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In this challenge given a training drug-target affinity matrix, the task is to estimate
the empty cells in the matrix. We evaluate several approaches on benchmark databases
of similar problems where the ground-truth is available and suggest to use the best on
the validation datasets, deep learning models, to tackle the challenge.

1 Introduction
Protein kinases are enzymes that catalyze phosphorylation reactions within the cells,
thus regulating cell function. More than 500 kinases have been identified, representing
approximately 2% of the human genome [6]. About 30% of human proteins may be
modified by kinase activity [8], making kinases attractive targets for drug interventions.
Measuring drug-kinase interactions through clinical trials is costly and time-consuming
[3, 7]. Estimating the strength of the interactions for novel couples of drug-kinase
based on the interactions already measured becomes an important alternative, where
the challenge is a crowd effort.

Apparently the challenge could be considered as a collaborative filtering problem
(CF). For example, in movie ratings as in the Nexflix competition1, the rating for a
couple of movie-user is learned, or collaboratively filtered, from the ratings by the
movies/users similar to the given movie/user. The lesson from Nexflix competition is
that if the number of training user-movie ratings is big enough, external information for
users or movies does not make significantly contribution to the recommendation sys-
tems. However this is not always the case for drug-target binding prediction problem,
where the affinity available is often sparse.

Another approach is kernel based, as in [2, 1]. In these work, kernels for drugs and
targets are built from their molecular descriptors, input into a regularized least squares
regression model (RLS) to predict the binding affinity.

For the challenge, the information of drugs, which are novel, is limited, making it
difficult to compute biologically sensible kernels or similarity matrices among drugs,
and hence the performance of CF or kernel-based methods could be compromised. It

1https://www.netflixprize.com/rules.html
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is worse, or even inapplicable, when the drugs/proteins in the couples to be predicted
the affinity are not in the training sets.

On the other hand, deep learning based modeling becomes a suitable approach
when only 1D representation for drugs (SMILES) and proteins (sequences) is provided.
Then the model learned from training data can predict the affinity for couples of drugs-
targets in testing data with their 1D representation provided, regardless they are in the
training data or not.

2 Methods

2.1 Collaborative filtering (CF)
For drug-target binding prediction problem, from the training affinity matrix we could
build similarity matrices for both drugs and targets. Any distance measure can be used
to calculate the similarity, e.g., cosine or correlation. With these similarity matrices at
hand we can run drug-based or target-based filtering to estimate the binding power for
unknown drug-target couples.

For example, for drug-based collaborative filtering, for an input couple (d,t), its
affinity is estimated as the weighted sum of all other drug’s affinity for target t where
the weighting is the cosine similarity between d and other drugs. Similarly, for target-
based collaborative filtering, for the same input couple (d,t), the affinity for the couple
is estimated as the weighted sum of all other targets’ affinity for drug d where the
weighting is the cosine similarity between t and other targets.

âdt =

∑
d′ sim(d, d′)ad′t∑

d′ sim(d, d′)

âdt =

∑
t′ sim(t, t′)adt′∑

t′ sim(t, t′)

To void noise, instead of all, top K most similar drugs or targets can be used to
estimate the affinity.

Another problem is that the scale of affinity differ among drugs and targets, i.e.,
some drugs have extreme low or high affinity for all targets. So a relative difference
from the average can be used instead of the absolute affinity.

âdt = ād +

∑
d′ sim(d, d′)(ad′t − ād′)∑

d′ sim(d, d′)

âdt = āt +

∑
t′ sim(t, t′)(adt′ − āt′)∑

t′ sim(t, t′)

where ād and āt is the average affinity for drug d and target t, respectively.
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Figure 1: Represent a couple of drug-target through its neighbors in both drugs and
targets.

Joint similarity collaborating filtering (joint-sim CF) While the above CF models
suggest use either drugs or targets similarity to recommend affinity for a novel couple
of drug-target, we suggest to use both for the task. In particular, given a couple of drug-
target needs evaluating the affinity, we can represent it through the affinity scored by its
K neighbors, in both drugs-based and targets-based. An example is shown in Figure 1,
where K=5: the couple of (drug_id, target_id) is represented by SDR1,...,SDR5 – the
affinity with target_id scored by K drugs closest to drug_id and STG1,...,STG5 – the
affinity with drug_id scored by K targets closest to target_id.

2.2 Kernel based (KronRLS)
Given the problem is to predict the affinity for n drugs and m targets, there would be
n*m combinations of them and the kernel would be in the size of (n∗m)2. To speed up
model training, Cichonska et al. [2, 1] suggest to use KronRLS (Kronecker regularized
least-squares). In KronRLS, a pairwise kernel K is computed as the Kronecker product
of compound kernel of size n*n and protein kernel of size m*m.

2.3 Deep learning
2.3.1 Auto-encoder (DL_AE)

Auto-encoder based modeling is claimed to be state-of-the-art model for Netflix dataset2.
In this approach, the training affinity matrix is assumed to be fully filled and is the in-
put, and output, for an auto-encoder, as shown in Figure 2. Then the loss function is
adjusted for ignoring not-in-the-train cells.

2.3.2 Embedded nodes in bipartite graph (DL_bipartite)

We consider the training affinity matrix as a bipartite graph and learn a continuous
feature representation for drugs and targets by node2vec [5] for the graph, as illustrated
in Figure 3a. Then the node vectors are concatenated in a neural network to predict the
affinity for testing data, as shown in Figure 3b.

2https://paperswithcode.com/sota/collaborative-filtering-on-netflix
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Figure 2: Auto-encoder of drug-target affinity matrix.

2.3.3 External information: SMILES and sequences (DL_1D)

No external information is used in the two deep learning models DL_AE and DL_bipartite.
However, in the testing data provided by the organizer, for drugs, SMILES strings is
given, and for targets, protein sequences can be retrieved with the UniProt_Id given
3. These strings can be seen as 1D representation for drugs and proteins, input into a
neural network to learn a model to predict the binding affinity for novel drug-kinase
couples, as shown in Figure 4. In the figure, input_1 and input_2 are drugs and targets,
respectively. As these are in 1D representation, layers of 1D convolutions and pooling
are used to capture potential patterns in the inputs. They are then concatenated, sent
through regularized layers of Dropout, and finally regressed with the training affinity.

3 Model validation
To seek a good model for the challenge we experimented the candidate models above
with benchmark datasets of similar problems.

3.1 Datasets
Two datasets were used to evaluate the models:

- Davis dataset: binding affinities observed for all pairs of 72 drugs and 442 targets,
measured by Kd value (kinase dissociation constant) [4].

3https://www.uniprot.org/uniprot

4



(a) Learning a dense representation for drugs and targets, preserving their similarity in the
bipartite graph.

(b) Drug and target vectors as input for
building a model to predict the affinity.

Figure 3: Predicting binding affinity through the bipartite graph.

Model rmse Spearman corr
CF 1.28 0.46

DL_AE 0.86 0.27
joint-sim CF 0.69 0.57
KronRLS 0.58 0.69

DL_bipartite 0.56 0.65
DL_1D 0.51 0.68

(a) For Davis dataset. Best result is in bold.

Model (Kiba) rmse Spearman corr
CF 4.29 0.21

DL_AE 2 0.31
KronRLS 0.6 0.74

joint-sim CF 0.55 0.76
DL_bipartie 0.53 0.78

DL_1D 0.43 0.85
(b) For Kiba dataset. Best result is in bold.

Table 1: Prediction performance.
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Figure 4: Predicting the affinity using external information.

- Kiba dataset: binding affinities for 2,116 drugs and 229 targets [9].
80% of data instances were used for training and 20% were for testing the models.

Same data splitting was used for learning all the models.

3.2 Results
The result for all models mentioned above on the two datasets is presented in Table 1.
DL_1D is best in two measures for Kiba dataset. It is also best in RMSE and second
best in Spearman correlation for Davis dataset.

4 Model and data for the challenge
As DL_1D performs really well in the two benchmark datasets, we choose it as the
model for the challenge.

Model is now trained on Drug Target Commons (DTC) data [10]. Only those tu-
ples with the standard_type of ["KD","Kd","KD’", "PKD"] is selected. For those with
["KD","Kd","KD’"], the standard value is converted to pKd unit. 55,816 compound-
protein pairs were included in this training data for 13,651 distinct compounds and
1,489 distinct proteins.

Model is validated on all Davis data [4]. There are 30,056 compound-protein pairs
in this validation data.

The model gaining smallest RMSE for validation data is then used to predict the
affinity for testing data.
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5 Running model
- On GPUs:

docker login docker.synapse.org docker run --runtime=nvidia -it -v ${PWD}/io_gpu:/output
docker.synapse.org/syn18518883/my-model:gpu

- On CPUs:
docker login docker.synapse.org docker run -it -v ${PWD}/io_cpu:/output docker.synapse.org/syn18518883/my-

model:cpu
- Notes:
For running on GPUs, ‘nvidia-docker’ should be installed4.
For our computers, training on GPUs is about 4.5 times faster than on CPUs, 4,003

seconds versus 18,078 seconds.
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