
IDG-DREAM	Drug-Kinase	Binding	Prediction	Challenge:	
Group	KinaseHunter	
	
Hansaim	Lim1	and	Lei	Xie1,2	
1Ph.D.	program	in	Biochemistry,	Graduate	Center,	The	City	University	of	New	York	
2Department	of	Computer	Science,	Hunter	College,	The	City	University	of	New	York	

	
Data	set	preparation	
1. Chemical-kinase	binding	affinity	data	collection	

To	build	a	 large-scale	chemical-kinase	binding	affinity	data	set,	we	 integrated	multiple	
public	databases	and	published	kinome	assays.	The	databases	we	used	are	ChEMBL	(ver.	
24),	 BindingDB,	 and	 LINCS-HMS	 KinomeScan	 database.	 ChEMBL	 database	 contains	
chemical-protein	binding	 affinities	 for	mutant	proteins.	We	 collected	 those	activities	 for	
mutants	from	ChEMBL.	BindingDB	contains	chemical-protein	affinity	data	sets	from	multiple	
sources,	including	PubChem,	PDSPKi,	U.S.	patents,	and	the	curated	data	set	by	BindingDB	
team.	 LINCS-HMS	 KinomeScan	 database	 contains	 chemical-kinase	 binding	 affinities	 for	
various	chemicals	and	target	kinases.	Four	published	kinome	assay	data	sets	were	included	
from	1)	Christmann-Franck	et	al.	JCIM,	2016,	2)	Drewry	et	al.	PLoS	One,	2017,	3)	Klaeger	et	
al.	 Science,	 2017,	 and	 4)	 Sorgenfrei	 et	 al.	 ChemMedChem,	 2017.	 To	 merge	 redundant	
activity	 measurements	 (e.g.	 multiple	 activity	 records	 for	 a	 chemical-kinase	 pair),	 we	
converted	chemicals	into	InChIKey	and	kinases	into	UniProt	ID.	We	converted	all	activities	
into	 log-scale	since	the	target	problem	is	 to	predict	binding	affinity	 in	pKd.	We	excluded	
activity	measurements	in	other	metrics	than	Ki,	pKi,	Kd,	and	pKd.	If	multiple	activity	records	
found	for	a	chemical-kinase	pair,	we	averaged	them.	For	feature	calculation	processes,	we	
collected	 SMILES	 strings	 for	 each	 chemical	 and	 primary	 amino	 acid	 sequences	 for	 each	
kinase.	In	case	the	data	source	does	not	provide	chemical	SMILES	or	InChIKey,	we	used	the	
PUGRest	 service	 from	 PubChem	 to	 convert	 the	 chemical	 identifiers.	 We	 used	 UniProt	
database	 to	 convert	 gene	 names	 into	 UniProt	 IDs.	 For	 mutant	 proteins,	 we	 prepared	
mutated	protein	sequences	by	replacing,	inserting,	or	deleting	sequence	parts	as	appeared	
in	protein	identifiers.	

2. Splitting	data	into	train,	dev,	and	test	sets	
We	used	Leave-Chemical-Set-Out	(LCSO)	strategy	to	simulate	new	drug	discovery	process	

and	reduce	overfitting.	To	evaluate	model	fitting	and	generalized	performance,	we	split	the	
chemical-kinase	samples	into	train,	dev,	and	test	sets.	We	used	train	set	to	train	models,	
dev	set	to	evaluate	how	well	the	model	is	trained	and	optimize	hyperparameters,	and	test	
set	 to	 evaluate	 the	 final	 performance	 of	 our	model.	 Before	 the	 final	 prediction	 for	 the	
challenge,	we	trained	the	model	again	with	the	dev	and	test	sets.		
We	split	 the	chemicals	 into	 two	groups:	42708	 training	chemical	 set	and	581	dev-test	

chemical	set.	We	kept	the	structural	similarity	for	any	chemical-chemical	pairs	across	two	
sets	lower	than	0.8,	ensuring	that	the	dev	or	test	data	represent	new	chemical	molecules	
that	are	not	found	in	training	data.	The	chemical-chemical	similarity	scores	were	measured	
by	 Tanimoto	 coefficient	 (Jaccard	 similarity)	 between	 the	 two	 ECFP4	 (1024	 bits)	

representations	of	chemical	molecules.	The	chemical-kinase	affinity	samples	 for	dev-test	
chemicals	are	split	into	dev	and	test	sets	in	approximately	8:2	ratio.	The	data	statistics	for	
train/dev/test	sets	are	in	Table	1.	
	
Table	1	 Train	 Dev	 Test	
#samples	 400170	 33701	 8618	
#unique	chemicals	 42708	 520	 343	
#unique	proteins	 482	 460	 447	

	
Method	
1. Model	architecture	

Our	model	uses	graph-based	molecular	representations	for	chemicals	and	proteins.	Our	
target	problem	is	to	predict	binding	affinity	in	pKd,	given	the	input	chemical	and	kinase.	We	
denote	each	sample	of	chemical-kinase	affinity	data	as	𝑦" = (𝑐", 𝑘"),	where	𝑦" 	is	the	known	
pKd	value,	𝑐" 	is	the	chemical,	and	𝑘" 	is	the	kinase	in	the	𝑖*+	sample.		
Our	 model	 processes	 chemical	 molecules	 using	 graph	 convolutional	 neural	 network	

(Neural	Fingerprint)	proposed	by	Duvenaud	et	al.	 (NIPS,	2015),	which	produces	chemical	
molecular	fingerprint	of	a	user-defined	length.	Briefly,	the	Neural	Fingerprint	applies	weight	
filters	to	atoms	and	bonds	ordered	by	their	degrees	in	each	molecule.	We	set	the	length	of	
chemical	fingerprint	to	128.	We	denote	the	chemical	fingerprint	operation	as	𝑓-. = 𝒢-(𝑐"),	
where𝑓-. 	is	 the	 feature	 vector	 representation	 of	𝑐" 	(𝑓-. ∈ ℝ

234),	 and	𝒢- 	is	 the	 Neural	
Fingerprint	operation.	We	used	RDKit	python	package	to	preprocess	chemical	molecules	for	
fingerprint	operation.	
Kinases	are	processed	into	two	different	representations:	kinase	domain	feature	vectors,	

and	kinase	active	site	feature	vectors.	We	denote	the	features	of	kinase	domain	sequence	
and	kinase	binding	site	sequence	in	the	𝑖*+	sample	as	𝑘"5 	and	𝑘"6,	respectively,	where	both	
𝑘"5 	and	𝑘"6	are	sequence	of	27	values	for	each	amino	acid	(20	for	PSSM	and	7	for	amino	acid	
physical	 properties).	 For	 each	 kinase,	 we	 downloaded	 kinase	 domain	 sequences	 from	
UniProt,	 and	we	 calculated	 the	position-specific	 scoring	matrix	 (PSSM)	 against	UniRef50	
database	 (nonredundant	 sequence	 database	 clustered	 at	 50%	 sequence	 identity)	 using	
PSIBLAST	 standalone	package	with	3	 iterations	 for	each	kinase	domain	 sequence.	 In	 the	
kinase	domain	feature	representation,	we	used	the	PSSM	values	for	the	whole	domain	as	
𝑘5.		
In	 the	 kinase	 active	 site	 feature	 representation,	 we	 first	 aligned	 the	 kinase	 domain	

sequences	using	CLUSTALW	web	server	with	default	option.	Then,	we	identified	the	active	
site	residues	of	the	serine/threonine-protein	kinase	pim-1	(P11309)	from	its	3D	structure.	
From	the	3D	structure,	we	also	collected	neighboring	 triplets,	 three	amino	acid	 residues	
that	are	closer	than	6.0	Å	with	each	other.	Then,	we	identified	the	binding	site	residues	and	
structural	 neighbors	 of	 each	 kinase	 from	 the	 multiple	 sequence	 alignment.	 The	
corresponding	 PSSM	 values	 for	 the	 binding	 site	 residues	were	 used	 as	 the	 input,	𝑘6 ,	 in	
contrast	 to	 the	 kinase	 domain	 representation.	 For	 both	 representations,	 we	 also	 used	
various	types	of	physical	properties	of	amino	acids:	average	hydrophobicity	(Cid	et	al,	1992.	
PMID:	 1518784),	 van	 der	Waals	 volume	 (Fauchere	 et	 al.	 1988.	 PMID:3209351),	 polarity	

(Grantham	 et	 al.	 1974.	 PMID:4843792),	 net	 charge	 (Klein	 et	 al.,	 1984.	 PMID:6547351),	
average	volume	in	buried	state	(Chothia,	1975.	PMID:1118010),	accessible	surface	area	in	
tripeptide,	and	accessible	surface	area	in	folded	protein	(Chothia,	1976.	PMID:994183).	The	
PSSM	and	amino	acid	properties	were	normalized	by	z-scaling,	i.e.	𝑧 = 9:;

<
,	where	𝑥	is	the	

feature	value,	and	𝜇, 𝜎	are	the	mean	and	standard	deviation	of	the	features	of	same	type.		
The	kinase	feature	vectors	were	obtained	by	applying	graph	convolutional	network	with	

attention	mechanism.	Many	 recent	graph	neural	network	methods	use	message	passing	
scheme	with	attention	mechanism	as	an	aggregator	of	the	node	weights.	Our	method	uses	
a	 cardinality	 preserved	 attention	 network	 (CPAN),	 a	 novel	 graph	 convolutional	 method	
developed	by	us	(manuscript	under	review).	CPAN	takes	graph	representation	of	kinases	as	
input,	and	 it	produces	protein	feature	of	 length	154.	Each	kinase	 is	a	graph,	where	each	
amino	acid	is	a	node	with	its	feature	(𝑘"5 	or	𝑘"6).	We	denote	the	kinase	feature	calculation	
as	𝑓@. = 𝒢@ 𝑘"5 	𝑜𝑟	𝒢@(𝑘"6),	where	𝑓@. 	is	the	protein	feature	output	from	CPAN	(𝑓@. ∈ ℝ

2DE),	
and	𝒢@	is	the	graph	convolutional	operation	by	CPAN.		

2. Attentive	pooling	and	feature	transformation	
With	 the	 feature	 representation	 of	 chemicals	 and	 kinases,	we	 applied	 attentive	 pooling	
strategy	similar	to	(dos	Santos	et	al,	2016,	arXiv)	to	weigh	the	contributions	of	each	feature	
and	rescale	the	chemical	and	kinase	feature	vectors.	

𝑓-.
F = 𝑓-.⨀𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑓@. ∙ Θ 	

𝑓@.
F = 𝑓@.⨀𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑓-. ∙ Θ

N)	
In	 the	 above	 equations,	𝑓-.

F ,	𝑓@.
F 	represent	 the	 rescaled	 feature	 vectors	 of	 chemical	 and	

kinase	 in	 the	 𝑖*+ 	sample,	Θ 	represents	 the	 attentive	 weight	 matrix	 (𝜃 ∈ ℝ234×2DE),	⨀	
represents	 element-wise	 product	 (Hadamard	 product),	 and	 	∙	represents	 dot	 product	 of	
matrices.	
The	rescaled	feature	vectors	were	fed	into	a	feature	transformation	layer	to	make	final	

prediction.	 We	 denote	 the	 feature	 transformations	 as	𝑓-.
FF = 𝒯R 𝑓-.

F 	and	𝑓@.
FF = 𝒯S 𝑓@.

F ,	
where	𝑓-.

FF 	and	𝑓@.
FF 	represent	 transformed	 chemical	 and	 kinase	 features,	 respectively.	 The	

transformation	layer	contains	four	layers	of	fully-connected	64	neurons	activated	by	ReLU	
after	batch	normalization.	The	fifth	layer	contains	fully-connected	64	neurons	with	batch	
normalization	but	without	ReLU	activation.	The	predicted	pKd	activity	value	was	calculated	
by	the	dot	product	of	the	transformed	feature	vectors.	𝑦" = 𝑓-.

FF ∙ 𝑓@.
FF,	where	𝑦	denotes	the	

predicted	pKd	value.	
3. Training	procedure	

We	used	Adam	optimizer	with	cosine	annealing	for	learning	rate	adjustment.	The	initial	
learning	 rate	was	 set	 to	 1e-4,	 and	batch	 size	was	 set	 to	 128.	We	 also	 applied	 balanced	
regression	strategy	to	ensure	the	diversity	of	training	samples.	We	split	the	training	samples	
into	16	bins	by	the	pKd	values,	where	the	first	bin	contains	samples	with	pKd	≤ 4.0,	and	the	
last	 bin	 contains	 samples	 with	 pKd	> 10 .	 The	 other	 bins	 were	 evenly	 spaced	 by	 an	
increment	 of	 0.4.	 Then,	we	 chose	 8	 samples	 from	each	 bin	 to	 form	 a	minibatch	 of	 128	
samples.	The	model	was	trained	for	100	epochs	by	minimizing	MSE	(i.e.	Σ 𝑦 − 𝑦 3)	with	
early	stopping	strategy	based	on	the	Pearson’s	correlation	coefficient	measured	on	the	dev	
set.	 From	 the	 dev	 set,	 we	 randomly	 picked	 128	 samples	 and	 measured	 the	 Pearson’s	

correlation	coefficient.	We	repeated	it	10	times	and	averaged	for	each	epoch	to	measure	
the	dev	performance.	Our	 final	model	was	 chosen	by	 the	 training	epoch	where	 the	dev	
performance	was	highest.	

	
	
Below	are	the	docker	commands	to	run	our	model	for	Round	2	prediction.	

	
$docker run docker.synapse.org/syn17037396/graphdti-v1 > round2-1.csv
#Round 2. First submission. (objID 9686292)

$docker run docker.synapse.org/syn17037396/graphdti-v2 > round2-2.csv
#Round 2. Second submission. (objID 9686304)

