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Abstract—Gating mechanisms are widely used in the context
of Recurrent Neural Networks (RNNs) to improve the network’s
ability to deal with long-term dependencies within the data.
The typical approach for training such networks involves the
expensive algorithm of gradient descent and backpropagation. On
the other hand, Reservoir Computing (RC) approaches like Echo
State Networks (ESNs) are extremely efficient in terms of training
time and resources thanks to their use of randomly initialized
parameters that do not need to be trained. Unfortunately, basic
ESNs are also unable to effectively deal with complex long-term
dependencies. In this work, we start investigating the problem
of equipping ESNs with gating mechanisms. Under rigorous
experimental settings, we compare the behaviour of an ESN with
randomized gate parameters (initialized with RC techniques)
against several other models, among which a leaky ESN and a
fully trained gated RNN. We observe that the use of randomized
gates by itself can increase the predictive accuracy of a ESN,
but this increase is not meaningful when compared with other
techniques. Given these results, we propose a research direction
for successfully designing ESN models with gating mechanisms.

Index Terms—Echo State Networks, Gated Recurrent Neural
Networks

I. INTRODUCTION

The paradigm of Reservoir Computing (RC) [1], [2] has
proven to be an extremely efficient approach for designing
and training Recurrent Neural Networks (RNNs). The widely
known Echo State Network (ESN) [3], [4] is a RC model that
inherits the same architecture of a vanilla RNN, but thanks to
a proper initialization of the parameters in the state transition
function it allows to completely avoid any kind of training for
the recurrent neurons in the network.

On the other hand, the traditional approach of employing
gradient descent training for RNNs has allowed the emergence
of several architectural evolutions that, while in theory remain-
ing computationally equivalent to a vanilla RNN, can make
training easier in the presence of long-term dependencies.
Examples of such evolutions are LSTM [5] and GRU [6],
which introduce gating mechanisms that help the network to
selectively remember and forget relevant information from the
input and consequently boost the predictive accuracy. Unfor-
tunately, these kind of models still require gradient descent for
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training, which is often much more computationally expensive
than the RC approaches.

Recently, there has been an increasing research interest
regarding solutions for maintaining information over long time
spans in recurrent models. An example is the application of
the Learning-to-Learn paradigm to spiking neural networks in
the context of RC methodologies [7], [8]. In this paper, we
focus on this direct issue: what happens if the dynamics of
the gating mechanisms are treated as reservoir systems?

In ESNs, which are based on the exploitation of the dis-
crimination capabilities of the underlying dynamical system,
it is not immediate to extend the architecture with gate-
like mechanisms. In this work we describe the first steps in
investigating whether it is possible to introduce efficient gating
mechanisms within ESNs, so that their predictive performance
can be improved without giving up on their exceptionally
fast training process. We test our research questions on a
Natural Language Processing task which has been chosen for
its potential to highlight the effect of gating mechanisms. Note
that the application of ESNs to Natural Language Processing
has been quite limited: to the best of our knowledge there are
only a few of such works [9]–[13].

In section II we briefly describe the ESN and the GRU,
which are the models that our work is based on. In section III
we introduce the novel models that we have used for our
experiments. The experiments that have been performed, and
the methodology, are described in section IV. Finally, in
section V we discuss the implications of the results, and
we propose directions for the development of efficient gated
recurrent neural networks.

II. BACKGROUND

In this section we briefly describe the models that serve as
the basis of our study.

A. Echo State Networks

ESNs [3], [4] are a very efficient machine learning approach
for modeling sequences. In ESNs, an untrained dynamical
system (the reservoir) is responsible for embedding the input
into a high dimensional state space. Then, the states are used
as input to a linear layer (the readout) that is trained to perform
classification or regression. The key characteristic of ESNs is
that the parameters of the dynamical system are not trained;
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instead, they are randomly initialized and then rescaled to
meet mathematical conditions for stability, but are then kept
unchanged. In all cases, since the only parameters that are
subject to training are those in the linear readout, a closed-
form solution can be obtained by extremely fast algorithms
such as ridge regression.

Consider an ESN with NU input units, NR reservoir units
and NY output units. Let u(1), . . . ,u(T ) ∈ RNU be an input
sequence of length T . In its simplest form, the state x(t) ∈
RNR of the reservoir at time step t is computed as

x(0) = 0,

x(t) = tanh
(
Winu(t) + Ŵx(t− 1)

)
,

(1)

where Win ∈ RNR×NU is the input-to-reservoir weight
matrix, and Ŵ ∈ RNR×NR is the recurrent reservoir-to-
reservoir weight matrix.

The values within these matrices are not trained. Instead,
after being randomly initialized, the values in Ŵ are rescaled
to control the value of the spectral radius ρ(Ŵ) (the largest
eigenvalue in absolute value) in order to meet the conditions
for stability [4]. Similarly, also the values in Win are ran-
domly initialized and then rescaled based on the value of a
hyperparameter.

Leaky ESN: A notable variant of a basic ESN is denoted
as leaky ESN. The reservoir of a leaky ESN uses leaky-
integrator neurons [14], which act as a lowpass filter whose
leaking rate is determined and fixed at model selection time.
In this case, Equation 1 is modified as

x(0) = 0,

x(t) = (1− a)x(t− 1)

+ a tanh
(
Winu(t) + Ŵx(t− 1)

)
,

(2)

where a ∈ R is the leaking rate, under the constraint that
0 < a ≤ 1.

After the states for the input sequence have been collected,
the output is computed as

y(t) = Woutx(t), (3)

with Wout ∈ RNY ×NR .
Training: In ESNs, the only parameters that are subject

to training are those in Wout and thus a closed-form solution
can be obtained by extremely fast algorithms such as ridge
regression. More in detail, after the input data has been fed to
the reservoir and the Ntrain states that need to be classified
are collected column-wise into a matrix X ∈ RNR×Ntrain , the
readout can be trained by finding a solution to the following
least squares problem:

min
Wout

‖WoutX−Ytg‖22. (4)

In Eq. 4, Ytg ∈ RNY ×Ntrain indicates the column-wise
concatenation of the target vectors. A solution to Eq. 4 can be
computed in closed-form as follows:

Wout = YtgX
T (XXT + λrI)

−1, (5)

where I is the identity matrix, and λr ∈ R+ is the regulariza-
tion parameter which can be chosen by model selection.

B. Gated Recurrent Units
Gated RNN models such as LSTM [5] and GRU [6] were

developed to alleviate the issues associated with gradient
descent training over long input sequences. In the case of
GRU, the fundamental characteristic is the dependency of the
state transition function at time t on the values of the two
gates r(t) (reset gate) and z(t) (update gate). Intuitively, the
purpose of the gates is to open and close to regulate the flow
of information within the state: the reset gate can zero out
information from the previous state x(t−1), while the update
gate can merge information from the previous state and the
current candidate state h(t) into the new state x(t). More in
detail, the recurrent state x(t) of a GRU at each time step t
is computed as:

x(0) = 0,

r(t) = σ(Wr
inu(t) + Ŵrx(t− 1))

z(t) = σ(Wz
inu(t) + Ŵzx(t− 1))

h(t) = tanh(Winu(t) + Ŵ(r(t)� x(t− 1)))

x(t) = z(t)� x(t− 1) + (1− z(t))� h(t).

(6)

Here, we have r(t), z(t),h(t),x(t) ∈ RNR , and in particular
r(t), z(t) ∈ [0, 1].

Any kind of differentiable output layer can be used to
transform the states into the final network prediction: the
whole model can be trained end-to-end by backpropagation
through time.

III. GATED ESN
The untrained discrimination capabilities of the ESNs reser-

voir depend on the guarantees given by the so-called Echo
State Property [4]: namely, a properly initialized reservoir (ob-
tained by controlling the value of ρ(Ŵ)) will asymptotically
wash out any information from the initial conditions. However,
this also means that in the case of long input sequences, the
fundamental Markovian bias of ESNs [15] can prevent the
readout to easily perform predictions when key information is
located within the distant, initial part of a given input sequence
(more in detail, information is memorized according to a
suffix-based organization of the state space). In other words,
ESNs have no way of dynamically and selectively remember
or forget parts of a sequence while preserving generalization
capabilities to sequences of different lengths. To understand
whether it is possible to use gating mechanisms to improve
the predictive performance of an ESN, we define here two
alternative RC models. Both models add gating mechanisms to
an ESN by borrowing the state transition function of the GRU,
thus introducing an update gate and a reset gate to steer the
trajectories of the reservoir. The architecture of both models
is illustrated in Fig. 1.

While the name may bear similarity with the Gating ESN
model [16], we point out that our approach is radically differ-
ent. Instead of using a combination of many parallel instances
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Fig. 1. Graphical representation of the recurrent cell of Gated ESN for a generic time step t. Symbols � and ⊕ respectively denote the elementwise product
and the elementwise sum of two vectors. The architecture of the cell is identical to the one of a GRU, however in Gated ESN the parameters controlling the
activations of r(t), z(t), and h(t) are not trained. In our other variant, Gated ESN RZ, the architecture is still unchanged, but the parameters controlling r(t)
and z(t) are trained while the dynamics of h(t) remain untrained.

of ESNs, each initialized with different hyperparameters, we
aim to enrich the dynamics of the state of a single ESN
by explicitly introducing gated units (cells) in the spirit of
architectures such as GRU [6] and LSTM [5].

A. Gated ESN

For the first variation, which we simply denote as Gated
ESN, we design a gated model which is trained like an ESN,
in a purely RC fashion. In particular, the reservoir uses the
same state transition function of a GRU to compute the states
of the network without any previous training of the parameters.
In fact, except for the readout, all matrices (including those in
the gates) are randomly initialized and then rescaled according
to the value of the appropriate hyperparameters, just like
what happens in a standard ESN. After the states have been
collected, the linear readout is trained by ridge regression.

B. Gated ESN RZ

In the second variation, denoted as Gated ESN RZ, we
maintain the same state transition function of the Gated ESN
but we train some of the parameters by backpropagation
through time. In particular, the two matrices that are used
to compute a candidate state are still randomly initialized,
rescaled and then kept fixed as it happens in a standard ESN,
however here the parameters in the reset and update gates
are trained by backpropagating the gradient of the error at
the readout. To implement this, the readout and the gates are
jointly trained by backpropagation.

IV. EXPERIMENTS

We compared the predictive performance of several ESN
variants over a natural language classification task: the Ques-
tion Clasification task from the TREC dataset [17]. In this

task, input sentences are questions that need to be classified
into one of six categories based on whether the question is
asking about a location, a person, a number, a human being, a
description, or an entity. In our case, each input question that
is fed to the models is represented as a sequence of pretrained
word embeddings, and the output is a vector indicating which
one of the six categories the input falls into. We have selected
this dataset since the particular characteristics of this task (key
words are often located at the beginning of the input sentences)
make it ideal to be tackled by gated models.

The dataset, which is composed by a total of 5952 sentences,
has been split into training, validation and test. In particular,
for the test data we have used the split provided by the
authors of the dataset, which is composed by 500 questions.
From the remaining data, after shuffling, 80% (4362 questions)
have been used for training and 20% (1090 questions) have
been used for validation. With this split, we performed model
selection on the validation set and reported the results on the
test set.

To provide a fair and rigorous comparison, we made sure to
keep the total number of trainable parameters uniform between
all models by controlling the number of recurrent units. For
reference, the number of trainable parameters has been chosen
to be the one used in the best performing GRU. We point out
that several architectural modifications can be introduced to
significantly boost the predictive performance of an ESN on
this task [13]. However, here we deliberately consider only the
simplest architectures in order to focus on the improvements
brought by the gates.

A. Results

In Fig. 2 we have reported the predictive accuracy and
training time for the investigated variants of ESNs and for
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(a) Predictive performance. The highest accuracy is
reached by the fully trained model, while the basic
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is used (last two bars), even if only partially, the
very fast training times of the pure RC models
grow significantly.

Fig. 2. Results of the experiments. Top: Test set accuracy. Bottom: Training
times. The gates are able to improve the predictive performance of the
ESN, but training their parameters seems necessary. Unfortunately, using
backpropagation for this training process drastically increases the training
time.

a fully trained GRU. The great efficiency advantage of RC
models is confirmed by the training times in Fig. 2b: training
the ESN is about 63 times faster than training the GRU.

However, as expected, from Fig. 2a it can be observed
that the best performing model is the GRU, in which all the
parameters are trained by gradient descent. Also as expected,
the basic ESN displays the lowest level of accuracy, which
is likely due to the fact that the most important words to be
considered for prediction are often located at the beginning of
the sentences, thus their contribution has a very low influence
on the final states of the network which are used by the
classifier [13].

Interestingly, the introduction of randomized gates (Gated
ESN) produces a significant increase in the predictive accuracy
of an ESN. However, the results show that removing the gates
and simply using leaky-integrator neurons produces better
results. A possible explanation is that the matrices in the
update gate z(t) of the Gated ESN may get rescaled by model
selection to approximate on average the behavior of a leaky
ESN. In fact, a preliminary analysis on the standard deviations
σr and σz of the activations of the reset and update gates

suggests that they may tend to roughly behave like constants
(σr = 0.002, σz = 0.097).

On the other hand, when the gates in the ESN follow a
behavior that has been learned by training (Gated ESN RZ),
then a large improvement in accuracy with respect to all
pure RC models occurs. However, as it can be observed from
Fig. 2b, the introduction of the backpropagation of the gradient
in the training process causes a severe increase in the training
time, which is definitely not comparable to the relative increase
in accuracy. This makes the approach of training the gates via
backpropagation unappealing in practice, as the advantages
coming from the RC approach are vanishing.

V. DISCUSSION AND PERSPECTIVES

The extremely efficient approach to sequence modeling
offered by ESNs is made possible thanks to the Markovian bias
that is at the foundation of the RC paradigm. Unfortunately,
this also means that, in tasks where there are information de-
pendencies spanning large distances, ESNs can have difficulty
with generating meaningful dynamics. The results of our study
show that gating mechanisms have the potential of signifi-
cantly improve the predictive performance of an ESN, but in
practice we have observed meaningful improvements only in
the case where the gates are trained by backpropagation, which
is not desirable because of the re-increasing training times.

It seems reasonable to assume that, in order to obtain an
effective gating mechanism, it is crucial to ensure that the ac-
tivation patterns of the gates are influenced by information that
is inherently target-dependent. In fact, it is trivial to construct
examples in which the optimal activation pattern of the gates
cannot be determined without some information about the
target output for the data. For example, the optimal behaviour
of the gates for a classification model which is trained over
long random strings of characters should drastically change
depending on whether the target output is equal to the first
or to the last character of each input string. To make the
gates useful in RC contexts, it is then necessary to adopt semi-
supervised, supervised, or reward-based learning mechanisms
that can adapt the parameters in the gates on the basis of
their contribution to the task at hand. At the same time, these
techniques should be implemented in such a way as to be
more computationally efficient than simply using the expensive
backpropagation through time as in Gated ESN RZ.

A potential alternative to backpropagation is the biologically
inspired Hebbian learning. By using local rules for adapting
the synapses within the gates, there is no need to compute the
whole backpropagation chain of matrix multiplications. This
would allow for a fast and highly parallelizable training of the
gates. In its simplest form, Hebbian learning is unsupervised.
In order to guide the learning process by the characteristics of
the target of the task at hand, it is necessary to modulate the
Hebbian changes at each time step based on whether the last
configuration of the synapses has proven beneficial for solving
the task. Unfortunately, in the typical classification tasks the
information about whether the task has been solved correctly
only comes at the end of the trial. In order to keep track of



how much each synapse has contributed to the result of the
trial in case of long delays (credit assignment problem [18]),
it is possible to use the biologically motivated mechanism of
eligibility traces [19], which is compatible with approxima-
tions of the gradients computed by backpropagation [20], [21].
There exist recent works that use reward-modulated Hebbian
learning for training all parameters of a recurrent network [22],
but we propose to still exploit the architectural characteristics
of RNNs via RC techniques (i.e. without training) and just
steer the trajectories through the use of gates trained by the
above-mentioned approach. This should allow for an efficient
and effective method that would make ESNs strong on tasks
in which long-term dependencies cannot currently be easily
captured.
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