
Page	1/5

Team	MLmed:	A	CNN	for	drug	kinase	binding
prediction
Matthias	Lienhard,	Paul	Prasse,	Ivo	Bachmann,	Julia	Ganzlin,	Gal	Barel,	and	Ralf	Herwig

Abstract

For	the	drug	kinase	binding	prediction	DREAM	challenge,	we	trained	a	deep	convolutional	neuronal	network	with	the
DTC	dataset	and	three	features	for	the	proteins	as	well	as	three	features	for	the	chemical	compounds	as	input.
Hyperparameters	(e.g.	number	and	size	of	hidden	layers)	were	determined	by	random	search	on	a	parameter	grid.

Training	data	and	features

As	suggested	by	the	challenge	organisers,	training	data	was	extracted	from	the	DTC	dataset	(Jing	Tang,	Balaguru
Ravikumar,	Zaid	Alam,	Anni	Rebane,	Markus	Vähä-Koskela,	Gopal	Peddinti,	Arjan	J	van	Adrichem,	Janica	Wakkinen,
Alok	Jaiswal,	Ella	Karjalainen,	et	al.	Drug	target	commons:	a	community	effort	to	build	a	consensus	knowledge	base
for	drug-target	interactions.	Cell	chemical	biology,	25(2):224–229,	2018).	To	describe	the	proteins,	we	used	the	protein
sequence,	the	species,	and	presence	of	selected	protein	domains	as	features.	Features	describing	compounds	are
the	canonical	SMILES	sequence,	the	MACCS	166	keys	(MDL	Information	Systems.	Maccs	keys.)	and	a	1024	bit
molecular	fingerprint	computed	by	the	RDKit	chemoinformatics	software	(Open-source	cheminformatics.
http://www.rdkit.org).

Filtering	and	preprocessing	of	the	DTC	dataset
We	selected	Inchi	keys	and	Uniprot	ids	as	primary	identifiers	for	the	compounds	and	target	proteins,	respectively.	For
the	DTC	data,	we	first	complemented	missing	Inchi	keys	by	requesting	Chembl	using	the	compound	ids.	Next	we
filtered	the	data	by	value	type	for	Kd	and	similar	values	(standard_type 	in	["KD","Kd","KI","Ki","pKD"]),
concentration	units	(standard_units 	in	["NM",	"MM",	"UM",	"M",	"NMOL/L"]).	We	further	excluded	measurements
on	protein	complexes,	and	requested	the	relation	to	be	equal	(standard_relation 	'=').	Then	we	transformed	all
concentrations	to	pKd[M].	Mutated	proteins	were	kept,	but	to	avoid	ambiguity	of	the	protein	id,	we	added	the	mutation
descriptions	to	the	uniprot	id.	Finally,	we	exported	the	relevant	columns,	the	protein	and	compound	id	as	well	as	the
pKD[M]	transformed	value	as	tab	separated	text	for	easy	import.	From	these	dataset,	we	used	two	different	subsets	to
train	our	models:	a	first	subset	complete	containing	all	data	points	from	the	dataset	described	above	and	a	second
subset	human	kinases	containing	only	the	data	points	involving	human	kinases.	Details	of	the	used	datasets	can	be
seen	in	Table	1

dataset #	instances #	unique	compounds #	unique	proteins

complete 2,185,412 821,046 6,032

human	kinases 215,697 110,431 467

Table	1:	Training	datasets

Kinase	features
For	the	Proteins	we	considered	three	different	features:	the	protein	sequence,	the	species,	and	the	presence	of
different	kinase	domains.	We	obtained	the	protein	sequence	as	well	as	the	species	from	a	uniprot	fasta	file	as	well	as

Page	2/5

web	requests	for	proteins	missing	in	the	fasta.	For	mutated	proteins,	we	altered	the	protein	sequence	according	to	the
mutation.	Then	we	ran	InterProScan	(Philip	Jones,	David	Binns,	Hsin-Yu	Chang,	Matthew	Fraser,	Weizhong	Li,	Craig
McAnulla,	Hamish	McWilliam,	John	Maslen,	Alex	Mitchell,	Gift	Nuka,	et	al.	Interproscan	5:	genome-scale	protein
function	classification.	Bioinformatics,	30(9):1236–1240,	2014.)	on	the	protein	sequence	to	determine	the	domain
structure.	We	selected	domains	related	to	GO:0004672	('protein	kinase	activity')	which	were	present	in	at	least	100
proteins	from	the	DTC	dataset	to	be	considered.

Compound	features
The	three	features	we	considered	for	the	chemical	compounds	were:	the	SMILES	sequence,	the	MACCS	166	keys
and	a	1024	bit	molecular	fingerprint.	In	order	to	obtain	consistent	features,	we	used	the	RDKit	chemoinformatics
software	to	produce	and	canonicalize	SMILES.	The	same	software	was	used	to	produce	the	fingerprint	and	the
MACCS	keys.

Model	description

Model	architecture
We	used	a	deep	neuronal	network	architecture	to	predict	the	target	value.	For	the	protein	sequences	as	well	as	the
SMILES	we	used	one	to	three	convolutional	layers,	followed	by	one	to	three	dense	hidden	layers.	The	remaining
features,	e.g.	the	protein	domains	and	the	species	corresponding	to	the	proteins,	as	well	as	the	MACCS	keys	and
1024	bit	molecular	fingerprint	for	the	compounds,	were	modelled	by	one	to	three	dense	layers.	The	output	of	all	6
feature	networks	were	concatenated	and	integrated	by	one	to	three	hidden	layers,	resulting	in	a	single	output	node
representing	the	target	value.	The	overall	network	is	shown	in	Figure	1.	Our	model	framework	is	implemented	in
Python,	based	on	Keras	(François	Chollet	et	al.	Keras.	https://keras.io,	2015.)	and	Tensorflow	(Martín	Abadi,	Ashish
Agarwal,	Paul	Barham,	Eugene	Brevdo,	Zhifeng	Chen,	Craig	Citro,	Greg	S.	Corrado,	Andy	Davis,	Jeffrey	Dean,
Matthieu	Devin,	Sanjay	Ghemawat,	Ian	Goodfellow,	Andrew	Harp,	Geoffrey	Irving,	Michael	Isard,	Yangqing	Jia,	Rafal
Jozefowicz,	Lukasz	Kaiser,	Manjunath	Kudlur,	Josh	Levenberg,	Dandelion	Mané,	Rajat	Monga,	Sherry	Moore,	Derek
Murray,	Chris	Olah,	Mike	Schuster,	Jonathon	Shlens,	Benoit	Steiner,	Ilya	Sutskever,	Kunal	Talwar,	Paul	Tucker,
Vincent	Vanhoucke,	Vijay	Vasudevan,	Fernanda	Viégas,	Oriol	Vinyals,	Pete	Warden,	Martin	Wattenberg,	Martin
Wicke,	Yuan	Yu,	and	Xiaoqiang	Zheng.	TensorFlow:	Large-scale	machine	learning	on	heterogeneous	systems,	2015.
Software	available	from	tensorflow.org.)	libraries	as	well	as	the	scikit-learn	(F.	Pedregosa,	G.	Varoquaux,	A.	Gramfort,
V.	Michel,	B.	Thirion,	O.	Grisel,	M.	Blondel,	P.	Prettenhofer,	R.	Weiss,	V.	Dubourg,	J.	Vanderplas,	A.	Passos,	D.
Cournapeau,	M.	Brucher,	M.	Perrot,	and	E.	Duchesnay.	Scikit-learn:	Machine	learning	in	Python.	Journal	of	Machine
Learning	Research,	12:2825–2830,	2011.)	machine	learning	package.	We	trained	the	networks	on	a	single	server	with
a	40-core	Intel(R)	Xeon(R)	CPU	E5-2640	processor,	128	GB	of	memory	and	GeForce	GTX	TITAN	X	GPU	using	the
NVidia	CUDA	platform.

Page	3/5

Figure	1:	Final	network	architecture

Hyperparameter	fitting
To	find	the	best	working	parameters	for	our	CNN	we	performed	a	random	search	on	the	paramter	grid	shown	in	Table
2.	To	score	our	models	we	performed	a	test	on	a	hold-out-dataset	containing	a	small	proportion	of	compounds	not
present	in	the	training	data.	For	the	round	2	submission	we	selected	the	best	performing	model	trained	on	the	human
kinases	dataset	as	well	as	the	best	model	trained	on	the	complete	dataset	(see	Table	1)

Page	4/5

Table	2:	Range	for	hyperparameters

Page	5/5

Prediction	using	Docker

To	create	the	predictions	of	submission	with	objectId	9686208	run:

docker	run	-v	${PWD}/io/:/input/	-v	${PWD}/io/:/output/	
docker.synapse.org/syn18502700/ml-med:9686208

To	create	the	predictions	of	submission	with	objectId	9686266	run:

docker	run	-v	${PWD}/io/:/input/	-v	${PWD}/io/:/output/	
docker.synapse.org/syn18502700/ml-med:9686266

Experimental	Results

On	held	out	validation	data	from	DTC	the	models	are	able	to	predict	the	target	value	and	reaching	a	RMSE	under	0.8,
and	\varnothing	AUC	over	0.9	(Table	3).	These	results	stand	in	marked	contrast	to	the	performance	of	our
submissions.

train	data validation	data RMSE pearson spearman f1 avg	AUC

complete complete 0.76 0.84 0.8 0.74 0.94

complete human	kinases 0.85 0.77 0.76 0.71 0.89

complete round	2 1.19 0.353 0.696

human	kinases complete 1.34 0.35 0.3 0.29 0.78

human	kinases human	kinases 0.74 0.84 0.83 0.78 0.92

human	kinases round	2 1.154 0.213 0.618

Table	3:	Validation	results	for	best	models	trained	on	completeand	human	kinasesdatasets.

Conclusions

Provided	the	performance	on	the	held	out	validation	data,	we	are	disappointed	by	the	outcome	on	the	challenge
dataset.	Due	to	the	restrictive	challenge	rules	only	allowing	for	a	very	limited	number	of	submissions	and	obscuring	the
metrics,	we	were	unable	to	find	the	cause	of	this	difference	in	performance.	We	hope	for	insight	from	the	solutions	of
the	other	teams	and	from	feedback	during	the	community	phase	of	the	challenge.

Authors'	Contributions

M.L.	and	P.P.	developed,	implemented,	and	trained	the	model.	I.B.,	J.G.,	and	G.B.	created	features.	R.H.	supervised
the	project.

