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Abstract
A	semi-supervised	deep	learning	model	that	unifies	recurrent	and	convolutional	neural	networks	[1]	has	been
developed	to	exploit	both	unlabeled	and	labeled	data,	for	jointly	encoding	molecular	representations	and	predicting
affinities.	They	are	trained	over	generic	protein-ligand	data	from	BindingDB	[19]	and	not	fine-tuned	for	the	kinase
targets	in	the	challenge.

Introduction
It	is	critically	important	to	characterize	compound–protein	interaction	(CPI)	for	drug	discovery	and	development	[2].
Considering	the	enormous	chemical	and	proteomic	spaces,	computational	prediction	of	CPIs	facilitates	experimental
parallels	and	accelerates	drug	discovery.	Indeed,	computational	prediction	of	CPI	has	made	much	progress	recently,
especially	for	repurposing	and	repositioning	known	drugs	for	previously	unknown	but	desired	new	targets	[3,4]	and	for
anticipating	compound	side-effects	or	even	toxicity	due	to	interactions	with	off-targets	or	other	drugs	[5,6].

Computational	methods	roughly	fall	in	two	categories	based	on	input	data	types:	(protein)	structure-based	and
sequence	based	methods.	Structure-based	methods	can	predict	compound–protein	affinity,	i.e.	how	active	or	tight-
binding	a	compound	is	to	a	protein;	and	their	results	are	highly	interpretable.	They	are	often	tackled	through	energy
models	[7]	or	machine	learning	[8,9].	Their	heavy	reliance	on	actual	3D	structures	of	CPI	presents	a	limitation	for	these
methods.	Sequence-based	methods	overcome	the	limited	availability	of	structural	data	and	the	costly	need	of
molecular	docking.	Rather,	they	exploit	rich	omics-scale	data	of	protein	sequences,	compound	sequences.	Sequence-
based	CPI	has	been	tackled	through	shallow	models	[10]	or	deep	learning	models	[11,12]	but	their	predictions	lack
interpretability.

To	overcome	limitations	of	current	structure-	and	sequence-based	CPI	prediction	methods,	we	have	designed
informative	yet	compact	data	representations	that	are	structurally	interpretable.	We	have	also	developed	semi-
supervised	deep	learning	models	that	unify	recurrent	and	convolutional	neural	networks,	exploit	labeled	and	unlabeled
data,	and	use	attention	mechanisms	for	interpretability.

Methods

Data

We	used	data	from	three	public	datasets:	all	Kd	labeled	compound-protein	binding	data	(17,819	samples)	from
BindingDB	[19],	compound	data	(500K	samples	for	training	and	500K	samples	for	validation)	in	the	SMILES	format
from	STITCH	[20]	and	protein	amino-acid	sequences	from	UniRef	with	50%	sequence	identity	and	length	less	than	or
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equal	to	1500	amino	acids	(	120,000	samples	for	training	and	50,525	for	validation)	[21]	for	training	our	unified	RNN-
CNN	model.

Input	formats

We	developed	a	novel	protein	representation,	Structural	property	sequence	(SPS)	by	incorporating	the	predicted
protein	structural	property	such	as	secondary	structure	elements	(SSEs),	Solvent	accessibility,	physicochemical
characteristics	and	length	of	each	secondary	structure	elements	(SSEs).	For	drug	representation,	we	used	SMILE	[13]
that	are	short	ASCII	strings	to	represent	compound	chemical	structures	based	on	bonds	and	rings	between	atoms.

Deep	learning	methods

First,	we	encoded	compound	SMILES	or	protein	SPS	into	representations,	by	unsupervised	deep	learning	from
unlabeled	data	from	STITCH	and	UniRef.	Specifically,	we	used	a	recurrent	neural	network	(RNN)	model,	seq2seq	[14]
that	has	seen	much	success	in	natural	language	processing	and	was	recently	applied	to	embedding	compound
SMILES	strings	into	fingerprints	[15].	We	choose	gated	recurrent	unit	(GRU)	[16]	with	attention	mechanism	[17]	as	our
seq2seq	model.

Next,	with	compound	and	protein	representations	learned	from	the	above	unsupervised	learning,	we	solve	the
regression	problem	of	compound–protein	affinity	prediction	using	supervised	learning.	For	either	proteins	or
compounds,	we	append	a	CNN	after	the	RNN	(encoders	and	attention	models	only)	that	we	just	trained.	The	CNN
model	consists	of	a	one-dimensional	(1D)	convolution	layer	followed	by	a	max-pooling	layer.	The	outputs	of	the	two
CNNs	(one	for	proteins	and	the	other	for	compounds)	are	concatenated	and	fed	into	two	more	fully	connected	layers.
The	entire	RNN-CNN	pipeline	is	trained	from	end	to	end	[18],	with	the	pre-trained	RNNs	serving	as	warm
initializations,	for	improved	performance	over	two-step	training.	More	details	about	how	the	final	models	are	derived
are	included	in	the	next	subsection.

Lastly,	we	have	also	introduced	protein	and	compound	attention	models	in	supervised	learning	to	both	improve
predictive	performances	and	enable	model	interpretability	at	the	level	of	letters	(SSEs	in	proteins	and	atoms	in
compounds).	In	the	supervised	model	we	just	have	the	encoder	and	its	attention	αt	on	each	letter	t	for	a	given	string	x
(protein	or	compound).	And	the	output	of	the	attention	model,	A,	will	be	the	input	to	the	subsequent	1D-CNN	model.
Suppose	that	the	length	of	protein	encoder	is	T	and	(s1,..,st,...,	sT)	are	the	output	of	protein	encoder	and	similarly	the
length	of	compound	encoder	is	D	and	$$(m_{1},..,m_d,...,	mD)	$$	are	the	output	of	compound	encoder.	We
parametrize	the	attention	model	of	unified	model	with	matrix	$$Ua$$	and	the	vector	$$va$$.	Then,	The	attention	model
is	formulated	as:	

The	attention	weights	(scores)	αt	suggest	the	importance	of	the	t
th	"letter"	(secondary	structure	element	in	proteins

and	atom	or	connectivity	in	compounds)	and	thus	predict	the	binding	sites	relevant	to	the	predicted	binding	affinity.

Models	submitted

We	give	more	details	about	the	training	process	for	final	models	as	follows.	We	trained	three	unified	RNN-CNN
models	with	different	neurons	(300,100),	(400,200),	and	(600,300)	at	their	fully	connected	layers.	For	each	of	these
unified	RNN-CNN	model,	we	at	first	pre-trained	the	RNN	encoder	part	from	the	encoder	part	of	our	seq2seq	model
and	fixed	the	encoder	parts.	We	trained	the	rest	of	the	architecture	with	Adam	optimizer	[22]	with	an	initial	learning
rate	of	0.001	for	100	epochs.	Later,	we	jointly	trained	all	the	architecture	with	Adam	optimizer	with	an	initial	learning
rate	of	0.0001	for	another	100	epochs.	Finally,	motivated	from	ensemble	methods,	we	consider	the	last	10	epochs	of
each	model	as	a	predictor.	Finally,	we	take	an	average	of	all	30	predictors	to	calculate	the	final	prediction.	Our	docker
image	and	src	directory	provides	the	3	unified	models	with	10	checkpoints	(epochs)	each.

Conclusion
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We	have	developed	accurate	and	interpretable	deep	learning	models	for	predicting	compound–protein	affinity	using
only	compound	identities	and	protein	sequences.	By	taking	advantage	of	massive	unlabeled	compound	and	protein
data	besides	labeled	data	in	semi-supervised	learning,	we	have	jointly	trained	unified	RNN-CNN	models	from	end	to
end	for	learning	context-	and	task-specific	protein/compound	representations	and	predicting	compound–protein
affinity.	Given	the	novel	representations	with	better	interpretability,	we	have	included	attention	mechanism	in	the
unified	RNN-CNN	models	to	quantify	how	much	each	part	of	proteins,	compounds,	or	their	pairs	are	focused	while	the
models	are	making	the	specific	prediction	for	each	compound–protein	pair.	Noting	that	our	models	submitted	were
trained	over	generic	data,	improvements	can	be	made	by	tailoring	and	tuning	the	models	for	kinase	targets.

How	to	run	our	image
docker	run	\-\-privileged=true	-it	--rm	-v	\$\{PWD\}/io:/input	-v	$\{PWD\}/io:/output
docker.synapse.org/syn17051692/deepaffinity
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