
Page	1/3

DreamChallenge	Report	-	DruginaseLearning	Team

Christos	Fotis1,	Panagiotis	Terzopoulos1,	Konstantinos	Ntagiantas1	and
Leonidas	G.Alexopoulos1,2

1.	BioSys	Lab,	National	Technical	University	of	Athens,	Athens,	Greece.

2.	ProtATonce	Ltd,	Athens,	Greece.

Introduction

Our	efforts	focused	on	building	a	deep	end-to-end	model	similar	to	Ozturk	et	al.	(Ozkirimli	Hakime	Ozturk	and	Arzucan
Ozgur.	Deepdta:	Deep	drug-target	binding	affinity	prediction.arXiv:1801.10193,	2018.),	that	takes	as	input	the	SMILES
representation	of	a	compound	and	the	amino	acid	sequence	of	a	protein	and	outputs	the	KD	value	of	the	compound-
protein	pair.	On	this	front,	we	investigated	several	deep	architectures	in	order	to	represent	the	SMILES-sequence
pairs	in	a	latent	space	that	best	captures	the	nature	of	the	binding	affinity	prediction.	Furthermore,	a	considerable
amount	of	our	effort	focused	on	augmenting	the	initial	DTC	dataset,	with	more	compound-protein	pairs	having
available	KD	values	in	the	literature.

Methods

Data	and	augmentation
The	initial	dataset	from	DTC	was	augmented	using	various	compound-kinase	binding	datasets	that	are	publicly
available	in	the	web	and	in	the	literature.	Overall,	compound-kinase	pairs	with	KD	values	from	DTC,	BindingDB,	KKB,
PKIS,	HMS	LINCS	and	Davis	et	al.	were	combined	to	create	the	final	dataset	for	training	and	validation.	The	final
dataset	consisted	of	over	105K	unique	drug-protein	interactions	labeled	with	the	Kd	affinity	metric.	A	detailed	report	of
this	work	can	be	found	on	https://github.com/bsl-ntua.

Models
We	experimented	with	different	end-to-end	architectures	that	utilize	different	methods	for	the	latent	representation	of
the	SMILES	and	a	deep	CNN	for	the	latent	representation	of	the	amino	acid	sequences.

1.	 The	first	architecture	used	a	3	layer	deep	graph	convolutional	network	similar	to	(Jorge	Aguilera-Iparraguirre
Rafael	Gomez-Bombarelli	Timothy	Hirzel	AlanAspuru-Guzik	David	Duvenaudy,	Dougal	Maclauriny	and	Ryan	P.
Adams.	Convolutional	networks	on	graphs	for	learning	molecular	fingerprints.	NeuralInformation	Processing
Systems	(NIPS),	2015.),	to	extract	application	specific	neural	fingerprints	from	the	compound	structures.	These
fingerprints	were	then	concatenated	with	the	output	of	a	3	layer	deep	CNN	that	encodes	the	amino	acid
sequences	of	the	proteins.	The	combined	feature	vector	was	fed	through	2	fully	connected	layers	for	the	final	KD
prediction.	Batch	normalization	layers	and	relu	activations	were	used	throughout	the	network	except	for	the	final
prediction	layer.	In	order	to	reduce	overfitting,	dropout	and	L2	regularization	was	used	between	the	fully
connected	layers.

2.	 Regarding	the	second	architecture,	a	deep	LSTM	autoencoder	was	first	trained	on	the	SMILES	sequences	of	all
the	compounds	in	the	training,	validation	and	test	sets.	The	autoencoder	used	as	input	the	one-hot	representation
of	the	SMILES	and	was	tasked	to	predict	the	next	letter	in	the	sequence.	The	output	of	the	trained	encoder	can
serve	as	a	compressed	latent	representation	of	the	SMILES	space.	The	idea	behind	training	an	autoencoder	first,
is	that	the	encoder	learns	to	represent	all	the	available	SMILES	(training	and	test)	and	the	final	model	should



Page	2/3

perform	better	than	a	fully	end-to-end	architecture	that	has	never	seen	the	structures	of	the	test	set.	Thus,	the
final	model	used	as	input	the	output	of	the	encoder	along	with	the	one-hot	encoded	amino	acid	sequences.	The
sequences	were	encoded	again	using	a	3	layer	deep	CNN	and	concatenated	with	the	output	of	the	encoder	to
build	the	final	feature	vector.	This	feature	vector	was	then	passed	through	2	fully	connected	layers	for	the	final	KD
prediction.	Batch	normalization	layers	and	relu	activations	were	used	throughout	the	network	except	the	final
prediction	layer.	In	order	to	reduce	overfitting,	dropout	and	L2	regularization	was	used	between	the	fully
connected	layers.

Training	and	Evaluation

The	final	augmented	dataset	consisted	of	105431	unique	pkd	values	between	12041	compounds	and	1690	kinases,
with	more	than	70000	pairs	having	a	pkd	value	close	to	5	(KD=10000μM).	In	order	to	reduce	the	bias	of	the	trained
model	towards	inactive	compounds	we	decided	to	filter	the	interactions	resulting	in	a	final	3:1	ratio	between	inactive
(pkd<7)	and	active	pairs	(pkd>=7).	For	model	evaluation	and	parameter	tuning	a	competition	specific	5-fold	cross
validation	scheme	was	employed.	More	specifically,	we	identified	5	sets	of	compounds,	with	similarity	profiles	with	the
training	set,	almost	identical	to	the	similarity	profiles	of	the	test	set.	During	each	step	of	the	cross-validation	all
interactions	that	included	the	compounds	of	the	validation	set	were	used	for	model	evaluation	and	the	rest	for	model
training.	The	data	augmentation	pipeline	was	implemented	using	R	while	the	models	were	built	in	python	using	keras
with	tensorflow	as	back	end.	Training	was	performed	on	a	NVIDIA	GPU	GTX-1080Ti.

Results	and	discussion

The	best	predictions	for	the	test	set	came	out	of	the	second	architecture	we	implemented	which	included	the	encoder.
Having	in	mind	how	difficult	it	is	to	really	generalize	to	new	compound	scaffolds	never	previously	seen	during	training
(Izhar	Wallach	and	Abraham	Heifets.	Most	ligand-based	classification	bench-marks	reward	memorization	rather	than
generalization.	J.	Chem.	Inf.Model.,	58:916–932,	2018.),	an	encoder	that	has	been	trained	to	represent	the	combined
train	and	test-set	distribution	is	expected	to	boost	performance	when	its	encoded	feature	vector	is	fed	for	further
training.
As	a	disclaimer	we	should	say	that	the	predictions	we	submitted	in	the	final	round	of	the	competition	are	not	the	true
ones	our	model	predicts.	This	is	because	of	a	code	error	we	discovered,	unfortunately,	after	the	submission	deadline,
which	implicitly	changes	the	dictionary	according	to	which	the	SMILES	are	encoded	to	1hot	arrays	every	time	one
loads	the	model.	This	means	that	the	autoenoder	was	trained	with	a	different	1hot	encoding	than	the	one	used	for	the
test	compounds	predictions.	We	strongly	believe	that	if	it	wasn't	for	this	error,	our	latest	submission	would	have	scored
substantially	better.

Docker	instructions

The	command	to	run	the	docker	is:

$	docker	run	-it	--rm	-v	${PWD}:/input	-v	${PWD}:/output	
docker.synapse.org/syn18525357/druginase-model:9686322

As	per	the	instructions	on	the	contest's	website,	the	script	included	in	the	docker	container	reads	a	provided	file	with
the	name	"input.csv"	that	is	similar	to	the	round	2	template	file,	as	well	as	the	.h5	files	necessary	to	load	our	pre-
trained	keras	deep-learning	model	to	make	the	predictions.	All	of	these	files	are	put	into	the	/input	directory	of	the
docker	container.	Running	the	docker	locally	with	the	provided	command,	requires	the	input	file	and	the	two	.h5	files	in
the	working	directory,	and	will	result	in	the	creation	of	the	"predictions.csv"	file,	that	is	stored	in	the	/output	directory	of
the	docker	container.	In	the	instructions	it	is	stated	that	the	provided	file	should	be	named	"input.csv"	or
"template.csv",	and	we	decided	to	go	with	the	former.	In	order	for	the	container	to	run	succesfully,	an	active	Internet
connection	is	required	on	the	host	machine,	as	the	script	queries	the	website	of	UniProt,	in	order	to	retrieve	the	protein



Page	3/3

sequences	of	the	respective	Uniprot_IDs	of	the	kinases	provided	in	the	"input.csv"	file.	In	a	system	with	a	moderately
stable	Internet	connection,	this	may	take	up	to	15	minutes.	If	the	querying	is	successful,	a	message	will	be	printed	with
the	number	of	proteins	queried	equal	to	the	number	of	interactions	in	the	"input.csv"	file.	It	should	be	noted	that	to	run
the	container	locally,	not	only	the	"input.csv"	file	is	necessary,	but	also	the	two	.h5	files	that	contain	the	trained	model,
namely	"docker_model22_4.h5",	and	"test_encoder21.h5".

Authors	contribution	statement

C.	Fotis	and	K.	Ntagiantas	conceived	a	significant	part	of	the	presented	idea,	did	most	of	the	data	augmentation	work
in	R	and	helped	with	fitting	the	model	and	interpreting	the	results.	P.	Terzopoulos	wrote	most	of	the	python	code	and
custom	functions	needed	to	feed	the	data	through	the	keras	pipeline	and	trained	the	models.	L.G.	Alexopoulos
supervised	the	project.


