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Abstract—We envision PDS2, a decentralized data marketplace
in which consumers submit their tasks to be run within the
platform, on the data of willing providers. The goal of PDS2

is to ensure that users maintain full control on their data and
do not compromise their privacy, while being rewarded for the
value that their data generates. In order to achieve this, our mar-
ketplace architecture employs blockchain technology, privacy-
preserving computation and decentralized machine learning.

We then compare different potential solutions and identify the
Ethereum blockchain, trusted execution environments and gossip
learning as the most suitable for the implementation of PDS2. We
also discuss the main open challenges that are left to tackle and
possible directions for future work.

Index Terms—iot, blockchain, machine learning, privacy

I. INTRODUCTION

Machine learning (ML) is seeing increased adoption in
many different industries, providing services and generating
profit. As such, access to vast amounts of data is becoming an
important asset for companies and organizations of all sizes,
who are therefore eager to collect and store as many data
as possible to feed their models. This leads to the creation
of large, private data silos and makes it harder for smaller
organizations to compete with market leaders, as they lack the
leverage to collect large amounts of data and the resources to
exploit them. Furthermore, in this process, the data providers
often lose control of their data. Once collected by an organiza-
tion, the original provider has no way of knowing how the data
are used, nor getting a share of the value that the organization
extracts. This becomes particularly problematic when the data
providers are individual users of applications or devices that
collect sensitive or personally-identifiable information. Such
users typically have little knowledge of how their data are
stored and used by organizations and third parties.
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Decentralized blockchain-based data marketplaces have
been introduced [1–3], which promise to “democratize” data
storage and access. Such marketplaces allow data providers
to be rewarded for the value that their data creates for the
consumers and lower the entry barrier for smaller entities to
access large amounts of heterogeneous data. Unfortunately,
to the best of our knowledge, the issues of data control and
privacy are not fully solved by these marketplaces. In most
cases, the purchased data can be copied outside the platform,
where the original provider has no longer control on them.
Furthermore, many marketplaces present a business-centered
approach. They provide a means for businesses to extract
value from their data, but do not cater to the average smart
device user, for whom data production is a secondary aspect
of owning the device.

To address these issues, we propose PDS2 (Privacy-
Preserving Decentralized Data Sharing System), which is
envisioned in this work. Its main goal is to ensure that
users maintain full control on their data and do not need
to compromise their privacy. The platform should present a
flexible, user-centered design that takes into account the needs
of all the actors involved. At the same time, it should maintain
the desirable properties of previous marketplaces, including
decentralization, remuneration and data democratization.

PDS2 is a trustless marketplace architecture, free of any
privileged entity. Data processing is performed in a decen-
tralized network using encrypted computation techniques that
guarantee data providers have exclusive control and access to
their data. The design is strongly user-centered and provides all
actors with ample flexibility and full control, to accommodate
their different needs.

This work does not aim to provide a full, production-ready
implementation, nor to introduce new technological solutions.
Rather, our contribution consists in defining an architecture
where well-established or emerging technologies can be em-
bedded. After identifying the stakeholders and their needs, we
lay out the components and their interactions within PDS2,
and the technological requirements to implement them. We



then provide a review of state of the art solutions, discussing
their suitability in the scope of our architecture. Also, while
PDS2 generalizes to many kinds of workloads, we focus on
ML training tasks, as they represent one of the most relevant
and valuable data aggregation workloads in the industry.

The rest of the paper is structured as follows. Section II
presents the main actors in PDS2, their requirements and
incentives, and the high-level architecture of the marketplace,
abstracted from specific implementation methods. Section III
then surveys the most promising technologies to implement
each core aspect of the platform. Section IV details some of
the challenges that need to be addressed in any implementation
of PDS2. Section V reviews similar data marketplaces, while
section VI provides directions for future works.

II. HIGH-LEVEL ARCHITECTURE

A. Platform Actors

Three types of actors take part in the PDS2 platform. Two
of them, who are present by definition in any marketplace,
are buyers and sellers. In addition to them, PDS2 foresees
additional actors, whose role is to maintain its internal infras-
tructure.

1) Sellers: In PDS2, the sellers can be any data providers.
However, as the goal of this work is to present a user-centered
marketplace, the focus will be on individual users of smart
application or devices. These end users differ from other
data providers, such as organizations, in several ways. First,
the number of end users can be extremely large, while the
amount of data each of them produces is limited. Additionally,
end users may have limited technical knowledge of the inner
workings of the platform, requiring simple control mechanisms
to participate in it. Finally, their data may be extremely
sensitive, in some cases usable to track and profile them.

2) Buyers: On the buyers (i.e., data consumers) side, the
focus of PDS2 is on organizations, such as companies and
research institutions, who need access to the users’ data in
order to perform aggregation tasks, such as ML model training.
This would otherwise require the collection of all the users’
data on the premises or cloud of those organizations.

3) Infrastructure: Finally, the internal, infrastructural roles
required by PDS2, which will be detailed in section II-C,
can be taken on by the sellers and buyers themselves, but
might also be joined by additional actors who provide their
computational resources to the platform.

B. Platform Incentives and Actor Requirements

Actors need to be incentivized to participate in the platform.
In particular, a new marketplace must provide each of them
with additional benefits compared to existing solutions. Fur-
thermore, each actor presents a number of requirements that
the marketplace must fulfill.

The main requirements for the sellers are the following:
• Data control, i.e., maintaining full ownership of the data,

full control over where it is stored and how and when it
is accessed.

DATA CONSUMERS

EXECUTORS

STORAGE

DATA PROVIDERS

G
O

V
E

R
N

A
N

C
E

DATA

DATA

WORKLOAD
RESULT

WORKLOAD
SPECIFICATION

PR
O

D
U

C
E

R
ST

A
C

K

Fig. 1. High-level architecture of the roles and their interactions in PDS2.

• Data privacy, i.e., the guarantee that no entity in the
platform will be able to access sellers’ data without
authorization or infer them based on other information.

• User-centered data monetization, which ensures that the
value generated by the organizations’ workloads is shared
back with the users who produced and own the input data.

As all these three aspects are currently missing in most real-
world applications, they all play a strong motivating role for
the participation of the users as sellers in PDS2.

On the other hand, buyers, in particular large organizations,
would lose the direct access and control of the data that they
currently enjoy. However, limited access and control would
come with several new benefits, such as lower infrastructural
costs and lower legal burden caused by the usage of sensitive
data. Furthermore, on PDS2, organizations would have access
to a wider pool of sellers and would be able to request access
to any kinds of data made available on the platform, without
being limited by what a specific organization has previously
collected. The main requirements that the platform should
fulfill, from the buyers perspective, are the following:

• Workload confidentiality. An organization that pays to
execute a workload naturally does not want any other
potential consumer to obtain the results for free, by
observing the output. Also, the internal details of the
workload itself may represent valuable trade secrets of the
organization, and should therefore be kept confidential.

• Data authenticity. It should be possible for the platform
or the workload to identify and reject data that was forged
with the intention of affecting the results or claiming
undeserved rewards.

Finally, the additional actors that participate in the infras-
tructure of PDS2 should be incentivized with a share of the
rewards that are offered to the sellers.

C. Platform Roles

The platform consists of five roles, as shown in Fig.1. Each
role fulfills one of the core functions in the overall architecture.
Each entity that participates in PDS2, be it an individual user
or an organization, can act in multiple roles.

Data consumers prepare and submit workload specifications
to the platform. These are binding contracts that specify
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Fig. 2. Sequence diagram of the high-level interactions during the lifetime
of a workload in PDS2.

preconditions that the input data must fulfill, rewards that data
providers will receive for submitting valid data, the definition
of the workload itself, and any additional conditions, such as
minimum amount of data or providers that should have agreed
in order for the workload to start executing.

Data providers continuously produce data through their
devices, store it in a storage subsystem of their choice, and
register it with the marketplace. Data providers are notified of
the available workloads for which they have eligible data. They
can then choose to submit part of their data to that workload.

The storage subsystem is responsible for permanently stor-
ing the providers’ data. It then matches data against available
workloads and gives the executors access to them, when
authorized by the providers.

The executors provide the computational resources on which
the workloads are run. If an executor opts to run a specific
workload, and one or more providers opt to use this executor
for participating in that workload, the executor will run the
workload code on the data provided by them. Decentralized
aggregation methods are used to synchronize the results of all
executors participating in the same workload, so that the full
output can be computed without sharing the input data.

The governance layer is responsible for the decentralized
orchestration, book-keeping and audit of the platform. It keeps
track, among other things, of the available data, the outstand-
ing workloads, the mapping of executors to workloads and the
mapping of data to providers and executors. The governance
layer is also responsible for distributing rewards and verifying
that no actor is behaving maliciously.

D. Execution Workflow

Fig.2 provides a high-level view of the sequence of inter-
actions that take place during the lifetime of a workload.

First, the consumer submits a complete specification of the
workload to the governance layer. The storage subsystems of
each provider will be notified and will verify whether eligible
data is available. If that is the case, the provider will be asked
whether to participate in the workload or not.

Once providers accept, they have to identify available ex-
ecutors and submit their data to them, along with certificates
confirming that they have indeed accepted to participate in
the workload. The executors will then register their own
participation with the governance layer. In doing so, they will
also submit the certificates from all the participants who sent
data to them. This guarantees that all executors have indeed
been granted access to a specific set of data for the spe-
cific workload in question. Furthermore, the governance layer
uses this information to track the contributions of different
providers, for the purpose of rewarding them.

Once the conditions set by the consumer in the contract are
met, the governance layer instructs the executors to proceed.
They then use peer-to-peer communications to compute the
workload results in a decentralized manner. The final results
are submitted to the governance layer, making them available
for the consumer to retrieve.

E. Platform Requirements

Given the goals of PDS2 and the requirements of the dif-
ferent actors, the technologies used to implement the various
aspects of the platform must fulfill a number of requirements.

First, the details of the data and of the workload computa-
tion must be invisible to all actors involved, except for the
providers and consumers, respectively. Even the executors,
while running the actual workload, should preferably be inca-
pable of accessing this information. If technological solutions
guarantee that the executors have no direct access to data and
code, and no way to tamper with the results without being
detected, trust in them becomes unnecessary.

Second, the local computations, which are performed by
each executor on a subset of the data, should be aggregated
in a decentralized fashion in order to produce the full result.
This aggregation should be tamper-proof, free from any bias
and should not leak information of the input data.

Third, all actions in the platform should be automatically
audited by the governance layer, in a trustless decentralized
fashion. This should guarantee that the data, workload and
results have not been tampered with by any actor, that all and
only the data of willing providers have been fairly used, and
that all clauses in each workload contract, such as rewards,
are fully discharged.

F. Architectural Flexibility

One of the core properties of this architecture is its flexibil-
ity. Each of the three internal roles of the platform (storage,
executors, governance) can be implemented using any existing
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or future technology that satisfies the requirements set out in
section II-E.

Different technologies may coexist in a single platform,
as long as API compatibility is maintained between different
roles. For example, different users may use different storage
subsystems, based on their particular needs. And consumers
may direct the executors to use one of several decentralized
aggregation mechanisms, to better suit each specific workload.
This allows the platform to seamlessly evolve to integrate
technological advancements and shifts in requirements.

Another dimension of flexibility that plays an important role
in the user-centered design of PDS2 is hardware control. While
data provider, storage and executor are logically distinct roles,
they do not need to be separate in terms of ownership or
physical location. Providers can outsource data storage and/or
execution to third parties, or can choose to retain control of
the entire stack, using their own hardware, as shown in Fig.3.

III. BUILDING BLOCKS

Given the technological requirements set in section II-E,
different potential solutions are examined below. Section III-A
discusses the use of blockchain in the implementation of the
governance layer. Section III-B compares different techniques
to achieve oblivious computation, i.e. to allow the execu-
tors to operate on data they cannot directly access. Finally,
section III-C analyzes approaches to aggregate results across
multiple executors in ML training tasks.

A. Blockchain Technology

Considering the requirements of PDS2 for decentraliza-
tion, data integrity and trust, blockchain constitutes a natural
building block for the governance layer. It is used for the
registration of all actors, by using their blockchain addresses,
as well as the registration of datasets and workloads, by means

of their hashes. The blockchain itself is not used for storing
any datapoints or code, given their size and their potential
sensitivity. Smart contracts define the procedures and rules
that govern the marketplace. A separate smart contract instance
is deployed for managing the lifetime of each workload and
validate all of its steps. Each of these smart contracts must
follow the basic requirements of PDS2, but can be personalized
to encode the specific requirements of the providers and
consumers involved in it. Finally, the blockchain is responsible
for distributing rewards via transactions.

Among the many existing blockchain implementations,
Ethereum [4] represents the most suitable in this regard. It is
a mature platform with a large ecosystem. It offers the ability
to develop Turing-complete smart contracts, which enable
the complex validation behaviours described. Ethereum also
provides tools and specifications that aid in the management
of the assets traded on PDS2. It provides the ERC-20 and
ERC-721 standards [5, 6] for fungible and non-fungible tokens
respectively. The former is used to represent divisible, non-
unique assets, such as currency, and could be used to handle
any kind of rewards offered by the consumers, which would
be split among the providers. The latter can instead be used
for indivisible, unique assets and can be particularly useful to
model data and workload code in PDS2.

B. Privacy Preserving Data Processing

Here we present the most known techniques for privacy
preserving data processing, which have been widely studied
especially in the context of machine learning and inference.
We focus on lossless techniques which preserve full informa-
tion since lossy techniques such as data anonymization are
often not suitable to make data-driven predictions.

Homomorphic encryption is a set of encryption techniques
that allow performing calculations on encrypted data [7].
Homomorphic encryption techniques provide confidentiality
guarantees derived from cryptographic principles, making
them highly reliable. However, they introduce large overheads
in the computation caused by the additional operations per-
formed on encrypted data. Hence they are impractical for most
applications, particularly when dealing with a massive amount
of data as for the case of IoT.

In secure multiparty computation (SMC), the data provider
and the data consumer collaborate, sometimes with the help
of an untrusted third party, to jointly compute a function
over their respective inputs while keeping them secret. Several
techniques have been developed to perform SMC [8], allowing
to reduce the overhead in comparison to homomorphic encryp-
tion. However, the active participation required from the data
provider coupled with delays introduced during communica-
tion makes it difficult to employ SMC for applications that
use many operations.

Trusted execution environments (TEEs) are used as a “neu-
tral ground” to perform computation, where neither of the
parties can interfere. TEEs create isolated regions in trusted
hardware that cannot be accessed even by the hardware owner,



providing guarantees on privacy and integrity in the code
execution. Several works focused on trusted code execution
with Intel SGX, a set of instructions compatible with most
modern Intel processors that allow creating TEEs called
enclaves. In the context of machine learning and inference,
several frameworks have been developed for supporting model
training, and prediction on SGX [9–11]. A twofold advantage
of TEEs is that they introduce smaller overheads compared to
homomorphic encryption and unlike secure multiparty compu-
tation, no active participation of the data provider is required.
Moreover, the trusted hardware constitutes an intermediate
node where the data provider has no access to the data
consumer’s model, while the data providers’ data are not
accessible by the data consumer. Consequently, TEEs reduce
the probability of information leakage drastically. On the other
hand, TEEs require a hardware infrastructure, which has a
cost comprising both the initial purchase of it and the power
consumption to keep such infrastructure alive. Furthermore,
moving the computation to the TEE requires to trust the trusted
hardware, which may be prone to exploits. In the case of SGX,
it has been shown that side-channel leaks are possible but can
be avoided using oblivious primitives [12].

Recently, many machine learning frameworks for both pri-
vacy preserving training and inference have been developed.
Most of them employ the techniques described above and aim
to tackle their issues, in particular regarding computational
speed. MiniONN [13] reduces the overheads of homomorphic
encryption by approximating nonlinear activation functions
as piecewise linear functions. It also adopts secret sharing
to achieve oblivious computation. Slalom [10] reaches high
performance using Intel SGX-based TEEs. Falcon [14], which
instead relies on SMC with secret sharing, leverages an un-
trusted third party to speed-up the computation and is currently
the most computationally efficient framework [15]. However,
it relies on the assumption that at least 2 out of 3 parties
behave honestly.

Although these frameworks have been extensively analyzed
by the literature, more practical solutions consist in extensions
of popular machine learning libraries such as PyTorch and
TensorFlow. Recent works [15] systematically compared the
most popular among such privacy-preserving libraries, testing
them on image classification models. All of them preserved the
accuracy provided by the related native library. Solutions based
on combinations homomorphic encryption and SMC showed
good performance on smaller models, but failed to scale for
larger ones. TEEs solutions, on the other hand, exhibited better
scalability.

Moreover, model execution in TEEs offers a number of
other advantages. Since the secure environment cannot be ac-
cessed even by its owner, it can meet the privacy requirements
of two untrusted parties both owning confidential information
to be protected, as is the case in PDS2. In principle, the
consumer and the provider do not need to participate at all
in the computation, but they can opt to also act as execu-
tors, if they own TEE hardware. Their involvement can be

regulated by means of smart contracts within the governance
layer. Although maintaining the necessary hardware equipment
is certainly a downside, most modern Intel processors are
compatible with SGX, making the role of executor easily
accessible to the wide public. For all these reasons, we identify
TEEs as the most promising solution for PDS2.

C. Decentralized Machine Learning

Given the growing size of machine learning models and
datasets, many techniques have been developed to perform
training workloads on distributed data [16]. Furthermore, the
raising concern for data privacy has pushed research towards
massively-distributed techniques, where data are not collected
by the consumer, but rather kept close to the provider.

The most prominent of these techniques is federated learn-
ing [17], where each executor computes a local gradient, while
a central server at the consumer performs the aggregation of all
these gradients. Federated learning has been extensively stud-
ied [18] and can address the heterogeneity and unreliability of
the executors. However, it presents a number of limitations,
all related to the presence of a central coordinator. First, this
can limit scalability and cause communication bottlenecks.
Second, privacy leaks are possible in the training process
[19]. Finally, the aggregation of the gradients in a centralized
“black box” undermines the transparency of the process and
the ability to fairly calculate rewards for the providers.

Recently, several techniques have been proposed to address
these limitations, by replacing the central aggregator with a
blockchain-based one, with secure multi-party computation,
or with trusted hardware [18, 20, 21]. However, an alternative
to federated learning exists in gossip learning [22], where
collective aggregation is not needed and can thus more readily
overcome each of the stated limitations. Gossip learning is
based on peer-to-peer communications, in which each node
randomly sends and receives model updates from others and
merges them with its local updates.

Unfortunately, while gossip learning has been shown to be
applicable to many different ML workloads [22–24], no study
that we are aware of tested it in actual physical environments
or evaluated its practical use for large-scale deep learning
training. However, recent studies suggest that gossip learning
compares favorably to federated learning [25] and that it can
be extended to work in constrained and highly heterogeneous
environments [26].

IV. OPEN CHALLENGES

A. Reward Schemes

The data generated daily is undoubtedly of economic value.
However, defining their value is not trivial. According to [27]
simplistic solutions such as monetization of data based on size
do not work well. This is because data are digital assets whose
value is associated with different factors, including the way
that they are processed or how many times they are used.
In the case study we explore, several datasets are generated
and provided by an arbitrary number of users and are utilized
for training a predefined ML algorithm. After the training,



the model is purchased by the consumer. Thus one question
that emerges is how to share the profits among the users. It
is reasonable to assume that each dataset and, consequently,
each data provider does not equally contribute to the training’s
final result.

Deriving from a game-theoretical approach, Shapley value
[28] is a promising solution for the aforementioned problem.
Shapley value is a function that calculates how to distribute
total gains among players in a cooperative game, which in
a reward scheme means to determine each data provider’s
contribution. In PDS2 this could be done by calculating the
ML algorithm’s marginal improvement when adding a dataset
to it for every possible coalition of the participated datasets
and taking the average. However, the complexity of calculating
the Shapley value is exponential, and thus it is unfeasible to
use it as is. A slice to the problem is also added by the time
needed to train a machine learning model [27, 29–31].

Another question that emerges is how the prices should be
determined. A possible solution to this question is proposed in
[32] who suggested to assign values to ML models, instead of
the data. The central concept is that given an ML model, an
optimal instance is trained. Then based on the budget available
to the potential buyer, Gaussian noise is injected into the
model to reduce its accuracy. The larger the buyer’s budget,
the smaller the injected noise variance and the greater the
accuracy.

B. Data Authenticity

Another issue to be addressed is ensuring that the data
sold by a certain user are authentic and unique. PDS2 is
mainly focused on data collected by IoT devices or sensors,
which can be endowed with digital signature. Data should
be signed directly by the device to minimize the risk of
forgery, and include timestamps to prevent the user from
creating multiple copies and reselling them. The signature is
verified by executors, as buyers do not have access to the
data. If processing of the data by an external application is
required, the manufacturer should ensure that data are not
tampered during the transfer from the device to the application.
Moreover, the resulting information needs to be resigned after
such processing. Since data reliability depends on the security
of the device and the quality of the sensors, the signature
also serves as a “seal of quality”. This influences the price
of the device according to the trust that buyers have in the
manufacturer. However, although efficient schemes for IoT
data signature have been proposed in literature [33], often
no authentication is provided by the manufacturers, as their
products are usually not designed for selling the produced data.

C. Data Discovery and Filtering

An important issue in any data marketplace is how data
can be discovered and filtered. In PDS2, this translates to two
main questions: First, how the workload should convey the
data requirements of its consumer. Second, how relevant data
can be identified and isolated to ensure that only eligible data
providers can participate and be rewarded.

One promising direction, which has gained traction in the
IoT domain, is semantic data [34, 35]. This consists of annotat-
ing the data with machine-understandable semantic metadata,
often based on ontologies. Thus, automated reasoning on the
contents of the data and their relationships is allowed.

However, while semantic approaches allow defining com-
plex requirements on the input data, verifying them is not
trivial. The storage subsystem should perform this verification
before notifying a provider of an available workload. However,
this subsystem should not have direct access to the data and
should base its decisions only on metadata. This leads to a
tradeoff between the amount of information leaked by the
metadata and the complexity of the verifiable requirements.

As a complementary approach, the executors could verify
the more complex requirements directly on the data, using
privacy-preserving computation techniques. This would allow
leak-free verification of any requirement. However, it would
force the providers to participate in a workload without
knowing beforehand the amount of relevant data they possess,
and thus their compensation. Furthermore, executors would
have to spend computational resources to validate irrelevant
data, for which they might not be rewarded.

D. Privacy Leaks

While the technologies presented in this paper aim to
prevent the consumers from directly accessing the providers’
data, some of that information may still leak to them through
the results that they download from the platform. Therefore, it
is fundamental for any implementation of PDS2 to take steps
to minimize these leakages.

Several previous works have measured the extent of this
issue in the training of ML models [36], and various solutions
have been proposed, often based on differential privacy [37].
In PDS2 the executors could statically or dynamically analyze
each workload to assess the risk of privacy leaks and apply
the most suitable measures to limit it.

V. RELATED WORK

A variety of previous works proposed data marketplace
architectures. Most decentralized solutions employ Ethereum
blockchain to cover one or more roles. In [1, 38, 39], it is
used to handle secure transactions between participants and to
mitigate the need for a centralized management authority.

Similarly to PDS2, Sterling [2] allows privacy-preserving
ML training. A main difference is the storage of private data
keys in smart contracts. This has the advantage of not requiring
user intervention to authorize training, but the drawback of
requiring a specialized blockchain and of rendering those
smart contracts less auditable.

Fernandez et al.[40] also envision a general data market-
place architecture. Their work focuses on different aspects
compared to PDS2 and does not consider the issues of data
control, privacy and decentralization. However, certain aspects
of their work are orthogonal to those goals and may be ported
to PDS2, such as data discovery, integration and rewarding.



In terms of storage, different approaches have been pro-
posed in literature. Zheng et al. [39] describe a network of
Data Agents who store users’ data encrypted for a fee and
are responsible for data re-encryption when purchased by a
consumer. Cloud storage is suggested by Zheng et al. [38] for
very large datasets along with symmetric-key cryptography
combined with Shamir’s secret sharing. The decryption key is
split and distributed in special nodes called Key Keepers. On
the other hand, Özyılmaz et al. [1] used a decentralized file
system called Swarm.

In recent years many commercial data marketplaces have
emerged. The IOTA Data Marketplace [3] is hosted on the
homonymous blockchain, which employs the Tangle[41] as an
alternative to traditional ledger designs. Hyperledger Fabric
[42] is employed by Datapace [43] to ensure data integrity
and network security, and by GeoDB for data validation and
reward distribution among stakeholders. GeoDB [44] also
uses a mix of other technologies, such as IOTA for data
verification transactions, Google Cloud for data storage and
Ethereum for reward transactions. The Datum marketplace
[45] also combines multiple technologies, such as BigchainDB
and IPFS. All these marketplaces are based on fungible tokens
compatible with ERC-20.

VI. FUTURE WORK

As this paper presented the high-level architecture of PDS2

and the most suitable technologies for it, the next logical step
consists in producing an implementation that can be used to
test the feasibility of the platform. That would allow future
works to evaluate different technologies to be used as building
blocks, such as rewarding schemes, privacy-preserving pro-
cessing and decentralized aggregation. Moreover, it is essential
to evaluate the extent to which the proposed solution is eco-
nomically viable and whether the monetary and non-monetary
incentives provided to individual players are sufficient to drive
platform adoption. In particular, the executors need to be
compensated for their computational costs, which must be
sustainable and competitive compared to existing solutions.
Finally, as PDS2 aims to be a global, open platform, its
scalability is an important aspect that needs to be carefully
assessed.

VII. CONCLUSIONS

This paper proposed PDS2, a novel data marketplace ar-
chitecture, which provides a flexible environment where con-
sumers can enjoy a vast pool of heterogeneous data. At the
same time, privacy preservation, full data control and fair re-
warding are guaranteed to data providers. After analysing rele-
vant technologies, the Ethereum blockchain, trusted execution
environments and gossip learning were indicated as the most
suitable candidates. Finally, several challenges were identified,
that need to be addressed by any future implementation of this
architecture.
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