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Introduction

Convolutional	neural	networks	(CNNs)	represent	the	current	state-of-the-art	algorithms	in	image	and	video	recognition.
[1]	In	the	recent	years,	CNNs	were	applied	to	predict	bioactivity,[2-3,9]	learn	molecular	fingerprints,[4]	detect	chemical
motifs,[5]	and	predict	properties	of	small	molecules[6].	In	this	work	we	used	SMILES	(Simplified	Molecular	Input	Line
Entry	System)	and	sequences	of	aligned	ATP	binding	sites	(85	amino	acids)	of	protein	kinases	downloaded	from	the
KLIFS	database	containing[7-8]	as	input	for	the	CNNs	to	predict	the	compound-kinase	binding	interactions.	SMILES
are	widely	used	for	encoding	molecular	structures	and	represent	compounds	in	the	form	of	a	string	over	a	fixed	set	of
characters,	describing	all	the	atoms	and	structure	of	small	molecules	including	chirality,	bonds,	aromaticity	and	more.
The	KLIFS	(Kinase-Ligand	Interaction	Fingerprints	and	Structures)[7-8]	database	systematically	aligns	and	process	all
current	human	and	mouse	protein	kinase	structures,	focusing	on	the	interactions	of	ligands	in	the	binding	site	of
protein	kinases,	assessment	of	binding	pockets,	kinase	motifs	and	overall	kinase	and	ligand	properties.	The
representation	of	the	compounds	(SMILES	string)	and	protein	kinases	(aligned	ATP	binding	sites)	in	the	form	of	a	2D
matrix,	allows	CNNs	to	identify	import	motifs	and	map	them	to	compound-kinase	binding	interactions.

Methods

Prediction

The	data	from	ChEMBL	(v24.1),	DrugTargetCommons,	IUPHAR/BPS	Guide	to	pharmacology,	and	literature	was
integrated	and	curated.	The	Kd,	Ki	and	IC50	measurements	in	combination	with	a	protein	kinase	were	filtered	out	and
used	for	training	of	the	CNN.	The	integrated	data	set	comprised	of	298,595	compound-kinase	measurements,	439
unique	kinases	and	101,189	compounds.	The	SMILES	of	the	compounds	and	the	sequences	of	the	ATP	binding	sites
(downloaded	from	KLIFS)	were	one-hot-encoded	and	used	as	input	for	the	2D	convolutional	layers	of	CNN	(Figure	1).
The	CNN	comprised	of	a	single	2D	convolutional	and	2D	max	pooling	layer	for	the	SMILES	(shape=33,156,1)	and
single	2D	convolutional	and	2D	max	pooling	layer	for	the	sequences	(shape=21,85,1).	The	convolutional	layers	used
64	filters.	After	both	max	pooling	layers,	dropout	(0.5)	was	applied.	The	output	of	the	dropouts	was	given	to	dense
layers,	each	with	256	nodes.	In	addition	to	these	layers,	2	dense	layers	were	used	-	one	received	ECFP-4	fingerprints
as	input	and	the	other	received	kinase	family	as	input	(one-hot	encoded).	By	complementing	the	one-hot	encoding	of
SMILES	with	a	chemical	fingerprint	such	as	the	ECFP-4,	the	chemical	information	can	probably	be	better	encoded	into
features	for	the	CNN.	The	output	of	all	described	layers	was	concatenated	and	given	to	a	dense	layer	with	32	nodes.
A	dropout	of	0.4	was	applied	and	the	output	was	given	to	the	output	layer.



Page	2/3

Figure	1.	The	convolutional	neural	network	used	to	predict	the	compound-kinase	binding	interactions.

Refinement

After	applying	the	model	the	predicted	pKd	values	were	further	refined	using	literature	data	from	both	DTC/ChEMBL
and	the	KiEO	(Kinase	Experiments	Omnibus	(http://tanlab.ucdenver.edu/KIEO/KIEOv1.0/).	This	simplistic	refinement
approach	was	applied	as	follows	for	each	kinase-compound	pair:

1.	 If	one	or	more	fully	characterized	(p)Kd/(p)Ki/(p)IC50	values	were	available	from	literature	the	median	value	was
used	instead	of	the	prediction.

2.	 If	step	1	was	not	applied	,	then	all	(p)Kd/(p)Ki/(p)IC50	values	for	highly	similar	compounds	for	the	same	kinase
target	(Tanimoto	score		0.6	using	the	Morgan	fingerprint	RDKit)	were	collected	and	the	minimum,	maximum	and
average	were	calculated.	If	no	data	for	similar	compounds	was	available,	then	the	following	step	was	applied.	If
the	difference	between	the	maximum	and	the	minimum	value	was	smaller	than	0.1,	the	minimum	and	maximum
values	were	changed	to	the	average	value	-	0.5	and	+	0.5,	respectively	to	account	for	potential	larger	variations	in
the	data.	Subsequently,	if	the	predicted	value	was	outside	the	range	of	the	current	minimum	and	maximum	value,
the	predicted	value	changed	to	the	average	value.

3.	 If	none	of	the	previous	steps	were	applied	and	a	minimum	expected	pKd	value	was	available	(from	the	single
concentration	KINOMEscan	for	the	PKIS2	dataset	[10]	),	then	the	predicted	value	was	increased	with	0.5	if	the
predicted	value	was	below	the	minimum	expected	pKd	value.

4.	 If	none	of	the	previous	steps	were	applied	and	the	predicted	pKd	value	was	higher	than	6	the	prediction	was
scaled	up:	predpKD	+	(predpKD-6)*0.5.	This	step	performed,	as	we	noticed	that	the	predictions	for	which
literature	data	was	available	(step	1)	the	predicted	value	was	overall	lower	than	the	literature	values.

Finally,	to	correct	for	outliers	values	above	>	9.5	were	scaled	down	to	9.5.	As	no	values	below	5	were	present,	not
lower	limit	was	applied.

The	literature	data	applied	in	steps	1-3	is	available	here:	https://www.synapse.org/#!Synapse:syn18635344
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Conclusion

Here	we	show	that	by	using	an	unbiased	approach	to	train	a	CNN	network	with	2D	convolutional	layers,	we	are	able	to
predict	the	bioactivity	of	compounds	with	a	RMSE	of	1.125	and	a	rounded	average	AUC	of	0.658.	Despite	this,	the	low
spearman	correlation	(0.259)	indicates	that	the	model	was	probably	overfitted	and	requires	further	optimization	and
validation.
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