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Abstract

This	document	explains	the	basic	methodology	followed	for	our	submission	in	the	IDG-DREAM	Drug-Kinase	Binding
Prediction	Challenge.	A	total	of	394	kinase	binding	predictions	were	required	in	this	challenge.	Binding	data	only	from
Drug	Target	Commons	database	is	exploited.	However,	three	other	databases	were	used	for	the	representation	of
chemicals	and	proteins.	Our	submission	has	achieved	a	final	RMSE	score	of	1.113	in	round	2.

Introduction

Protein	ligand	binding	score	prediction	is	a	fundamental	issue	in	drug	discovery.	It	has	a	great	potential	to	decrease
the	large	cost	of	the	drug	discovery	process.	In	this	DREAM	challenge,	the	binding	scores	of	the	protein-chemical
pairs	were	to	be	predicted	by	exploiting	available	knowledge	in	binding	databases.

The	first	database	to	be	used	is	the	Drug	Target	Commons	(DTC)	database	[1].	It	has	a	large	number	of	protein	ligand
binding	data	in	terms	of	different	metrics	such	as	the	IC50,	Ki	and	Kd.	DTC	is	the	only	database	we	used	for	binding
data.	In	addition	to	this	database,	we	used	the	EBI-ChEMBL	[2]	for	protein	and	chemical	representations.	We	used	the
basic	representations	of	SMILES	and	amino	acid	sequences	for	chemicals	and	proteins	respectively.

The	following	sections	describes	the	methodology	and	conclusions.

Methods

Data	sets
The	challenge	requires	the	prediction	in	terms	of	pKd.	Therefore,	as	a	first	step,	we	extracted	the	rows	corresponding
to	the	Kd	values	from	the	DTC	database.	The	other	types	of	binding	data	did	not	improve	the	results	for	our	model	so
we	did	not	include	them	in	our	dataset.	This	amounts	to	55678	protein	ligand	binding	data	samples.

For	chemicals,	we	used	the	well-known	Extended	Connectivity	FingerPrints	(ECFP)	as	the	descriptors.	We
downloaded	the	SMILES	strings	for	each	of	the	compounds	from	the	EBI-ChEMBL	database	and	used	the	rdkit	ibrary
[3]	to	produce	512	length	binary	bit	vectors	to	represent	the	compounds.	Similarly,	for	representing	kinases,	we
downloaded	the	amino	acid	sequences	from	EBI-ChEMBL	in	fasta	format.	From	those	sequences,	we	used	PyBioMed
library	[4]	to	construct	descriptors	of	proteins.	From	this	library,	we	used	the	composition,	transition	and	distribution
features	(calculateCTD	method	from	CTD	module)	and	dipeptide	composition	features
(CalculateDipeptideComposition	method	from	the	AAComposition	module)	as	the	feature	set.	We	simply	concatenated
these	two	feature	vectors	to	build	a	descriptor	for	proteins.

As	a	second	preprocessing	step,	we	removed	those	features	whose	variance	are	below	a	threshold.	For	this,	we	used
the	VarianceThreshold	module	of	the	scikit-learn	library	[5]	with	a	threshold	of	0.1	for	chemicals	and	proteins
separately.	After	this,	we	obtained	descriptors	vectors	of	length	185	and	206	for	chemicals	and	proteins	respectively.
Finally,	we	standardised	the	feature	vectors	separately	to	zero	mean	and	unit	standard	deviation.	Therefore,	at	the
end,	our	final	descriptor	for	a	compound-protein	pair	is	a	vector	of	length	391,	a	simple	concatenation	of	the	above
mentioned	vectors.

Models
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The	machine	learning	models	that	we	use	to	model	the	protein	ligand	binding	data	is	neural	networks	and	gradient
boosted	decision	tree	models.	These	two	models	are	the	best	performing	models	from	a	number	of	other	models	that
we	executed.

The	neural	network	model	we	use	is	a	network	of	two	hidden	layers	of	size	1500	and	400	respectively.	In	addition	to
that	an	input	layer	of	391	and	output	layer	of	a	single	neuron	exist	in	the	network.	The	activation	functions	of	hidden
layers	are	sigmoid	functions	and	the	output	neuron	has	a	linear	activation	function.	We	exploited	the	Keras	library	[6]
to	construct	and	train	this	network.	We	trained	the	network	with	a	batch	size	of	128	for	400	epochs	by	using	ADAM
method	for	the	optimization.

For	gradient	boosted	trees	(GBT),	we	used	the	official	implementation	[7]	of	the	efficient	LightGBM	algorithm	[8].	This
algorithm	usually	works	faster	than	other	GBT	methods	by	exploiting	the	size	of	gradients	for	the	samples	in	the
dataset	and	eliminating	those	that	have	a	small	sized	gradient.	We	used	all	the	default	values	for	the	parameters
except	that	the	number	of	estimators	is	set	to	3960	which	is	the	value	we	found	by	parameter	optimization.

After	training	these	two	models,	the	final	predictions	are	produced	by	a	linear	ensemble	of	these.	The	ensemble	is	a
simple	weighted	model	that	computes	$$(w_1	*	o_{nn}	+	w_2	*	o_{gbt})$$	where	$$(o_{nn})$$	and	$$(o_{gbt})$$	are
the	predictions	of	neural	network	and	GBT	model	for	a	given	test	sample,	respectively.	Based	on	a	simple	parameter
optimization,	we	observed	that	an	equal	weighting	gives	the	best	results,	therefore	we	set	$$(w_1	=	w_2	=	0.5)$$.

Conclusion

This	submission	has	used	one	type	of	binding	data,	the	Kd	values.	In	the	future,	we	plan	to	extend	the	work	here	to
also	exploit	the	other	types	of	binding	data	as	well.	Also	the	performance	can	be	improved	by	extending	the	ensemble
with	other	models.

Author	Contribution	Statement

This	is	a	single	author	submission.

Running	the	docker	image

Please	run	the	following	command	to	run	the	image	associated:

docker	run	-it	--rm	-v	${PWD}/io:/input	-v	${PWD}/io:/output	demo

where	'demo'	represents	the	name	of	the	image	and	'io'	is	a	folder	in	the	host	machine	for	the	input	(the	template.csv
file	in	the	challenge).
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