
Page	1/3

DMIS_DK	Submission

Sungjoon	Park1,	Minji	Jeon1,	Sunkyu	Kim1,	Junhyun	Lee1,	Seongjun	Yun1,	Bumsoo	Kim1,	Buru	Chang1,	and	Jaewoo
Kang1,2,*	1.Department	of	Computer	Science	and	Engineering,	Korea	University,	Seoul,	Republic	of	Korea
2.Interdisciplinary	Graduate	Program	in	Bioinformatics,	Korea	University,	Seoul,	Republic	of	Korea

*	corresponding	author

Introduction

It	is	important	to	obtain	binding	affinity	between	drugs	and	kinases	in	drug	discovery	process.	However,	measuring
binding	affinity	is	cost-intensive.	To	address	this,	we	developed	a	machine	learning	model	to	predict	binding	affinity
between	drugs	and	kinases.	The	IDG-DREAM	Drug-Kinase	Binding	Prediction	Challenge	provided	the	UniProt	IDs	of
proteins	in	the	Drug	Target	Commons	dataset	and	we	could	get	sequence	information	of	the	proteins	using	the
UniProt	IDs.	In	the	binding	affinity	prediction	task,	3D	structural	information	of	proteins	is	known	to	be	more	informative
than	sequence	information	of	proteins.	However,	predicting	of	structures	of	proteins	is	a	difficult	problem.	We,
therefore,	propose	a	ligand-based	prediction	model	that	focuses	on	the	structures	of	drugs,	rather	than	using
information	such	as	sequences	of	proteins	or	structures	of	proteins.

Methods

Data
In	this	challenge,	we	used	Drug	Target	Commons	(DtcDrugTargetInteractions.csv)	[1]	and	BindingDB	data
(BindingDB_All_2019m2.tsv.zip)	[2]	for	training	binding	affinity	prediction	models.	Among	diverse	measurements,	kd,
ki	and	IC50	were	used	for	the	training.	All	binding	affinity	values	were	transformed	by	-log10(x/1e9).	We	chose	median
values	for	the	duplicate	samples	(i.e.,	same	compound-protein	pair).	We	submitted	two	prediction	models:	Random
Forest	(RF)	and	Ensemble	of	multi-task	Graph	Convolutional	Networks	(GCN).	For	the	RF	model,	128,181	samples
(compound-protein	pair)	having	199	proteins	and	57,399	compounds	were	used	for	the	training.	For	the	multi-task
GCN	model,	953,521	samples	(compound-protein	pair)	having	1,474	proteins	and	474,875	compounds	were	used	for
the	training.

Models

Random	Forest

We	trained	a	Random	Forest	model	[3]	for	each	protein.	2048-dimensioned	Extended	Connectivity	Fingerprint	(ECFP)
[4]	is	used	as	input.	ECFP	is	one	of	the	drug	structure	representation	methods	that	represents	the	presence	of
substructures	in	a	molecule	as	a	binary	vector.	The	output	of	the	model	is	the	pKd,	pKi	and	IC50	values	of	the	dataset.
We	divided	the	dataset	into	80:20	and	used	each	dataset	as	a	training	set	and	a	validation	set.	Hyper-parameters
were	selected	based	on	the	performance	of	the	validation	set.	There	is	no	model	for	S4	samples	because	we	trained
the	models	only	for	the	proteins	in	the	training	set.	For	each	S4	sample	in	Round	2,	we	measured	the	similarity
between	199	proteins	and	the	protein	of	the	sample	based	on	protein	sequences,	and	selected	the	top	3	similar
proteins.	The	predicted	pKd	value	of	the	sample	is	the	average	of	the	predicted	values	from	the	top	3	protein	models.

Multi-task	GCN	Ensemble

We	designed	4	multi-task	GCN	architectures.	The	multi-task	GCN	model	takes	a	SMILES	string	as	input	and	predict
binding	affinities	for	1,474	proteins.	In	the	1,474	proteins,	199	out	of	207	round	2	proteins	were	included.	SMILES
strings	were	converted	to	molecular	graphs	using	RDKit	python	library	[5].	We	designed	a	78	dimensional	feature



Page	2/3

vector	to	represent	a	node	(here,	atom)	in	a	molecular	graph.	Description	of	the	feature	vector	is	shown	in	Table	1.
For	the	submission,	we	averaged	the	predictions	of	the	last	K	epochs.	Then,	we	averaged	all	the	12	multi-task	GCN
models	(4	different	architecture	with	3	different	weight	initialization)	averaged	predictions.	We	selected	the	hyper-
parameters	of	the	multi-task	GCN	models	based	on	the	performance	of	the	validation	set.	We	implemented	the	GCN
models	using	PyTorch	Geometric	(PyG)	library.	Procedure	for	predicting	S4	samples	in	Round2	data	was	the	same	as
the	random	forest	model.

Multi-task	GCN	architecture	1

GAT	layer	+	GCN	layer	+	Pooling	layer	+	1	dense	layer	+	1	output	layer	GAT	layer:	Graph	convolution	layer	using
graph	attention	networks	proposed	in	“Graph	Attention	Networks”	[6].	Multi-head	vectors	were	concatenated	(#	of
head:	10,	input	dim:	78	,	output	dim:	780).	GCN	layer:	Graph	convolution	layer	proposed	in	"Semi-Supervised
Classification	with	Graph	Convolutional	Networks"	[7]	(input	dim:	780	,	output	dim:	780).	Pooling	layer:	Concatenation
of	average	pooling	and	max	pooling	across	all	node	feature	vectors	(input	dim:	780	,	output	dim:	1,560).	Dense	layer:
Fully	connected	layer	with	dropout	(dropout	rate	:	0.5,	input	dim:	1,560,	output	dim:	1,500).	Output	layer:	Fully
connected	layer	(input	dim:	1,500	,	output	dim:	1,474).

Multi-task	GCN	architecture	2	/3

4	GCN	layer	&	Pooling	layer	(after	each	GCN	layer)	+	4	GCN	layer(after	pooling)	+	1	dense	layer	+	1	output	layer
GCN	layer:	Graph	convolution	layer	proposed	in	"Weisfeiler	and	Leman	Go	Neural:	Higher-order	Graph	Neural
Networks"	[8]	(input	dim:	78	,	output	dim:	128).	Pooling	layer:	Hierarchical	graph	pooling	layer	proposed	in	“Self-
Attention	Graph	Pooling”	[9]	(pooling	ratio=0.25)	GCN	layer	(after	pooling):	Graph	convolution	layer	proposed	in
"Weisfeiler	and	Leman	Go	Neural:	Higher-order	Graph	Neural	Networks".	(input	dim:	128	,	output	dim:	128).	Dense
layer:	Fully	connected	layer	with	dropout	(dropout	rate	:	0.5,	input	dim:	512,	output	dim:	512).	Output	layer:	Fully
connected	layer	(input	dim:	512	,	output	dim:	1,474).

Multi-task	GCN	architecture	4

4	GAT	layer	&	Pooling	layer	(after	each	GCN	layer)	+	4	GCN	layer(after	pooling)	+	1	dense	layer	+	1	output	layer	GAT
layer:	Graph	convolution	layer	using	graph	attention	networks	proposed	in	“Graph	Attention	Networks”.	Multi-head
vectors	were	concatenated	(#	of	head:	2	&	4	,	input	dim:	78	,	output	dim:	128).	Pooling	layer:	Hierarchical	graph
pooling	layer	proposed	in	“Self-Attention	Graph	Pooling”	(pooling	ratio=0.25)	GCN	layer	(after	pooling):	Graph
convolution	layer	proposed	in	"Weisfeiler	and	Leman	Go	Neural:	Higher-order	Graph	Neural	Networks".	(input	dim:
128	,	output	dim:	128).	Dense	layer:	Fully	connected	layer	with	dropout	(dropout	rate	:	0.5,	input	dim:	512,	output	dim:
512).	Output	layer:	Fully	connected	layer	(input	dim:	512	,	output	dim:	1,474).

Atom	feature	type RDkit	function Encoding	type Dimension

Atom	symbol atom.GetSymbol() One	hot	encoding 44

Degree atom.GetDegree() One	hot	encoding 11

Total	number	of	Hs atom.GetTotalNumHs() One	hot	encoding 11

Implicit	valence atom.GetImplicitValence() One	hot	encoding 11

Is	aromatic atom.GetIsAromatic() Bool	(0	or	1) 1

Total 78



Page	3/3

Table	1.	Description	of	the	atom	feature

Results

The	results	of	round2	leaderboard

Model objectID RMSE Spearman AUC

Random	Forest 9686312 1.002 0.484 0.774

Multi-task	GCN	Ensemble 9686330 0.949 0.485 0.771

References

[1]	Tang,	J.,	Ravikumar,	B.,	Alam,	Z.,	Rebane,	A.,	Vähä-Koskela,	M.,	Peddinti,	G.,	...	&	Gautam,	P.	(2018).	Drug
Target	Commons:	a	community	effort	to	build	a	consensus	knowledge	base	for	drug-target	interactions.	Cell	chemical
biology,	25(2),	224-229.

[2]	Gilson,	M.	K.,	Liu,	T.,	Baitaluk,	M.,	Nicola,	G.,	Hwang,	L.,	&	Chong,	J.	(2015).	BindingDB	in	2015:	a	public	database
for	medicinal	chemistry,	computational	chemistry	and	systems	pharmacology.	Nucleic	acids	research,	44(D1),	D1045-
D1053.

[3]	Breiman,	L.	(2001).	Random	forests.	Machine	learning,	45(1),	5-32.

[4]	Rogers,	D.,	&	Hahn,	M.	(2010).	Extended-connectivity	fingerprints.	Journal	of	chemical	information	and	modeling,
50(5),	742-754.

[5]	RDKit:	Open-source	cheminformatics;	http://www.rdkit.org

[6]	Veličković,	P.,	Cucurull,	G.,	Casanova,	A.,	Romero,	A.,	Lio,	P.,	&	Bengio,	Y.	(2017).	Graph	attention	networks.
arXiv	preprint	arXiv:1710.10903.

[7]	Kipf,	T.	N.,	&	Welling,	M.	(2016).	Semi-supervised	classification	with	graph	convolutional	networks.	arXiv	preprint
arXiv:1609.02907.

[8]	Morris,	C.,	Ritzert,	M.,	Fey,	M.,	Hamilton,	W.	L.,	Lenssen,	J.	E.,	Rattan,	G.,	&	Grohe,	M.	(2018).	Weisfeiler	and
Leman	Go	Neural:	Higher-order	Graph	Neural	Networks.	arXiv	preprint	arXiv:1810.02244.

[9]	Lee,	J.,	Lee,	I.,	&	Kang,	J.	(2019).	Self-Attention	Graph	Pooling.	arXiv	preprint	arXiv:1904.08082.


