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Overview

• anticipatory coarticulation in articulatory synthesis and humans

• coarticulation in acoustics (here: formant shift [7])
and articulation (here: tongue raising [6]) measured with
ultrasound

• using VocalTractLab (VTL) simulator [1]

• control parameter (cp-) trajectories for VTL derived by fully
automatic segment based and recurrent gradient based
planning approach

• human recording shows anticipatory coarticulation in the
acoustic and articulation domain

• segment approach fails to recover this coarticulation

• planning approach partially recovers coarticulation

Methods
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Figure 1: Recurrent gradient based planning framework [5].

Recurrent gradient based resynthesis [5]
• define acoustic target as log mel spectrogram

• initialize cp-trajectories with inverse model

• plan along equally weighted MSE loss, jerk loss
and half weighted velocity loss of predictive model

• adjust cp-trajectories 0.05 times its local gradient (no ADAM;
inner loop)

• 40×200 iterations inner loop (planning), 40 iterations outer loop
(experience)

• continue training of predictive model
with synthesized audio plus 10 initial training samples (outer
loop)

Segment based resynthesis [2]

• define phone segment sequence with corresponding durations

• call VTL vtlSegmentSequenceToGesturalScore to
generate gestural score file

• use gestural score file to synthesize audio and export midsagittal
ultrasound pictures

Experimental Setup

• natural articulations of /baba/, /babi/ and /babu/

• five speaking rate conditions

• blocked production

• focus on second fastest speaking rate condition: utter the pseudo
word five times within 3 seconds, e. g. /babibabibabibabibabi/

• ultrasound image of midsagittal plane (81.6 fps; 64 directions
with 842 pixels each)

• audio recording (22050 Hz) synchronised to ultrasound
recordings

• sound attenuated booth; n = 90; one speaker

BABABABI

Figure 2: Tongue contours in the midsagittal plane of an
ultra sound image at the midpoint and offset in /babi/ and
/baba/.

babababi

Figure 3: Tongue contours in the midsagittal plane of
exported svg image from VTL at the midpoint and offset
in /babi/ and /baba/. The virtual tongue raising is not
statistically significant.

Data Preparation

• automatically align phone segments with [4]

• extract segments and durations

• time points of interest: midpoint and offset of first /a/ in each
pseudo word

• first two formants in the 20 ms interval before the offset

• tongue height difference between midpoint and offset in relation
to ultrasound transducer

• midsagittal picture exported from VTL at midpoint and offset

• picture rotated with respect to lower teeth reference to align
with ultrasound transducer

• tongue height difference between midpoint and offset in virtual
tongue contour

Results

Figure 4: Top panels: Formant shifts of the 20 ms before the
offset of the first /a/. Bottom panels: Tongue raising from
the midpoint to the offset of the first /a/ in each pseudo
word.

Formant Shifts

• human: anticipatory coarticulation in both formants

• segment based resynthesis: no anticipatory coarticulation

• planning based resynthesis: anticipatory coarticulation but fails
to mimic the full richness

Tongue Raising

• human: no raising in /baba/, raised in /babi/ and /babu/

• segment based resynthesis: overall lowering

• planning based resynthesis: overall raising

Discussion

• mimicking formant transitions, but with different tongue
movements compared to humans

• only one speaker and 90 data points

• planning substantially slower then segment based resynthesis

• no optimisation in the segment based resynthesis as in [3]

• minimal changes in segment based approach might give already
very good results

• focus only on first two formants, very specific points in time,
and highest point on the tongue, but data is much richer, how
to facilitate?

• improve gradient based planning to be informed by semantic
embeddings

Conclusion

The artificial utterances /baba/, /babi/, /babu/ repeatedly spoken
with a high speaking rate show robust anticipatory coarticulation
effect in formant shifts and tongue raising. For fully automatic
resynthesis frameworks it is still a challenge to model the full
range of human coarticulation. With the recurrent gradient
based resynthesis framework anticipatory coarticulation patterns
are partially recovered, but it does not seem to achieve this by
means of anticipatory tongue raising as humans do.
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