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Abstract
Machine	learning	techniques	are	frequently	used	in	the	field	of	drug	discovery	and	repurposing	for	the	prediction	of
interactions	between	drug	candidate	compounds	and	target	proteins	since	the	experimental	approaches	are	not	time-
and	cost-efficient	to	be	applied	to	the	massive	compound-target	interaction	space.	Recently,	chemogenomic	modelling
approach	became	popular,	where	both	compound	and	target	protein	features	are	used	as	inputs	of	the	predictive
models.	Hence,	they	are	able	to	incorporate	targets	with	low	number	of	(or	no)	training	data	and	yield	accurate
predictions	even	for	targets/compounds	not	involved	in	the	training	set	at	all.	Chemogenomic	approach	is	significant
as	it	can	be	used	to	predict	novel	ligands	for	targets	with	limited	training	data	and	to	identify	the	druggability	potential
of	human	proteins	that	were	never	targeted	before.	In	this	study,	we	developed	chemogenomics-based	computational
methods,	using	random	forest	and	deep	neural	network	supervised	learning	techniques,	to	predict	the	binding	affinities
of	a	large	set	of	kinases	against	several	drug	candidate	compounds.

Introduction
The	identification	of	binding	affinity	values	between	compounds	and	target	proteins	is	critical	for	early	stage	drug
discovery.	Traditionally,	binding	affinity	values	are	determined	by	high-throughput	screening	experiments,	which	are
time-consuming	and	expensive,	and	thus,	cannot	be	applied	to	the	massive	compound-target	space.	Therefore,
computational	methods	have	been	developed	to	predict	binding	affinities,	using	machine	learning	(ML)	techniques.
Recently,	chemogenomic	modelling	approaches	became	popular,	where	both	compound	and	target	protein	features
are	used	as	the	pairwise	inputs	of	the	predictive	models.	The	output	of	these	models	are	the	binding	affinity	value
predictions	for	the	corresponding	compound-target	pair.	The	two	main	advantages	of	chemogenomic	modeling	are:	(i)
ability	to	incorporate	targets	with	low	number	of	(or	none)	training	data	points,	(ii)	potential	to	achieve	elevated
predictive	performance	due	to	more	complex	modeling.	Here,	we	developed	chemogenomics-based	methods,	on
which,	we	tested	different	sets	of	compound	and	target	protein	features	as	input	to	observe	the	predictive
performance.

Methods
In	this	study,	we	generated	several	predictive	models	(only	4	of	them	are	shown	here)	for	the	binding	affinity	prediction
of	compound-kinase	interactions	using	random	forest	(RF)	and	feed-forward	pairwise	input	neural	network	(PINN)
algorithms	with	different	combinations	of	feature	types	and	modeling	approaches,	as	shown	in	Table	1.	Unlike	many
conventional	ML-based	compound-target	interaction	prediction	studies,	where	the	prediction	is	usually	based	on
binary	classification	as	active	or	inactive,	we	generated	regression	models	to	predict	the	quantitative	binding	affinity
values	of	compound-kinase	interactions.

We	represented	compounds	with	ECFP4	fingerprints	(diameter:	2),	which	is	one	of	the	most	widely	used	feature	type
for	compounds,	and	we	represented	proteins	as	pssm-based	feature	vectors	(i.e.,	tri-gram-PSSM	and	k-separated-
bigram-PSSM).	POSSUM	web-server	was	employed	to	generate	the	feature	vectors.	We	obtained	experimental
bioactivity	data	points	for	kinases	from	the	ChEMBL	database	for	training,	where	we	included	all	bioactivities
containing	a	pChEMBL	value	(i.e.,	-log(IC50,	EC50,	Ki,	Kd,	Potency,	…)).	For	our	first	model,	we	used	the	all	kinase
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interaction	data	points	with	192,935	data	points	to	train	a	single	model.	For	our	second	model,	we	generated	seven
sub-models.	Each	sub-model	was	trained	with	the	data	points	of	a	specific	kinase	sub-family	such	as:	Agc,	Camk,
Cmgc,	Ste,	Tk,	Tkl	and	others	including	15,706,	13,251,	21,498,	4,165,	66,385,	10,470	and	29,982	data	points,
respectively.	The	aim	here	was	to	observe	if	family	specific	modeling	increases	the	predictive	performance.	For	Model
1	and	2,	we	used	RF	algorithm	with	tree	number	=	100	and	max_features	=	0.33.	RF	model	takes	a	concatenated
feature	vector	(compound	+	target)	as	input.	The	final	part	is	a	regressor,	which	predicts	binding	affinity	for	the	input
compound-target	pair	in	terms	of	pChEMBL	values.

For	Model	3	and	4,	we	used	pairwise	input	feed-forward	neural	networks	(PINN)	as	a	deep-chemogenomic	neural
network	architecture.	The	network	takes	a	pair	of	feature	vectors	for	compounds	and	targets	from	disjoint	input	nodes
simultaneously,	following	certain	number	of	processing	layers,	latent	representation	of	compound	and	target	features
are	concatenated	and	further	processed	on	more	feed-forward	layers.	The	output	layer	is	a	single	node	(a	regressor),
which	predicts	binding	affinity	for	the	input	compound-target	pair	in	terms	of	pChEMBL	values.	We	used	two	hidden
layers	for	both	and	compound	target	side	of	the	network.	After	the	concatenation	of	compound	and	target	hidden
layers,	two	additional	hidden	layers	were	used	before	output.	We	examined	different	hyper-parameters	concerning	the
number	of	neurons	at	each	layer	(4096,	2048,	1536,	1024,	512,	128),	learning	rate	(0.01,	0.001,	0.005,	0.0001)	and
dropout	rate	(0.6,	0.8)	before	finalizing	the	model.

We	evaluated	model	performances	by	5-fold	CV	and	by	external	validation	on	the	IDG	DTI	prediction	challenge	test
dataset	(i.e.,	the	experimentally	identified	bioactivity	measures	between	a	selected	set	of	kinases	and	compounds,
these	data	point	has	not	been	recorded	in	any	bioactivity	databases	such	as	ChEMBL	or	PubChem	yet)	using	root
mean	squared	error	(RMSE),	Pearson	and	Spearman	correlations,	and	F1-score.	For	F1-score,	the	problem	should	be
transformed	to	classification,	for	this,	we	determined	an	active/inactive	predicted	binding	affinity	threshold	of	pChEMBL
=	7.

Results	&	Conclusion
Cross-validation	results	are	given	in	Table	2.	For	Model	2,	we	reported	weighted	means	of	seven	sub-models	for	each
metric.	Model	performance	comparisons	are	given	below:

Model	1	vs.	2:	the	family-specific	model	outperformed	the	all-kinases	model,	which	is	an	important	outcome	in	terms	of
data	selection	and	modeling	approach.	It	is	probable	that	the	models	trained	with	a	more	focused	dataset	(i.e.,	data
points	belong	to	the	members	of	a	kinase	family)	performs	better,	because	different	kinase	families	have	different
ligand	interaction	properties,	and	the	model	that	contain	all	kinases	at	once	cannot	generalize	the	data	at	hand
successfully.

Model	3	vs.	4:	these	models	performed	similarly,	which	indicates	that	the	effect	of	the	target	feature	type	was	minimal
between	k-sep-bigrams	and	trigrams	features,	which	are	similar	in	terms	of	the	underlying	representation	logic,	but
very	different	in	terms	of	dimensionality	(k-sep-bigrams:	400,	trigrams:	8,000).	It	is	important	to	note	that,	we
previously	examined	several	more	target	feature	types,	and	k-sep-bigrams	and	trigrams	were	selected	based	on	those
preliminary	tests.

Model	1	vs.	3:	RF	models	outperformed	PINN	models	considering	the	cross	validation	results.	As	stated	in	the
literature,	the	performance	of	deep	neural	network	models	are	highly	dependent	on	the	selected	hyper-parameters.
Until	this	point,	we	could	not	scan	a	vast	hyper-parameter	space	yet,	we	believe	this	is	the	main	reason	behind	the
observed	performance	difference

Information	on	IDG-DREAM	Drug-Kinase	Binding	Prediction	Challenge	-
Round2	Submission
RF	Model	(ObjectId:	9686327)	For	this	submission	we	employed	the	methodology	used	in	Model	1,	as	explained
above;	however,	we	reduced	the	training	dataset	to	only	the	data	points	of	the	target	kinases	that	are	presented	in	the
Round2	test	dataset.	The	finalized	training	set	was	composed	of	94,184	activity	measurements	between	61,603
compounds	and	204	kinases.
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PINN	Model	(ObjectId:	9686326)	For	this	submission	we	employed	the	exact	same	methodology	used	in	Model	3,	as
explained	above.

Commands	To	Run	the	Docker	Containers
RF	Model	(ObjectId:	9686327)

sudo	docker	run	-it	--rm	-v	$PWD:/input	-v	$PWD:/output	
docker.synapse.org/syn18636383/crossbar_chemogenomic-modelling_rf:9686327

PINN	Model	(ObjectId:	9686326)

sudo	docker	run	pinn-kinase-prediction-model
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Tables
Table	1:	Characteristics	of	RF	and	PINN	models.

Algorithm Training	set	of	each	model Protein	Feature Drug	Feature

Model	1 RF all	kinases	(1	model) k-sep-bigrams

Model	2 RF kinase	families	(7	sub-models) k-sep-bigrams

Model	3 PINN all	kinases	(1	model) k-sep-bigrams

Model	4 PINN all	kinases	(1	model) trigram

Table	2.	Predictive	model	performance	results	in	5-fold	cross-validation.

Model	name RMSE Pearson	correlation Spearman	correlation F1-score

Model	1	(RF) 0.64 0.87 0.87 0.85

Model	2	(RF) 0.63 0.87 0.87 0.86

Model	3	(PINN) 0.73 0.72 0.65 0.65

Model	4	(PINN) 0.73 0.72 0.64 0.65


