = pn must be computed. If the differential
equation satisfied by pn is completed with the homogeneous Neumann boundary conditions at
x2 =−a and x2 = H, each pn satisfies

−
(
c2 p′n

)′− (λn− c2µn
)

pn = 0 in (−a,0)∪ (0,H), (13)
p′n(−a) = p′n(H) = 0, (14)

pn(0+) = pn(0−), (15)

c2
+p′n(0

+) = c2
−p′n(0

−). (16)

For each fixed value of n ∈ N, there exist a sequence of eigenpairs {(λn, j, pn, j)} j∈N which
are solution of the spectral differential problem (13)-(16). To describe them explicitly, two differ-
ent cases should be considered: Love and interior modes. In what follows, it is shown that the
eigenpairs {(λn, j,wn, j)}n, j∈N of the auxiliary spectral problem (7)-(8) are given by wn, j(x1,x2) =
qn(x1)pn, j(x2), where qn are defined by (11)-(12) and pn, j are computed in closed form.

3.1.1. Love modes
First, those eigenmodes which can be understood as interface modes, also called Love modes.

They satisfy µnc2
− < λn, j < µnc2

+, and hence they are solutions of Equation (13), which can be
written as

pn, j(x2) =

 C1 cos(Kn, j
− (x2 +a))+C2 sin(Kn, j

− (x2 +a)) if x2 ∈ (−a,0),

D1 cosh(Kn, j
+ (x2−H))+D2 sinh(Kn, j

+ (x2−H)) if x2 ∈ [0,H),

being C1, C2, D1 and D2 constants to be determined and where the positive wave numbers in each
subdomain are given by

Kn, j
− =

√√√√µn

((
ξn, j

c−

)2

−1

)
, Kn, j

+ =

√√√√µn

(
1−
(

ξn, j

c+

)2
)
, (17)

with ξn, j =
√

λn, j/µn and variables ξn, j ∈ (c−,c+). The Neumann boundary conditions (14) lead
to C2 = D2 = 0. Applying now the interface conditions (15)-(16) in order to find C1 and D1, the
following linear system of equations has to be solved C1 cos(Kn, j

− a) = D1 cosh(Kn, j
+ H),

C1Kn, j
− sin(Kn, j

− a) = D1Kn, j
+ sinh(Kn, j

+ H).
(18)

To enforce the determinant of the matrix in system (18) is null, the following dispersion equation
must be fulfilled:

c+
c−

√
c2
+− (ξn, j)2

(ξn, j)2− c2
−

tanh

H

√√√√µn

(
1−
(

ξn, j

c+

)2
)= tan

a

√√√√µn

((
ξn, j

c−

)2

−1

) . (19)
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As the linear system (18) has multiple solutions, it is chosen C1 = cos(Kn, j
− a)−1 and then, from the

first equation in (18), it can be deduced that D1 = cosh(Kn, j
+ H)−1. Consequently, the eigenfunc-

tions pn, j (normalized to satisfy pn, j(0) = 1) are given by

pn, j(x2) =


cos(Kn, j

− (x2 +a))

cos(Kn, j
− a)

if x2 ∈ (−a,0),

cosh(Kn, j
+ (x2−H))

cosh(Kn, j
+ H)

if x2 ∈ [0,H).

(20)

3.1.2. Interior modes
The second type of eigenmodes are the interior modes. They correspond to those eigenmodes

whose associated eigenvalue satisfies λn, j > µnc2
+. Having into account this condition, the solutions

of equation (13) for this case can be written as follows:

pn, j(x2) =

 C̃1 cos(K̃n, j
− (x2 +a))+C̃2 sin(K̃n, j

− (x2 +a)) if x2 ∈ (−a,0),

D̃1 cos(K̃n, j
+ (x2−H))+ D̃2 sin(K̃n, j

+ (x2−H)) if x2 ∈ [0,H),

being C̃1, C̃2, D̃1 and D̃2 constants to be determined and where the positive wave numbers in each
subdomain are given by

K̃n, j
− =

√√√√µn

((
ζn, j

c−

)2

−1

)
, K̃n, j

+ =

√√√√µn

((
ζn, j

c+

)2

−1

)
. (21)

In the expressions written above ζn, j =
√

λn, j/µn and hence ζn, j ∈ (c+,+∞). The Neumann bound-
ary conditions (14) lead to C̃2 = D̃2 = 0. Applying now the interface conditions (15)-(16) in order
to find C̃1 and D̃1, the following system has to be solved: C̃1 cos(K̃n, j

− a) = D̃1 cos(K̃n, j
+ H),

−C̃1K̃n, j
− sin(K̃n, j

− a) = D̃1K̃n, j
+ sin(K̃n, j

+ H).
(22)

Again, to ensure that the determinant of the matrix in system (22) is null, the following dispersion
equation must be fulfilled

c+
c−

√
(ζn, j)2− c2

+

(ζn, j)2− c2
−

tan

H

√√√√µn

((
ζn, j

c+

)2

−1

)+ tan

a

√√√√µn

((
ζn, j

c−

)2

−1

)= 0. (23)

As the linear system (22) has multiple solutions, it is chosen that C̃1 = cos(K̃n, j
− a)−1 and then,

from the first equation in (22), it can be deduced that D̃1 = cos(K̃n, j
+ H)−1. So in this case, the
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eigenfunctions pn, j (normalized to satisfy pn, j(0) = 1) are given by

pn, j(x2) =


cos(K̃n, j

− (x2 +a))

cos(K̃n, j
− a)

if x2 ∈ [−a,0],

cos(K̃n, j
+ (x2−H))

cos(K̃n, j
+ H)

if x2 ∈ [0,H].

(24)

Figure 2 illustrates two different kind of eigenmodes, a Love mode (left plot) and an interior
mode (right plot) with respect to the x2-axis through the computational domain Ω (see 1). The
speed of sound has been settled to c− = 1/2 in Ω− and c+ = 1 in Ω+. In this example, the
geometrical dimensions of the computational domain are given by L = 1, a = 0.2 and H = 0.8.
The Love eigenmode wn, j (with n = 15 and j = 5) has an oscillatory behaviour in (−a,0) and
decays exponentially in (0,H), as it can be observed in the left plot. The right plot illustrates the
interior eigenmode with n = 15 and j = 5. It has an oscillatory behaviour in the whole domain,
although the oscillation changes when the wave crosses the interface at x2 = 0.

−0.2 0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x2

p
n
,j

−0.2 0 0.2 0.4 0.6 0.8
−40

−30

−20

−10

0

10

20

30

40

x2

p
n
,j

Figure 2: Love mode pn, j from equation (20) (left) and interior mode pn. j from equation (24) (right) plotted with
respect to x2, for n = 15 and j = 5. It can be observed the exponential decay of the Love mode and the oscillatory
behaviour of the interior mode in (0,H), being H = 0.8.

Note that the eigenmodes whose eigenvalue satisfies λn, j < µnc2
− are not considered, because

the dispersion equation that should be fulfilled is

c+
c−

√
c2
+− (ξn, j)2

c2
−− (ξn, j)2

tanh

H

√√√√µn

(
1−
(

ξn, j

c+

)2
)+ tanh

a

√√√√µn

(
1−
(

ξn, j

c−

)2
)= 0. (25)

for ξn, j =
√

λn, j/µn ∈ (−∞,c−), which it is impossible as the arguments of the hyperbolic tangents
are strictly positive.

To distinguish the eigenpairs {(λn, j,wn, j)}n, j∈N which correspond to interior modes from those
ones which are associated with Love modes, for each index n ∈ N, which fixes the mode qn with
the x1-dependency, the corresponding indexes j ∈ N are split in two disjoint sorted subsets: those
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wn, j with j ∈ In ⊂ N are considered interior modes whereas if j ∈ Ln ⊂ N then they are Love
modes. The ordering of subsets Ln and In are given by the natural ascending order with respect to
the magnitude of their associated eigenvalues λn, j.

Remark 1. Despite the spectral problems with β = 0 and β > 0 share similar variational formu-
lations, the change of nature on the boundary condition type (from Robin to Neumann boundary
condition on Γe∪Γs) implies that the eigenfunctions of the auxiliary spectral problem (7)-(10) are
not eigenfunctions of the spectral problem associated with the target problem (1)-(5). Moreover,
even in the case of constant functions, it is straightforward to show that the spectral problem as-
sociated with (1)-(5) for β > 0 does not admit eigenfunctions of type w(x1,x2) = p(x2), since the
non-null constant functions do not satisfy the Robin condition (3).

4. Modal-based PUFEM method

The main idea of the proposed PUFEM methodology consists in the use of the information
of the eigenmodes computed from an auxiliary spectral problem to be combined with a standard
piecewise polynomial finite element discretization. Typically, any PUFEM discretization applied
to a two-dimensional problem would involve a triangular or quadrilateral mesh of the computa-
tional domain. However, due to the tensor product representation and the assumptions (H1)-(H2)
required to the computational domain (tangent to the coupling interface), the partition of unity can
be settled only in one spatial coordinate direction, reducing the number of degrees of freedom used
in the discretization and simultaneously keeping the information of the coupling phenomena of the
layered material, which is already included in the computation of the eigenmodes.

4.1. Discrete space
Before the detailed description of the modal-based PUFEM discrete space, a preliminary anal-

ysis must be performed on the eigenmodes computed in Section 3. Firstly, those redundant eigen-
modes which belong to the polynomial discrete finite element space should be removed from the
PUFEM modal basis. In the particular case analysed in Section 3, q0 is a constant function, so it
belongs to the standard piecewise linear polynomial finite element space in the x1-coordinate. Its
inclusion in the PUFEM discrete space does not add any new feature to the classical discrete FEM
approximation, so it will be neglected from the discrete space.

Regarding the rest of eigenfunctions (n > 0), if expressions qn(x1) were used directly to define
the enrichment of the PUFEM discrete space, since the eigenmodes wn, j satisfy homogeneous
Neumann boundary conditions on Γe∪Γs, a lack of convergence will arise around the boundaries
where the Robin conditions are considered in the target problem (1)-(5). To avoid this drawback,
qn is rewritten in terms of complex exponential of different sign,

qn(x1) =

√
2
L

(
1
2

q+n (x1)+
1
2

q−n (x1)

)
, n ∈ N, n 6= 0,

where q+n (x1) = exp(i
√

µnx1) and q−n (x1) = exp(−i
√

µnx1). Taking into account this new rewriting
of the modes qn using complex exponential expressions, if both functions q+n and q−n are involved
separately in the PUFEM discrete basis, it is guaranteed that any boundary condition on Γe ∪Γs
(located at x1 = 0 and x1 = L) could be satisfied by a linear combination of type C0q+n +C1q−n with
adequate constants C0 and C1.
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Obviously, as it has been already discussed in the section above, for each n∈N, the eigenmodes
wn, j, j ∈ In, associated with the interior modes are infinite (but countable) and for discretization
purposes, this set of modes In must be truncated only considering a finite number of eigenmodes
with the smallest magnitude. The truncated finite set of indexes for the interior modes will be
denoted by Ĩn ⊂ In, being Jn the number of interior modes used in the discretization. The criterion
to truncate the infinite sequence of interior modes corresponds to keep in the discretization only
those interior eigenvalues λn, j which satisfy

c2
+µn ≤ λn, j ≤ c2

0µn for n = 0, . . . ,N, (26)

and where c0 is the maximum value allowed for the solutions ζn, j of the dispersion equation (23).
In the case of the eigenpairs associated with the Love modes, its dispersion equation only admits a
finite number of solutions and so, for a fixed value n∈N, all the Love eigenmodes are considered in
the discretization. The number of Love eigenmodes included in the subset Ln will be denoted by Ln.
Using this notation, if λn, j is an eigenvalue of the auxiliary spectral problem and its corresponding
eigenmode is used in the PUFEM discretization, then there exists a k-th family of eigenmodes such
that the pair of indexes (n, j) ∈ J N =

{
{k}× (Lk∪ Ĩk)

}N
k=1, or equivalently

n ∈ {1,2, . . . ,N} and j ∈ {1, . . . ,Ln︸ ︷︷ ︸
j∈Ln

,Ln +1, . . . ,Ln + Jn︸ ︷︷ ︸
j∈Ĩn

}. (27)

To describe precisely the proposed modal-based PUFEM method, an one-dimensional finite
element mesh must be introduced. For simplicity, an uniform mesh of size h will be used through-
out the rest of the present work, this is, a mesh with M elements and whose nodes are given
by {ym = hm : m = 0, . . . ,M} ⊂ [0,L]. Clearly, such mesh has M + 1 nodes and a mesh size
h = L/M. In addition, the partition of unity consists in the local polynomial basis {ϕm}M

m=0, which
is the standard Lagrange P1 (piecewise linear) finite element basis, defined by the nodal relation
ϕm(yl) = δlm, where δlm is the Kronecker’s delta. Hence, the discrete modal-based PUFEM space
Xh is defined by the span of a tensor product basis as follows:

Xh =
〈{

(ϕmq+n )⊗ pn, j, (ϕmq−n )⊗ pn, j, m = 0, . . . ,M, (n, j) ∈ J N}〉 , (28)

where recall that [(ϕmq±n )⊗ pn, j](x1,x2) = ϕm(x1)q±n (x1)pn, j(x2) and the ordering of indexes (n, j)
in the subsets Lk and Ĩk are given by the natural ascending order with respect to the magnitude of
their associated eigenvalues λn, j.

From the definition of Xh and since {ϕm}M
m=0 is a partition of unity of the interval [0,L], i.e.,

∑
M
m=0 ϕm(x1) = 1, it is clearly deduced that

wn, j =

√
1

2L

M

∑
m=0

(ϕmq+n +ϕmq−n )⊗ pn, j ∈ Xh,

with (n, j) ∈ J N . hence, the proposed discretization inherits potentially the spectral convergence
of the modal basis approximations (see Section 5 for the illustration of the numerical behaviour
of the proposed method). Simultaneously, due to the use of a partition of unity, the functions
used for the enrichment in the discrete space has not to satisfy all the boundary conditions of the
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source problem, what increases the flexibility of choice for the modal basis. In addition, taking
into account to the compact support of the finite element basis {ϕm}M

m=0, the matrix of the discrete
problem will be sparse, what decreases the computational storage requirements for a typical modal
discretization which involves full discrete matrices.

Since the modal-based PUFEM enrichment is flexible enough to select only a part of the spec-
tral basis, the impact in the accuracy of considering only Love modes in the discrete space has been
analysed in the numerical results shown in Section 5. In this case, the discrete space is defined by

XL
h =

〈{
(ϕmq+n )⊗ pn, j, (ϕmq−n )⊗ pn, j, m = 0, . . . ,M, (n, j) ∈ J N}〉 . (29)

The numerical features of the proposed modal-based PUFEM discretization with these two discrete
spaces are described in detail in the following two sections.

4.2. Matrix description of the discrete problem
To write the matrix description of the variational problem using the discrete space Xh (and

analogously XL
h ), each term of the variational formulation associated with the sesquilinear form

Aβ, the L2-inner product, the source, and the boundary data contributions (see (6)) are computed
for unknown and test functions belonging to the discrete space. Hence, the discrete variational
formulation can be stated as follows: For a fixed frequency ω > 0, find uh ∈ Xh such that

Aβ(uh,vh)−ω
2〈uh,vh〉L2(Ω) = `(vh) for all vh ∈ Xh. (30)

Clearly, any function uh ∈ Xh is determined by their respective discrete vector

~uh = (((u+mn j,u
−
mn j) j∈Ln∪Ĩn

)M
m=0)

N
n=1

= (u+011,u
−
011,u

+
012,u

−
012, . . . ,u

+
01L1+J1

,u−01L1+J1
, . . . ,

u+0NLN+JN
,u−0NLN+JN

,u+111,u
−
111, . . . ,u

+
MNLN+JN

,u−MNLN+JN
), (31)

and so the vector coefficients define the discrete function, this is,

uh =
M

∑
m=0

N

∑
n=1

Ln+Jn

∑
j=1

(
u+mn j(ϕmq+n )⊗ pn, j +u−mn j(ϕmq−n )⊗ pn, j

)
. (32)

The coefficient ordering in (31) has been chosen to reduce as much as possible the bandwidth of
the sparse matrices involved in the discretization. In fact, since the degrees of freedom related to
the same finite element basis ϕm are stored consecutively, it is straightforward to show that due
to the compact support of the one-dimensional finite element basis, the bandwidth of the matrix
description is given by 6max1≤n≤N(Ln + Jn).

Taking into account this basis representation in Xh, the discrete variational formulation (30)
admits the matrix description

−ω
2M~uh− iωβC~uh +K~uh =~bh, (33)

where the coefficients of the matrices M , C , and K (with respect to the coordinates u±mn j induced
by the basis of Xh) are given by the expressions written below. Taking into account the expression
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of the sesquilinear form (6) and the discrete problem (30), the mass matrix M is defined by

[M ]±∓mn j, lki =
∫

Ω

(ϕmq±n )⊗ pn, j(ϕlq∓k )⊗ pk,i dx=

(∫ L

0
ϕmϕlq±n q∓k dx1

)(∫ H

−a
pn, j pk,i dx2

)
,

the damping matrix C is given by

[C ]±∓mn j, lki =
∫

Γe∪Γs

c(ϕmq±n )⊗ pn, j(ϕlq∓k )⊗ pk,i dσ

=
(
(ϕmϕlq±n q∓k )

∣∣
x1=0 + (ϕmϕlq±n q∓k )

∣∣
x1=L

)(∫ H

−a
pn, j pk,i dx2

)
,

and the stiffness matrix K is defined by

[K ]±∓mn j, lki =
∫

Ω

c2
∫

Ω

∇((ϕmq±n )⊗ pn, j) ·∇((ϕlq∓k )⊗ pk,i)dx

=

(∫ L

0
(ϕmq±n )

′(q∓k ϕl)
′ dx1

)(∫ H

−a
pn, j pk,i dx2

)
+

(∫ L

0
ϕmq±n q∓k ϕl dx1

)(∫ H

−a
p′n, j p

′
k,i dx2

)
,

for all 0 ≤ m, l ≤ M and (m, j),(k, i) ∈ J N . It should be noted that all the integrals stated below
have been computed using one-dimensional exact integration with closed form integral formulas
(without requiring the use of quadrature formulas). Since the source and boundary terms, functions
f , g, and r have been approximated by high-order polynomials (in the case of the source term,
such interpolation has been performed assuming a tensor product expression), then the same exact
quadrature procedure has been also applied to the right-hand side term ~bh. Consequently, the
right-hand side in the linear system (33) is given by

[~bh]
±
mn j =

∫
Ω

f (ϕmq±n )⊗ pn, j dx+
∫

Γ+∪Γ−
g(ϕmq±n )⊗ pn, j dσ+

∫
Γe∪Γs

cr(ϕmq±n )⊗ pn, j dσ

=

(∫ L

0
f1ϕmq±n dx1

)(∫ H

−a
f2 pn, j dx2

)
+ pn, j(−a)

∫ L

0
g|x2=−aϕmq±n dx1

+ pn, j(H)
∫ L

0
g|x2=Hϕmq±n dx1 + (ϕmq±n )

∣∣
x1=0

∫ H

−a
cr|x1=0 pn, j dx2

+ (ϕmq±n )
∣∣
x1=L

∫ H

−a
cr|x1=L pn, j dx2,

for all 0 ≤ m ≤ M and (m, j) ∈ J N . Obviously, from the symmetric character of the L2-inner
product and the sesquilinear form Aβ for β = 0, both matrices M and K are hermitian. A direct
inspection on the coefficients of the damping matrix C also reveals it is hermitian.

4.3. Analysis of the condition number
It is well known that the enriched methods and, in particular, those ones which are based on

a partition of unity and plane waves suffer from a poor conditioning (see [3, 23] for a detailed
description of effects of the conditioning on the PUFEM numerical results). The proposed modal-
based partition of unity method also shares this kind of conditioning drawbacks even if the PUFEM
discretization is restricted to a one-dimensional discretization in the x1-axis.
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To check the origin of these conditioning issues, the condition number κ(M ) of the mass matrix
M will be analysed in a simplified case, where it has been considered the pure Neumann problem
(with β = 0) for an one-layer material (i.e. c+ = c−) in the target problem (1)-(5). Similar argu-
ments could be also applied to the stiffness and damping matrix K and C in the linear system (33).
To highlight the different order of magnitude of conditioning in the proposed modal-based PUFEM
method, it will be compared with those condition numbers coming from an standard finite element
discretization.

First, notice that the condition number of the mass matrix is not an issue in a standard piecewise
linear finite element discretization (in one-dimension with a uniform mesh). In this case, for the
finite element mass matrix, its condition number is upper bounded independently of the mesh
size h, this is, κ(M ) = O(1) (see [10] for further details). In what follows, it will be checked
that the condition number of the modal-based PUFEM mass matrix increases when the number of
eigenmodes is enlarged and simultaneously a refined finite element mesh is used in the partition of
unity). In fact, it will be shown that κ(M ) = O(h−2).

Firstly, in the simple case of β = 0 and c− = c+, the modal basis solution of the spectral
problem is given by wn, j = qn⊗ p j, where recall that qn, n ∈ N, n 6= 0 are defined by (12) and p j,
j ∈ N are given as follows:

p0(x2) =

√
1

a+H
, p j(x2) =

√
2

a+H
cos
(

jπx2

a+H

)
, j ∈ N, j 6= 0.

Notice that {p j} j∈N is an orthonormal Hilbert basis in L2(−a,H). Following an analogous strategy
to that one used to obtain (28), the discretization space Xh is defined by

Xh =
〈{

(ϕmq+n )⊗ p j, (ϕmq−n )⊗ p j, m = 0, . . . ,M, n, j = 0, . . . ,N, n 6= 0
}〉

, (34)

where the Hilbert basis has been truncated to the first N eigenvalues. Hence, the complex-valued
mass matrix M of size 2N(N+1)(M+1)×2N(N+1)(M+1) inherits the tensor product descrip-
tion used in Xh, and after a reordering (permutation of rows and columns), it can be written as a
Kronecker product of matrices M = A ⊗B (where the size of A is 2(M +1)N×2(M +1)N and
the size of B is (N +1)× (N +1)) being

[A ]±∓mn, lk =
∫ L

0
ϕmϕlq±n q∓k dx1, for 0≤ m, l ≤M, 1≤ n,k ≤ N, (35)

and

[B]i, j =
∫ H

−a
p j pi dx2 for 0≤ i, j ≤ N.

Trivially, from the orthogonality of the basis {p j} j∈N, it is obtained that B is the identity matrix I .
Hence, in the simple case considered here, M = A⊗ I . Classical linear algebra results show that
the spectrum of M and A coincides (see [18]) and so their condition number also coincides.

Lemma 1. Let A be the matrix defined by (35). If the finite element mesh satisfies 2(N +1) < M
then it holds

κ(A)≥Ch−2, (36)

where C is a positive constant independent of M and N, only dependent on L.
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Proof. With the aim of estimating κ(A), the numerical range of A will be upper and lower
bounded. Firstly, values m and n are fixed taking into account that 0 ≤ m ≤ M and 0 ≤ n ≤ N.
Then, consider the vector ~v ∈ C2(M+1)N associated with the discrete function v⊗ pn ∈ Xh with
v(x1) = ϕm(x1)sin(nπ(x1−mh)/L), which corresponds to the following linear combination of ba-
sis functions:

v =
ϕm

2i

(
q+n

q+n (mh)
− q−n

q−n (mh)

)
. (37)

It holds

~v∗A~v =
∫ L

0
v(x1)v̄(x1)dx1 =

∫ L

0
ϕ

2
m(x1)sin2

(
nπ(x1−mh)

L

)
dx1

= 2
∫ h

0

s2

h2 sin2
(nπs

L

)
ds≤C

∫ h

0

s4

h2 ds≤Ch3,

where each occurrence of constant C could denotes a different value independent of h (only depen-
dent on the ratio L/n). To obtain the estimate above, it has been used the first order Taylor poly-
nomial approximation of the sine function around the origin. Now, it is straightforward to show
from (37) that the unique non-null coefficients of~v are given by (1/(2iq+n (mh)),−1/(2iq−n (mh)))
and hence

~v∗~v =
∣∣∣∣ 1
2i

e−i nπ

L mh
∣∣∣∣2 + ∣∣∣∣ 1

2i
e+i nπ

L mh
∣∣∣∣2 = 1

2
, (38)

and consequently, it has been shown that there exists~v 6=~0 such that

~v∗A~v
~v∗~v

≤ 2Ch3.

Secondly, a different vector coordinate ~v is taken into account. In this case, once m and n are
fixed with 0≤m≤M and 0≤ n≤N, consider the vector~v∈C2(M+1)N associated with the discrete
function v⊗ pnXh with v(x1) = ϕm(x1)cos(nπ(x1−mh)/L), which corresponds to the following
linear combination of basis functions:

v =
ϕm

2

(
q+n

q+n (mh)
+

q−n
q−n (mh)

)
. (39)

It holds

~v∗A~v =
∫ L

0
v(x1)v̄(x1)dx1 =

∫ L

0
ϕ

2
m(x1)cos2

(
nπ(x1−mh)

L

)
dx1

= 2
∫ h

0

s2

h2 cos2
(nπs

L

)
ds≥ C̃

∫ h

0

s2

h2 ds≥ C̃h, (40)

where each occurrence of constant C̃ could denote a different value independent of h (only depen-
dent on the ratio L/n). To obtain the estimate above, it has been used a strictly positive lower bound
for the cosine function in the compact interval [0,h]⊂ [0,L/(2(n+1))], which holds by assuming
2(n+ 1) > M and taking into account h = L/M. In the interval written above, it is ensured that
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cos(nπs/L) is strictly positive for any n). Now, it is straightforward to show from (39) that the
unique non-null coefficients of~v are given by (1/(2q+n (mh)),1/(2q−n (mh))) and hence, using (38),
~v∗~v = 1/2. So, it has been shown that there exists~v 6=~0 such that

~v∗A~v
~v∗~v

≥ 2C̃h. (41)

Now, if λmax and λmin are respectively the largest and smallest eigenvalues of matrix A , us-
ing the classical property of the Rayleigh quotient for hermitian complex-valued matrices (which
ensures that the numerical range is a real interval with eigenvalues as endpoints [27]), it holds

λmin ≤
~v∗A~v
~v∗~v

≤ λmax for all~v 6=~0.

Then, from (41) and (40), there exist two positive constants C and C̃, independent of M and N (and
hence also independent of h) such that

2C̃h≤ λmax and λmin ≤ 2Ch3.

Consequently, since A is a positive definite hermitian matrix (it is associated with the L2-inner
product in Xh), it is satisfied

κ(A) =
λmax

λmin
≥ C̃

C
h−2, (42)

and hence (36) is obtained.

In conclusion, from Lemma 1, since the spectrum of A and M coincides, it is obtained that
κ(M ) = O(h−2), what implies a significant increasing of the condition number as soon as the
finite element mesh is refined. This high condition number (compared with respect to the low
conditioning of standard finite element methods) in the mass matrix could indicate the numerical
mechanism because of the matrix of the linear system (33) suffers for high condition numbers. As
it is reported in the following sections, to mitigate as much as possible the conditioning issues,
different regularization techniques can be considered, the finite element meshes have been kept as
coarse as possible in most of the numerical test, and also a novel criterion to limit the number of
eigenmodes used in the discrete space has been derived.

5. Numerical results

An extensive variety of numerical tests has been considered to illustrate the performance and
the numerical behaviour of the proposed modal-based PUFEM method. With this aim, different
scenarios involving different discrete settings have been used. More precisely, Section 5.1 shows
the different numerical performance obtained with a discrete space that only involves Love modes,
and with another discrete space that includes both, Love and interior modes. Finally, in those
numerical simulations where only interior modes are involved, the eigenmodes used in the modal-
based PUFEM discretization (29) hold the condition (26) with c0 = 2c+.

Section 5.2 illustrates the consistency of the method for solutions contained in the discrete
space, and Section 5.3 shows the accurate approximation of solutions which are close to the
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constant-valued eigenmode (not included in the modal-based PUFEM discrete space (28)). Fi-
nally, Section 5.4 focuses on the deterioration of the numerical results due to the high condition
numbers of the discrete matrix and its potential mitigation using regularization techniques.

Throughout the entire Section 5, the relative errors are computed using a pointwise L∞-norm
on an 5× 5 equispaced Cartesian grid of points {y jk}5

j,k=1 in the domain [0,L]× [−a,H]. More
precisely, the relative error is given by

εh =

max
1≤ j,k≤5

|u(y jk)−uh(y jk)|

max
1≤ j,k≤5

|u(y jk)|
,

where u is the exact solution of the source problem and uh is the approximated solution computed
with the proposed modal-based PUFEM method. Other finer grids with a larger number of points
have been also considered leading to similar relative errors. To plot the approximated solution
computed by means of the modal-based PUFEM method, the real part of the approximation in
every numerical test is plotted on a 17× 17 equispaced grid of points {y jk}17

j,k=1 in the domain
[0,L]× [−a,H]. Additionally, the pointwise relative error with respect to L∞-norm is also plotted
in the computational domain Ω.

If it is not mentioned explicitly other data, the numerical test have been computed assuming
that problem (1)-(5) is settled with angular frequency ω = π and homogeneous Neumann boundary
conditions have been considered on the whole boundary ∂Ω. The computational domain Ω =
(0,L)× (−a,H) with a = 0.2, H = 0.8, L = 1 is split in two subdomains where the speed of sound
is given by c− = 1/2 in Ω− = (0,L)× (−a,0) and c+ = 1 in Ω+ = (0,L)× (0,H).

5.1. Numerical comparison of discrete spaces with or without interior modes
To illustrate the relevance of including the interior modes on the discrete space (and conse-

quently use the complete set of eigenmodes computed from the auxiliary spectral problem), a
detailed comparison between the modal-based method have being carried out using the discrete
spaces XL

h (only considering Love eigenmodes) and Xh (using Love and interior eigenmodes).
In this numerical test, the source term is given by

f (x1,x2) =

{
1 for (x1,x2) ∈Ω+,

x2 for (x1,x2) ∈Ω−,

and the boundary functions are fixed to g = 0 and r = 0. Assuming these boundary conditions and
this source term, it is straightforward to compute the exact solution in closed form. More precisely,
the exact solution is given by

u(x1,x2) =


A+e−iωx2/c+ +B+eiωx2/c+− 1

ω2 if (x1,x2) ∈Ω+,

A−e−iωx2/c−+B−eiωx2/c−− x2

ω2 if (x1,x2) ∈Ω−,
(43)
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being A+, B+, A−, B− coefficients that are determined by solving the linear system
0 0 e−iωH/c+ −eiωH/c+

eiωa/c− −e−iωa/c− 0 0
1 1 −1 −1
1 −1 −c+/c− c+/c−




A−
B−
A+

B+

=


0

ic−/ω3

−1/ω2

ic−/ω3

 ,

that results from applying the boundary conditions and the coupling conditions.
Table 1 shows the relative error for both, an approximated solution in the discrete space XL

h
involving only Love eigenmodes and an approximated solution in the discrete space Xh with Love
and interior eigenmodes. As it is expected, if interior and Love modes are included in the dis-
cretization then the approximated PUFEM solutions are much more accurate than those computed
with only Love modes. This conclusion is valid for any value of mesh size M and any number
of eigenmodes N as it can be checked in Table 1. Figures 3 and 4 illustrate the real part of the
approximated solution and the relative error for M = 4 and N = 10 computed using the discrete
space XL

h and Xh, respectively.

XL
h (without interior modes) Xh (with interior modes)

M N dof εh κ dof εh κ

3 16 1.65×100 1.1×103 60 2.14×10−3 1.5×108

1 5 32 2.95×100 5.0×104 140 3.00×10−5 3.1×1013

10 100 1.87×100 9.4×108 500 1.55×10−5 1.2×1019

3 40 3.53×100 1.0×105 150 7.28×10−5 2.7×1012

4 5 80 4.45×10−1 1.1×108 350 1.72×10−5 5.2×1016

10 250 3.30×10−3 1.3×1014 1250 3.88×10−6 1.0×1023

3 88 5.17×100 3.5×108 330 2.73×10−5 3.6×1015

10 5 176 6.62×10−2 4.1×1011 770 7.74×10−6 2.0×1018

10 550 3.69×10−4 6.2×1016 2750 1.97×10−5 2.2×1019

Table 1: Comparison of the relative error εh and the condition number κ for two different approximated PUFEM
solutions: the discrete space XL

h that only includes Love modes (left part), and the discrete space Xh with both Love
and interior eigenmodes (right part). The numerical results are shown for different values of the mesh size M, the
number of eigenpair families considered in the discretization N, and the degrees of freedom (dof) of the discrete
approximation.
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Figure 3: Real part of the approximated solution (left) and modulus of the relative error (right), obtained from the
modal-based PUFEM method with a one-dimensional mesh of four elements (i.e. M = 4) and considering the the
discrete space XL

h with N = 10. The exact solution is given by (43).

Figure 4: Real part of the approximate solution (left) and relative error (right), obtained from the modal-based PUFEM
method with a one-dimensional mesh of four elements (i.e. M = 4) and considering the family of Love and interior
modes wn, j with (n, j) ∈ {1, . . . ,10}×{Ln∪ I Jn

n } (i.e. N = 10). The exact solution is given by (43).

It is also relevant that, if the relative errors obtained with both discrete spaces are compared
for similar values of degrees of freedom (and hence with almost similar computational cost), the
numerical results reached with the discrete Xh outperforms those results obtained with only Love
modes in XL

h . In conclusion, the numerical results described throughout the rest of this section,
will take into account both Love and interior eigenmodes and hence the proposed modal-based
PUFEM discretization will always use the discrete space Xh.

5.2. Consistency of the modal-based PUFEM method with Love and interior modes
In order to check the consistency of the modal-based PUFEM method (using the discrete space

with both interior and Love modes), the relative error has been analysed in some numerical tests
where the exact solutions belong to the discrete space Xh. It is shown here the case where the exact
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solution is given by an interior mode. Numerical results obtained choosing a Love mode as exact
solution are analogous to the ones shown in this section.

The solution considered in this test is the eigenmode associated with the lowest non-null eigen-
value, this is, u = w1,L1+1, where (1,L1 + 1) ∈ J N (see (27)). To obtain such exact solution, the
source term is given by f = (λ1,L1+1−ω2)w1,L1+1. Obviously, from a theoretical point of view,
since the exact solution belongs to the discrete space, the numerical approximation error should
be null. However, due to the round-off errors introduced by the double precision arithmetic repre-
sentation and the high condition number of the discrete matrices, the relative errors shown in the
first two rows of Table 2 are reaching approximately O(10−14). The numerical results of Table 2
also illustrate how the relative errors are increased as the one-dimensional mesh is refined (M is
increased) and more eigenmodes are involved in the discrete space Xh (value of N is increased).
In both cases, since the condition number of the linear system grows, the relative errors are also
increased. Despite of this well-known phenomena for partition of unity methods, it should be
remarked that five digits of accuracy are kept even in those numerical approximations where the
condition number is as high as O(1018). Figure 5 illustrates the real part of the approximated
solution and the relative error for M = 10 and N = 3.

M N dof εh κ

1 12 1.49×10−15 1.5×102

1 3 60 3.81×10−14 1.5×108

5 140 6.60×10−12 3.1×1013

1 606 2.78×10−11 2.5×1013

100 3 3030 1.06×10−5 1.4×1018

5 7070 4.92×10−6 9.5×1018

Table 2: Relative error εh and the condition number κ for different values of the mesh size M, the number of eigen-
modes N considered in the discretization, and the degrees of freedom (dof) used in the discrete approximation. The
exact solution is given by the non-constant interior mode associated with the lowest eigenvalue.

Figure 5: Real part of the approximated solution (left) and modulus of the relative error (right) obtained from the
modal-based PUFEM method with a one-dimensional mesh of ten elements (i.e. M = 10) and considering the discrete
space Xh with N = 3). The exact solution is the non-constant interior mode associated with the lowest eigenvalue.
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5.3. Accurate approximation of eigenmodes not included in the discrete space
It has been discussed in previous sections that those eigenmodes corresponding to the constant

factors q0(x1) are not considered in the definition of the discrete space Xh. So, it could be natural
to conclude that the exact solutions of the form q0⊗ p in problem (1)-(5) could be inaccurately
approximated by the modal-based PUFEM method. However, the numerical test described in this
section illustrates the high accuracy of the method even in this scenario.

The source term has been fixed to f = 1 to obtain as exact solution u =−1/ω2. Table 3 shows
that, even if the eigenmodes which are independent of the x1 spatial coordinate are not included
in the modal-based discretization, the constant exact solution can be approximated accurately with
similar relative errors to those obtained in the approximation of solutions belonging to Xh (see the
right part of Table 1).

M N dof εh κ

1 12 1.21×10−1 1.5×102

1 3 60 2.31×10−3 1.5×108

5 140 1.61×10−5 3.1×1013

1 606 9.38×10−3 2.5×1013

100 3 3030 1.66×10−5 1.4×1018

5 7070 1.26×10−5 8.2×1018

Table 3: Relative error εh and the condition number κ for different values of the mesh size M, the number of eigen-
modes N considered in the discretization, and the degrees of freedom (dof) used in the discrete approximation. The
exact solution is constant.

Figure 6: Real part of the approximated solution (left) and modulus of the relative error (right), obtained from the
modal-based PUFEM method with a one-dimensional mesh of ten elements (i.e. M = 10) and considering the discrete
space Xh with N = 3. The exact solution is constant.

5.4. Influence of the condition number on the numerical results
In previous sections, it has been reported that the modal-based PUFEM method suffers for

large condition numbers in the linear systems which have to be solved. Such issue represents
a potential drawback in the use of direct LU-based linear solvers. From the numerical results
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described in the sections above and the theoretical analysis made in Section 4.3, this conditioning
problem is more relevant as soon as the one-dimensional finite element mesh is refined and the
number of eigenmodes involved in the discrete space is increased. However, there exists a number
of methodologies to deal with high condition numbers and try to mitigate the amplification of
the round-off errors on the solution of linear systems. Three different regularization techniques
have been evaluated: a naive damping strategy, the classical Tikhonov filtering (with two different
strategies to choose the regularization parameter), and the truncated singular value decomposition
method. The latter has been already used for solving linear systems with large condition numbers
in the context of two-dimensional PUFEM discretizations (see [6]).

Now, to avoid those exact solutions which could belong to Xh, the source term is given by

f (x1,x2) =


cos
(

3πx1

L

)
for (x1,x2) ∈Ω+,

(1+ x2)cos
(

3πx1

L

)
for (x1,x2) ∈Ω−.

With this source term, it is straightforward to compute the exact solution in closed form, which
does not belong to Xh, and it is given by

u(x1,x2) = cos
(

3πx1

L

)
A+e−iα+x2 +B+eiα+x2− 1

c2
+α2

+

if (x1,x2) ∈Ω+,

A−e−iα−x2 +B−eiα−x2− 1+ x2

c2
−α2
−

if (x1,x2) ∈Ω−,
(44)

where

α+ =

√
ω2

c2
+

− 9π2

L2 , α− =

√
ω2

c2
−
− 9π2

L2 ,

and A+, B+, A−, B− are the coefficients computed as solution of the linear system
0 0 −e−iα+H eiα+H

−iα−eiα−a iα−e−iα−a 0 0
−1 −1 1 1

ic2
−α− −ic2

−α− −ic2
+α+ ic2

+α+




A−
B−
A+

B+

=


0

1/c2
−α2
−

1/c2
+α2

+−1/c2
−α2
−

−1/α2
−

 ,

which results from applying the boundary conditions and the coupling conditions.
Firstly, Table 4 shows the comparison of the relative errors obtained with a LU-based direct

solver and with the naive damping algorithm (adding a damping coefficient λd on the diagonal
entries of the matrix). It can be observed that both methodologies lead to similar relative errors
without any significant advantage between both methods. Analogous conclusions can be deduced
from the numerical results reported for the truncated singular value decomposition (see Tables 7
and 8), and the Tikhonov filtering technique (see Tables 5, and 6), both in the case where the reg-
ularization parameter is chosen using either a L-curve strategy or the generalized cross validation
(GCV) method.
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M N dof λd εh εd κ

3 60 8.7×10−7 1.13×10−3 1.14×10−3 1.5×108

1 5 140 5.3×10−10 1.24×10−4 1.25×10−4 3.1×1013

10 500 2.3×10−12 1.05×10−4 3.89×10−5 1.2×1019

3 150 2.8×10−7 6.79×10−5 8.33×10−5 2.7×1012

4 5 350 2.3×10−10 4.70×10−5 6.61×10−5 5.2×1016

10 1250 2.3×10−12 4.70×10−5 2.90×10−5 3.9×1020

3 330 3.8×10−9 1.33×10−4 1.22×10−4 1.5×1015

10 5 770 1.0×10−12 5.47×10−5 5.71×10−5 3.1×1018

10 2750 1.1×10−12 4.94×10−5 2.53×10−5 1.2×1019

Table 4: Comparison of the relative error εh computed from solving the discrete linear system using a LU-based direct
solver and the relative error εd obtained using a naive damping method. The relative errors and the condition number
κ are reported for different values of the mesh size M, the number of eigenmodes N considered in the discretization,
and the degrees of freedom (dof) of the discrete approximation.

Figure 7: Real part of the approximate solution (using a LU-based direct solver) (left) and modulus of the relative error
(right), obtained from the modal-based PUFEM method with a one-dimensional mesh of four elements (i.e. M = 4)
and considering the discrete space Xh with N = 3. The exact solution is given by (44).
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Figure 8: Real part of the approximate solution (using a naive damping method) (left) and modulus of the relative error
(right), obtained from the modal-based PUFEM method with a one-dimensional mesh of four elements (i.e. M = 4)
and considering the discrete space Xh with N = 3. The exact solution is given by (44).

M N dof λt (L-curve) εh εt (L-curve) κ

3 60 6.3×10−5 1.13×10−3 1.31×10−3 1.5×108

1 5 140 6.2×10−9 1.24×10−4 1.22×10−4 3.1×1013

10 500 4.8×10−8 1.05×10−4 6.79×10−5 1.2×1019

3 150 3.6×10−6 6.79×10−5 6.79×10−5 2.7×1012

4 5 350 2.0×10−9 4.70×10−5 4.70×10−5 5.2×1016

10 1250 4.0×10+2 4.70×10−5 4.70×10−5 3.9×1020

3 330 7.9×10−5 1.33×10−4 1.33×10−4 1.5×1015

10 5 770 2.6×10−11 5.47×10−5 5.47×10−5 3.1×1018

10 2750 6.8×10−9 4.94×10−5 4.94×10−5 1.2×1019

Table 5: Comparison of the relative error εh computed from solving the discrete linear system using a LU-based direct
solver and the relative error εt obtained by using the Tikhonov filtering technique (whose regularization parameter has
been chosen by the L-curve). The relative errors and the condition number κ are reported for different values of the
mesh size M, the number of eigenmodes N considered in the discretization, and the degrees of freedom (dof) of the
discrete approximation.
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Figure 9: Real part of the approximate solution (using the Tikhonov filtering technique whose regularization parameter
has been chosen by the L-curve) (left) and modulus of the relative error (right), obtained from the modal-based PUFEM
method with a one-dimensional mesh of four elements (i.e. M = 4) and considering the discrete space Xh with N = 3.
The exact solution is given by (44).

M N dof λt (GCV) εh εt (GCV) κ

3 60 9.2×10−5 1.13×10−3 1.24×10−3 1.5×108

1 5 140 2.2×10−10 1.24×10−4 1.25×10−4 3.1×1013

10 500 1.8×10−10 1.05×10−4 4.54×10−5 1.2×1019

3 150 6.0×10−10 6.79×10−5 6.78×10−5 2.7×1012

4 5 350 1.7×10−11 4.70×10−5 5.52×10−5 5.2×1016

10 1250 1.3×10−10 4.70×10−5 3.49×10−5 3.9×1020

3 330 7.9×10−12 1.33×10−4 1.33×10−4 1.5×1015

10 5 770 2.4×10−11 5.47×10−5 5.88×10−5 3.1×1018

10 2750 8.1×10−11 4.94×10−5 2.74×10−5 1.2×1019

Table 6: Comparison of the relative error εh computed from solving the discrete linear system using a LU-based direct
solver and the relative error εt obtained by using the Tikhonov filtering technique (whose regularization parameter
has been chosen by the generalized cross validation technique). The relative errors and the condition number κ are
reported for different values of the mesh size M, the number of eigenmodes N considered in the discretization, and the
degrees of freedom (dof) of the discrete approximation.
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Figure 10: Real part of the approximate solution (using the Tikhonov filtering technique whose regularization pa-
rameter has been chosen by the generalized cross validation technique) (left) and and modulus of the relative error
(right), obtained from the modal-based PUFEM method with a one-dimensional mesh of four elements (i.e. M = 4)
and considering the discrete space Xh with N = 3. The exact solution is given by (44).

M N dof λsvd (L-curve) εh εsvd (L-curve) κ

3 60 23 1.13×10−3 1.53×10−1 1.5×108

1 5 140 119 1.24×10−4 1.39×10−4 3.1×1013

10 500 94 1.05×10−4 8.94×10−1 1.2×1019

3 150 119 6.79×10−5 8.94×10−4 2.7×1012

4 5 350 94 4.70×10−5 1.35×10−2 5.2×1016

10 1250 538 4.70×10−5 4.08×10−5 3.9×1020

3 330 39 1.33×10−4 1.19×100 1.5×1015

10 5 770 678 5.47×10−5 5.89×10−5 3.1×1018

10 2750 568 4.94×10−5 2.50×10−4 1.2×1019

Table 7: Comparison of the relative error εh computed from solving the discrete linear system using a LU-based
direct solver and the relative error εsvd obtained by using the truncated singular value decomposition method (whose
regularization parameter has been chosen by the L-curve technique). The relative errors and the condition number κ

are reported for different values of the mesh size M, the number of eigenmodes N considered in the discretization, and
the degrees of freedom (dof) of the discrete approximation.
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Figure 11: Real part of the approximate solution (using the truncated singular value decomposition method whose
regularization parameter has been chosen by the L-curve technique) (left) and modulus of the relative error (right),
obtained from the modal-based PUFEM method with a one-dimensional mesh of four elements (i.e. M = 4) and
considering the discrete space Xh with N = 3. The exact solution is given by (44).

M N dof λsvd (GCV) εh εsvd (GCV) κ

3 60 59 1.13×10−3 1.25×10−3 1.5×108

1 5 140 139 1.24×10−4 1.24×10−4 3.1×1013

10 500 468 1.05×10−4 3.53×10−5 1.2×1019

3 150 149 6.79×10−5 6.78×10−5 2.7×1012

4 5 350 345 4.70×10−5 5.06×10−5 5.2×1016

10 1250 1017 4.70×10−5 2.79×10−5 3.9×1020

3 330 327 1.33×10−4 1.33×10−4 1.5×1015

10 5 770 735 5.47×10−5 5.73×10−5 3.1×1018

10 2750 2500 4.94×10−5 2.46×10−5 1.2×1019

Table 8: Comparison of the relative error εh computed from solving the discrete linear system using a LU-based
direct solver and the relative error εsvd obtained by using the truncated singular value decomposition method (whose
regularization parameter has been chosen by the generalized cross validation technique). The relative errors and the
condition number κ are reported for different values of the mesh size M, the number of eigenmodes N considered in
the discretization, and the degrees of freedom (dof) of the discrete approximation.
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Figure 12: Real part of the approximate solution (using the truncated singular value decomposition method whose
regularization parameter has been chosen by the generalized cross validation technique) (left) and modulus of the
relative error (right), obtained from the modal-based PUFEM method with a one-dimensional mesh of four elements
(i.e. M = 4) and considering the discrete space Xh with N = 3). The exact solution is given by (44).

6. PUFEM basis criterion based on the crack observability

The effect of the mesh and the choice of an adequate basis is essential to obtain accurate
and reliable numerical results in any PUFEM technique due to the high condition number of the
assembled matrices to be solved. Despite the recommendation of using coarse meshes to define the
partition of unity, it is possible to design other criteria for selecting the most relevant eigenmodes
involved in the definition of the discrete space.

As a particular case, consider a wave propagation problem where a crack is present in the
coupling interface between a bilayered material. If the main purpose of the numerical simulation
is the identification the presence of a crack, then the PUFEM discretization should only include
those eigenmodes which are able to detect and observe the crack. So, limiting the number of modes
involved in the discretization will reduce the size of the matrix linear systems and keep bounded
its condition number.

A detailed numerical study of crack phenomena is beyond the scope of this work since, even
in the simplest planar and two-dimensional setting, a variety of crack parameters can be studied,
such as the positions of the stating and ending points, its length, etc. However, following the
methodology used in [5], it is possible to define a criterion to quantify the ability of an eigenmode
to observe a crack using the following two indicators O1 and O2:

O1(n, j) =
∣∣∣∣∫

Ω

q j(x1)pn, j(x2)T1(x1,x2)dx1dx2

∣∣∣∣ , (45)

O2(n, j) =
∣∣∣∣∫

Ω

q j(x1)pn, j(x2)T2(x1,x2)dx1dx2

∣∣∣∣ , (46)

with n, j∈N, and where q j⊗ pn, j is a Love or interior eigenmode (used in the modal-based PUFEM
discretization), and T1 = S∗A +S∗B and T2 = S∗A−S∗B. Functions S∗A and S∗B are the so-called singular
dual functions associated with the crack, which are static extensions of the singular solutions of
the scattered fields computed in the present of a crack. More precisely, if a crack with endpoints A
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and B is placed on the coupling interface of the layered material, then

S∗B(x1,x2) = ηB(rB)S∗Bloc
(rB,θB)+S∗Bext

(x1,x2)

where ηB is a cut-off function centered at the crack tip B with support contained in a disc DB of
radius RB, (rB,θB) are the local polar coordinates centered at point B,

S∗Bloc
(rB,θB) =

1
c2

(
1√
rB
−
√

rB

RB

)
sin
(

θB

2

)
,

and finally S∗Bext
∈ H1(Ω) is the solution (defined up to a constant) of the following problem:
−div(c2∇S∗Bext

) = c2∇ηB ·∇S∗Bloc
+div(c2S∗Bloc

∇ηB) in Ω\DB,
∂S∗Bext

∂ν
= 0 on ∂Ω\∂DB,

S∗Bext
= 0 on ∂DB.

(47)

An analogous definition is also valid for S∗A (see [5, Section 4.3] for a more detailed discussion).
An standard piecewise linear finite element discretization on a triangular mesh has been used

to compute the solutions of S∗Aext
and S∗Bext

, since no time-harmonic wave propagation phenomena is
involved in their definitions (in fact, problem (47) is elliptic). Plots on Figure 13 show the singular
dual functions S∗A and S∗B for a crack placed on the coupling interface lying on x2 = 0 between two
layers with tips at points A = (0.6,0) and B = (0.8,0).

Figure 13: Singular dual functions S∗A (left) and S∗B (right) associated respectively with the endpoints A and B of the
crack. The crack is set on the coupling interface between x2 = 0.6 and 0.8.

The computation of indicators O1(n, j) and O2(n, j) have been performed interpolating the
closed-form expressions of the Love and interior eigenmodes using local high-order polynomial
spaces in every mesh element (in particular, using P6-polynomials). Plots in Figure 14 show the
values of both indicators. The dashed line separate the Love eigenmodes (with smaller index j)
from the interior modes (with larger values of index j). For observability purposes, these plots
illustrate that it is enough to consider the Love and interior eigenmodes with n smaller than 15.
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Notice also that for n < 15, the indicator values follow a decreasing trend as soon as n and j are
increased, but their j-index decay is slower than in the n-index direction.

Figure 14: The two observability indicators O1 (left) and O2 (right) for a bilayered material plotted with respect to the
indices n and j. The crack is set on the coupling interface between x2 = 0.6 and 0.8. The dashed line separates the
Love modes (smaller j-index) from the interior modes (larger j-index).

7. Conclusions

In this manuscript, a non destructive testing problem in a bilayered domain without a crack
has been studied. A modal-based partition of unity finite element method, using Love and interior
modes to approximate the solution of the problem, has been proposed and described in detail.
The high condition number associated with the discrete matrix have been also analysed. Finally,
some numerical results have been presented in order to illustrate the accuracy of the method, the
the numerical behaviour of the modal-based PUFEM results with respect to its condition number
(using both LU-solvers and different regularization techniques). Additionally, it has been studied
a feasible criterion to select a reduced basis in the modal-based PUFEM discrete space based on
the observability of a crack placed on the coupling boundary between layers.
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[22] J. M. Melenk and I. Babuška. The partition of unity finite element method: basic theory and
applications. Computer Methods in Applied Mechanics and Engineering, 139(1):289–314,
1996.

[23] M. S. Mohamed, O. Laghrouche, and A. El-Kacimi. Some numerical aspects of the pufem for
efficient solution of 2d helmholtz problems. Computers & Structures, 88(23-24):1484–1491,
2010.

[24] E. Perrey-Debain, O. Laghrouche, P. Bettess, and J. Trevelyan. Plane-wave basis finite ele-
ments and boundary elements for three-dimensional wave scattering. Philosophical Transac-
tions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
362(1816):561–577, 2004.

[25] D. Royer and E. Dieulesaint. Elastic Waves in Solids I: Free and Guided Propagation.
Springer Science & Business Media, 1999.

[26] G. Seriani and E. Priolo. Spectral element method for acoustic wave simulation in heteroge-
neous media. Finite Elements in Analysis and Design, 16(3-4):337–348, 1994.

[27] L. N. Trefethen and M. Embree. Spectra and Pseudospectra: the Behavior of Nonnormal
Matrices and Operators. Princeton University Press, 2005.

[28] R.P. Yadav, A.K. Singh, and A. Chattopadhyay. Analytical study on the propagation of recti-
linear semi-infinite crack due to Love-type wave propagation in a structure with two dissimi-
lar transversely isotropic layers. Engineering Fracture Mechanics, 199:201–219, 2018.

31



[29] M. H. Zarifi, S. Deif, M. Abdolrazzaghi, B. Chen, D. Ramsawak, M. Amyotte, N. Vahabisani,
Z. Hashisho, W. Chen, and M. Daneshmand. A microwave ring resonator sensor for early
detection of breaches in pipeline coatings. IEEE Transactions on Industrial Electronics,
65(2):1626–1635, 2017.

32


	Introduction
	Model problem
	Spectral characterization of the auxiliary problem
	Spectral analysis in the Cartesian system of coordinates
	Love modes
	Interior modes


	Modal-based PUFEM method
	Discrete space
	Matrix description of the discrete problem
	Analysis of the condition number

	Numerical results
	Numerical comparison of discrete spaces with or without interior modes
	Consistency of the modal-based PUFEM method with Love and interior modes
	Accurate approximation of eigenmodes not included in the discrete space
	Influence of the condition number on the numerical results

	PUFEM basis criterion based on the crack observability
	Conclusions

