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Methods

To	comply	with	challenge	requirements	about	data/code	availability,	our	final	solution	for	Round	2	had	to	implement

several	shortcuts.	We	had	to	limit	the	dependence	on	commercial	software/services	as	much	as	possible.	Overall,	this

negatively	affected	most	models	vs.	internal	benchmarks.	Therefore:

Only	RDKit	fingerprints	were	used	as	a	molecular	representation.	No	other	descriptors	were	used.

Only	one	ML	method	was	used	-	Gradient	Boosted	Decision	Trees	(GBDT)	as	implemented	in	XGBoost.

Hyperparameter	search	was	performed	with	a	randomized	search	only.	No	custom	GP	or	AutoML-like	schemes

were	used.

For	simplicity,	no	model	stacking	was	used.

Note,	because	of	very	large	HPC	compute	demands	our	final	prediction	for	MTOR,	KDR,	PLK1,	SYK,	TEK	was	done

not	with	all	5	ensemble	models,	as	they	were	not	finished	by	the	deadline.	This	Docker	has	all	finished	model	and

produces	slightly	different	predictions	for	these	kinases.	This	difference,	however,	does	not	affect	any	rankings.

Data

For	all	targets	of	interest,	data	was	integrated	from	DrugTargetCommons	and	ChEMBL	25.	Bioactivities	were

extracted	for	pChEMBL	activity	values	-Log(IC50/EC50/Ki/Kd)	of	10	μM	or	better,	with	ChEMBL

CONFIDENCE_SCORE	of	6	or	greater	for	‘binding’	or	‘functional’	human	kinase	protein	assays.	Due	to	conflicting

naming	schemes,	all	target	datasets	were	integrated	by	Uniprot	IDs.	Each	target	dataset	was	curated	according	to	our

well-established	best	practices	[J.	Chem.	Inf.	Model.2010,	50	(7),	1189-1204	(https://doi.org/10.1021/ci100176x)].

Structural	standardization,	the	cleaning	of	salts,	and	the	removal	of	mixtures,	inorganics,	and	organometallics	was

performed	using	ChemAxon	software.	In	the	case	of	replicate	compounds,	InChI	Keys	were	generated.	For	replicates

with	the	same	activities	in	a	given	assay,	a	single	representative	compound	was	selected	for	inclusion	into	the	training

set.	For	replicates	with	the	different	activities	(>	1	log	unit)	in	a	given	assay,	all	compounds	were	excluded.

Feature	Representation

An	ensemble	of	four	RDKit	fingerprints	of	path	length	5,7,9,11;	each	of	4K	bit	length.	The	total	length	of	the	feature

vector	was	16K.

Model	Training.

All	models	were	trained	within	two	nested	five-fold	cross-validation	loops.	All	splits	were	random.	Internal	CV	loop	was

used	to	perform	hyperparameters	search	and	variable	selection	for	the	corresponding	fold	using	the	following	protocol:

1.	 Fast	XGBoost	hyperparameter	search	with	a	budget	of	100.	The	following	parameters	were	tuned:	max_depth,

subsample,	colsample_bytree,	learning_rate,	min_child_weight,	gamma.	n_estimators	was	fixed	at	1000.	For

XGBoost	we	used	fast	histogram	method	on	GPU	and	optimize	for	“log	cosh”	loss	in	order	to	reduce	the	effect	of

outliers.

2.	 Using	the	optimal	model	we	performed	recursive	feature	elimination	as	implemented	in	Scikit-Learn	(RFECV

function).	A	number	of	features	that	give	model	with	the	best	MAE	were	selected.
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3.	 Rebuild	XGBoost	model	with	the	optimal	number	of	features	and	perform	an	additional	hyperparameter	search

with	a	budget	of	500.	The	following	parameters	were	tuned:	n_estimators,	max_depth,	subsample,

colsample_bytree,	colsample_bylevel,	learning_rate,	min_child_weight,	gamma,	reg_alpha,	reg_lambda.	For

XGBoost	we	used	fast	histogram	method	on	GPU	and	optimize	for	“log	cosh”	loss	in	order	to	reduce	the	effect	of

outliers.

Final	scoring	was	done	by	averaging	five	predictions	from	the	external	CV	loop.	Negative	model	bias	was	adjusted	by

scaling	prediction	values	to	the	range	of	[5,	prediction	max]

Conclusion

This	is	the	winning	solution	for	RMSE	metric.

Running	the	Docker	Container

In	order	to	run	this	Docker	container,	first	pull	the	image	using:

docker	pull	docker.synapse.org/syn18701196:9686282

Then,	from	a	local	directory	containing	an	"input"	and	"output"	directory,	where	"input"	contains	the	file	"input.csv"	(the

round_2_template.csv	from	IDG-DREAM	or	similarly	formatted	file),	run	the	following	command:	

docker	run	-it	--rm	-v	${PWD}/input:/input	-v	${PWD}/output:/output
docker.synapse.org/syn18701196:9686282
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Abstract

Machine	learning	techniques	are	frequently	used	in	the	field	of	drug	discovery	and	repurposing	for	the	prediction	of

interactions	between	drug	candidate	compounds	and	target	proteins	since	the	experimental	approaches	are	not	time-

and	cost-efficient	to	be	applied	to	the	massive	compound-target	interaction	space.	Recently,	chemogenomic	modelling

approach	became	popular,	where	both	compound	and	target	protein	features	are	used	as	inputs	of	the	predictive

models.	Hence,	they	are	able	to	incorporate	targets	with	low	number	of	(or	no)	training	data	and	yield	accurate

predictions	even	for	targets/compounds	not	involved	in	the	training	set	at	all.	Chemogenomic	approach	is	significant

as	it	can	be	used	to	predict	novel	ligands	for	targets	with	limited	training	data	and	to	identify	the	druggability	potential

of	human	proteins	that	were	never	targeted	before.	In	this	study,	we	developed	chemogenomics-based	computational

methods,	using	random	forest	and	deep	neural	network	supervised	learning	techniques,	to	predict	the	binding	affinities

of	a	large	set	of	kinases	against	several	drug	candidate	compounds.

Introduction

The	identification	of	binding	affinity	values	between	compounds	and	target	proteins	is	critical	for	early	stage	drug

discovery.	Traditionally,	binding	affinity	values	are	determined	by	high-throughput	screening	experiments,	which	are

time-consuming	and	expensive,	and	thus,	cannot	be	applied	to	the	massive	compound-target	space.	Therefore,

computational	methods	have	been	developed	to	predict	binding	affinities,	using	machine	learning	(ML)	techniques.

Recently,	chemogenomic	modelling	approaches	became	popular,	where	both	compound	and	target	protein	features

are	used	as	the	pairwise	inputs	of	the	predictive	models.	The	output	of	these	models	are	the	binding	affinity	value

predictions	for	the	corresponding	compound-target	pair.	The	two	main	advantages	of	chemogenomic	modeling	are:	(i)

ability	to	incorporate	targets	with	low	number	of	(or	none)	training	data	points,	(ii)	potential	to	achieve	elevated

predictive	performance	due	to	more	complex	modeling.	Here,	we	developed	chemogenomics-based	methods,	on

which,	we	tested	different	sets	of	compound	and	target	protein	features	as	input	to	observe	the	predictive

performance.

Methods

In	this	study,	we	generated	several	predictive	models	(only	4	of	them	are	shown	here)	for	the	binding	affinity	prediction

of	compound-kinase	interactions	using	random	forest	(RF)	and	feed-forward	pairwise	input	neural	network	(PINN)

algorithms	with	different	combinations	of	feature	types	and	modeling	approaches,	as	shown	in	Table	1.	Unlike	many

conventional	ML-based	compound-target	interaction	prediction	studies,	where	the	prediction	is	usually	based	on

binary	classification	as	active	or	inactive,	we	generated	regression	models	to	predict	the	quantitative	binding	affinity

values	of	compound-kinase	interactions.

We	represented	compounds	with	ECFP4	fingerprints	(diameter:	2),	which	is	one	of	the	most	widely	used	feature	type

for	compounds,	and	we	represented	proteins	as	pssm-based	feature	vectors	(i.e.,	tri-gram-PSSM	and	k-separated-

bigram-PSSM).	POSSUM	web-server	was	employed	to	generate	the	feature	vectors.	We	obtained	experimental

bioactivity	data	points	for	kinases	from	the	ChEMBL	database	for	training,	where	we	included	all	bioactivities

containing	a	pChEMBL	value	(i.e.,	-log(IC50,	EC50,	Ki,	Kd,	Potency,	…)).	For	our	first	model,	we	used	the	all	kinase
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interaction	data	points	with	192,935	data	points	to	train	a	single	model.	For	our	second	model,	we	generated	seven

sub-models.	Each	sub-model	was	trained	with	the	data	points	of	a	specific	kinase	sub-family	such	as:	Agc,	Camk,

Cmgc,	Ste,	Tk,	Tkl	and	others	including	15,706,	13,251,	21,498,	4,165,	66,385,	10,470	and	29,982	data	points,

respectively.	The	aim	here	was	to	observe	if	family	specific	modeling	increases	the	predictive	performance.	For	Model

1	and	2,	we	used	RF	algorithm	with	tree	number	=	100	and	max_features	=	0.33.	RF	model	takes	a	concatenated

feature	vector	(compound	+	target)	as	input.	The	final	part	is	a	regressor,	which	predicts	binding	affinity	for	the	input

compound-target	pair	in	terms	of	pChEMBL	values.

For	Model	3	and	4,	we	used	pairwise	input	feed-forward	neural	networks	(PINN)	as	a	deep-chemogenomic	neural

network	architecture.	The	network	takes	a	pair	of	feature	vectors	for	compounds	and	targets	from	disjoint	input	nodes

simultaneously,	following	certain	number	of	processing	layers,	latent	representation	of	compound	and	target	features

are	concatenated	and	further	processed	on	more	feed-forward	layers.	The	output	layer	is	a	single	node	(a	regressor),

which	predicts	binding	affinity	for	the	input	compound-target	pair	in	terms	of	pChEMBL	values.	We	used	two	hidden

layers	for	both	and	compound	target	side	of	the	network.	After	the	concatenation	of	compound	and	target	hidden

layers,	two	additional	hidden	layers	were	used	before	output.	We	examined	different	hyper-parameters	concerning	the

number	of	neurons	at	each	layer	(4096,	2048,	1536,	1024,	512,	128),	learning	rate	(0.01,	0.001,	0.005,	0.0001)	and

dropout	rate	(0.6,	0.8)	before	finalizing	the	model.

We	evaluated	model	performances	by	5-fold	CV	and	by	external	validation	on	the	IDG	DTI	prediction	challenge	test

dataset	(i.e.,	the	experimentally	identified	bioactivity	measures	between	a	selected	set	of	kinases	and	compounds,

these	data	point	has	not	been	recorded	in	any	bioactivity	databases	such	as	ChEMBL	or	PubChem	yet)	using	root

mean	squared	error	(RMSE),	Pearson	and	Spearman	correlations,	and	F1-score.	For	F1-score,	the	problem	should	be

transformed	to	classification,	for	this,	we	determined	an	active/inactive	predicted	binding	affinity	threshold	of	pChEMBL

=	7.

Results	&	Conclusion

Cross-validation	results	are	given	in	Table	2.	For	Model	2,	we	reported	weighted	means	of	seven	sub-models	for	each

metric.	Model	performance	comparisons	are	given	below:

Model	1	vs.	2:	the	family-specific	model	outperformed	the	all-kinases	model,	which	is	an	important	outcome	in	terms	of

data	selection	and	modeling	approach.	It	is	probable	that	the	models	trained	with	a	more	focused	dataset	(i.e.,	data

points	belong	to	the	members	of	a	kinase	family)	performs	better,	because	different	kinase	families	have	different

ligand	interaction	properties,	and	the	model	that	contain	all	kinases	at	once	cannot	generalize	the	data	at	hand

successfully.

Model	3	vs.	4:	these	models	performed	similarly,	which	indicates	that	the	effect	of	the	target	feature	type	was	minimal

between	k-sep-bigrams	and	trigrams	features,	which	are	similar	in	terms	of	the	underlying	representation	logic,	but

very	different	in	terms	of	dimensionality	(k-sep-bigrams:	400,	trigrams:	8,000).	It	is	important	to	note	that,	we

previously	examined	several	more	target	feature	types,	and	k-sep-bigrams	and	trigrams	were	selected	based	on	those

preliminary	tests.

Model	1	vs.	3:	RF	models	outperformed	PINN	models	considering	the	cross	validation	results.	As	stated	in	the

literature,	the	performance	of	deep	neural	network	models	are	highly	dependent	on	the	selected	hyper-parameters.

Until	this	point,	we	could	not	scan	a	vast	hyper-parameter	space	yet,	we	believe	this	is	the	main	reason	behind	the

observed	performance	difference

Information	on	IDG-DREAM	Drug-Kinase	Binding	Prediction	Challenge	-
Round2	Submission

RF	Model	(ObjectId:	9686327)	For	this	submission	we	employed	the	methodology	used	in	Model	1,	as	explained

above;	however,	we	reduced	the	training	dataset	to	only	the	data	points	of	the	target	kinases	that	are	presented	in	the

Round2	test	dataset.	The	finalized	training	set	was	composed	of	94,184	activity	measurements	between	61,603

compounds	and	204	kinases.
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PINN	Model	(ObjectId:	9686326)	For	this	submission	we	employed	the	exact	same	methodology	used	in	Model	3,	as

explained	above.

Commands	To	Run	the	Docker	Containers

RF	Model	(ObjectId:	9686327)

sudo	docker	run	-it	--rm	-v	$PWD:/input	-v	$PWD:/output	
docker.synapse.org/syn18636383/crossbar_chemogenomic-modelling_rf:9686327

PINN	Model	(ObjectId:	9686326)

sudo	docker	run	pinn-kinase-prediction-model

Authors	Contribution	Statement

HA,	ASR,	MJM,	RA,	VA	and	TD	conceived	the	idea.	HA	and	ASR	performed	the	system	construction.	HA,	ASR	and

TD	performed	all	data	analyses.	MJM,	RA,	VA	and	TD	supervised	the	overall	study.	All	authors	have	revised	and

approved	the	this	document.

Tables

Table	1:	Characteristics	of	RF	and	PINN	models.

Algorithm Training	set	of	each	model Protein	Feature Drug	Feature

Model	1 RF all	kinases	(1	model) k-sep-bigrams

Model	2 RF kinase	families	(7	sub-models) k-sep-bigrams

Model	3 PINN all	kinases	(1	model) k-sep-bigrams

Model	4 PINN all	kinases	(1	model) trigram

Table	2.	Predictive	model	performance	results	in	5-fold	cross-validation.

Model	name RMSE Pearson	correlation Spearman	correlation F1-score

Model	1	(RF) 0.64 0.87 0.87 0.85

Model	2	(RF) 0.63 0.87 0.87 0.86

Model	3	(PINN) 0.73 0.72 0.65 0.65

Model	4	(PINN) 0.73 0.72 0.64 0.65
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Prediction	of	kinase	inhibitor	Kd	values

Ádám	Misák,	Bence	Szalai,	László	Hunyady,	Gábor	Turu	Semmelweis	University,	Department	of	Physiology,

Budapest,	Hungary

Abstract/Summary

This	prediction	uses	a	stacked	prediction	of	multiple	learners	to	predict	the	Kd	values	of	kinase	inhibitors.	As	training

data	combined	values	of	Ki	and	Kd	data	from	Drug	Target	Commons	(DTC)	has	been	used,	and	features	consisted	of

calculated	molecular	features	(Morgan	fingerprints,	farmacophore	features,	autoencoder	features	and	Tanimoto

similarities	to	a	selected	set	of	kinase	inhibitors)	protein	features	(kinase	sequence	distance	and	ligand-inhibition

correlation	between	kinases)	and	measured	or	inputed	ligand	displacement	and	kinase	inhibition	data.	The	resulting

prediction	scored	0.477	spearman	correlation	score	on	the	Challenge	dataset.

Methods

For	data	preparation,	kinase	data	has	been	extracted	from	DTC	database,	Kd,	Ki	values	have	been	converted	to	pKi

and	pKd	values	and	averaged,	and	used	together	as	‘affinity’	data.	Inhibition	and	activity	data	has	been	also	extracted,

combined	together	as	remaining	activity	and	used	later	as	features.	Additional	data	has	been	extracted	from	a

publication	(Drewry	DH	et	al,	Plos	One,	2017),	which	was	used	as	displacement	feature	in	the	final	prediction.

Although	these	two	features	are	not	readily	available	in	a	common	ligand	screening	setup,	since	2/3	of	the	challenge

data	had	such	displacement	values	for	the	specific	protein-ligand	pairs,	we	included	these	as	features.	For	protein-

compound	pairs,	where	displacement	and/or	inhibition	data	were	not	available,	the	features	were	imputed	using	XGB

regressor	model.	Molecular	features	were	calculated	with	either	rdkit	library	(Morgan	features,	1024	bit,	radius	=	3,

pharmacophore	distance	features,	using	the	default	pharmacophore	descriptors	and	16	bins	and	Tanimoto	distances

to	the	kinase	inhibitor	set	used	in	previous	publication	(Drewry	DH	et	al,	2017)	using	Morgan	features),	or	pretrained

neural	network,	built	using	Keras	library	(Gómez-Bombarelli,	2018,	https://github.com/HIPS/molecule-autoencoder)

(autoencoder	features).	As	protein	features,	we	used	kinase	domain	sequence	based	distance	map	(distance	matrix)

and	kinase	to	kinase	correlation	calculated	from	data	from	Drewry	DH	et	al,	2017	(kinase	correlation).	Multiple	models

have	been	built	with	XGB	regressor	(https://xgboost.readthedocs.io/en/latest/),	catboost

(https://github.com/catboost/catboost),	LGBM	regressor	(https://lightgbm.readthedocs.io)	and	scikit-learn’s	Ridge

regressor	(https://scikit-learn.org/).	The	regressors	trained	and	stacked	with	an	XGB	regression	model	using	vecstack

(https://github.com/vecxoz/vecstack).

Conclusion

The	final	model	scored	well	on	spearman	corralation	and	AUG	scores	in	the	challenge,	but	the	rmse	scores	were	not

satisfactory.
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Team	Prospectors:	Ensemble	based	semi-supervised
approach	to	IDG-DREAM	Drug-Kinase	Binding
Prediction	Challenge

Davor	Oršolić,	Bono	Lučić,	Višnja	Stepanić,	Tomislav	Šmuc	Ruđer	Bošković	Institute,	Zagreb,	Croatia

Background

We	have	provided	submissions	for	both	Round	1	and	Round	2	based	on	IDG-DREAM	Drug-Kinase	Binding	Prediction

Challenge	Data:	14,492	drugs	and	1,462	proteins.	Both	rounds	were	addressed	by	ensemble	based	models	(Random

Forest	and	Boosting	trees),	with	the	main	effort	put	into	feature	set	construction,	instance	selection	and	model

selection.	Final	Round	2	model	has	been	produced	using	XGBoost	algorithm	and	feature	set	based	on	selected

similarities	in	compound	and	protein	space	[6].

Methods

In	the	exposition	of	the	methodology	used	for	this	challenge	we	refer	to	the	original	training	set	as	to	the	compound-

target	interactions	with	valid,	known	Kd	values,	available	for	all	challenge	participants	via	Synapse	challenge	portal.

The	term	training	set	is	also	used	when	referring	to	particular	subsets	of	this	original	training	set	used	for	model

optimization/selection,	or	developing	specific	models	for	the	submissions	in	Round	2.	We	use	term	validation	set

which	typically	means	test	set	obtained	by	training/validation	set	partitioning	from	the	original	training	set	in	order	to	be

able	to	test	and	select/optimize	models.	When	referring	to	test	set	we	usually	refer	to	Round	1	or	Round	2	test	set	–

used	for	scoring	submissions.

Data	preprocessing	&	Feature	engineering

For	the	prediction	of	drug-target	interactions	of	given	pairs	we	first	retrieved	protein	FASTA	sequences	and	SMILES

representations	of	compounds	from	UniProt	and	ChemSpider,	respectively.	Some	effort	has	been	spent	on	data

cleansing	and	preprocessing.	Feature	set	describing	compounds	and	targets	for	the	initial	round	of	modeling	(Round

1)	were	constructed	using	rcdk	and	protr	R	packages,	respectively	[4][7].	We	experimented	with	different	subsets	of

compound	features,	but	found	out	that	maccs	fingerprints	gave	best	results.	For	testing	and	optimization	of	the

modeling	workflow	we	split	training	set	of	drug-kinase	interactions	into	70/30	ratio.	In	later	stages	(Round	1	and	Round

2)	we	completely	changed	the	feature	set	and	used	similarities	in	compounds	and	targets	space	in	order	to	describe

drug-target	pair.	To	estimate	similarities	in	target	space,	EMBOSS	program	with	needleall	application	was	used	to

globally	align	all	pairs	of	primary	protein	structures	[8].	To	align	protein	sequences	by	the	EMBOSS	program,

Needleman-Wunsch	algorithm	was	used,	and	the	EBLOSUM62	matrix	for	calculation	of	similarities,	together	with

other	default	settings.	Compound	similarities	were	based	on	precalculated	maccs	fingerprints	from	R’s	rcdk	package

depending	on	kekule	SMILES	representation	[4].	To	determine	similarities	between	all	compounds,	fingerprint

package	was	utilized	and	Tanimoto	coefficients	were	calculated	based	on	comparison	of	166	maccs	keys	for	each	of

14492	compounds	[5].

Modeling

Round	1

In	our	Round	1b	experiments	we	investigated	different	feature	sets	and	used	random	training/validation	splitting

(70/30)	of	the	original	dataset	of	compound-target	interaction	pairs	in	order	to	improve	performance	of	the	predictive

models.	We	have	tested	different	types	of	compound	descriptors,	including	similarities.	First	submitted	models	in
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Round	1b	were	based	on	maccs	fingerprints	(166	features)	and	protein	physical	descriptors	(41	features).	We	had

also	introduced	similarity	based	approach	in	few	of	our	Round	1b	models	which	showed	improvement	in	comparison

with	our	first	submission.

Round	2

In	Round	2	modeling	we	focused	more	on	similarity	based	representation	of	the	problem.	We	also	introduced	new

training/validation	set	definition	in	order	to	use	more	representative	(similar)	instances	with	respect	to	the	interactions

from	the	Round	2	scoring	test	set.	For	that	purpose	we	first	clustered	joint	training	set	with	Round	2	test	set	-	using

hclust	algorithm	from	stats	package	in	R	-	into	100,	200,	400	clusters	(using	target	and	compound	similarity	matrices)

[1].	We	than	formed	reduced	training/validation	set	from	only	those	compound-target	interactions	that	had	compounds

clustered	together	with	test	set	compounds	and	targets	clustered	together	with	test	set	targets.	We	used	clustering

results	to	redefine	similarity	feature	sets,	too.	Similarity	feature	sets	were	based	on	cluster	representatives	from

compound	space	and	cluster	representatives	from	the	target	space,	which	were	used	as	„anchors“	for	similarity

features	on	which	we	regressed	instances	from	the	training	set.	Using	the	optimized	XGBoost	scheme	we	tested

models	using	following	compound	+	target	similarity	feature	sets	(100+100,	200+200,	400+400)[6].	The	training	set

with	200+200	similarity	feature	sets	and	13,786	compound-target	interactions	was	used	to	train	the	models	for	the	first

Round	2	submission.

Final	submission	-	Compound-target	selection	for	the	training	set

Final	submission	for	the	Round	2	and	the	best	result	was	the	XGBoost	model	which	was	trained	on	the	training	set

based	on	compound-target	interactions	for	which	targets	are	one	of	the	test	targets	or	the	targets	that	were	clustered

together	with	some	of	the	test	targets.	This	subset	of	interactions	was	further	filtered	to	only	those	that	have

compounds	clustered	together	with	test	set	compounds.

Final	submission	-	Feature	construction

For	the	final	submission	we	used	the	„anchors“	for	similarity	features,	a	subset	of	test	targets,	as	well	as	targets	from

target-clusters	containing	test	set	targets	which	are	not	available	in	the	training	set.	Similarly	compound	similarity

feature	set	was	based	on	the	partitioning	of	the	compound	space	into	clusters.	For	compound	"anchors"	for	similarity

we	used	most	similar	compounds	from	clusters	containing	compounds	from	the	test	set	(with	avg.similarity>0.5).	This

meant	that	our	final	model	was	trained	using	7,336	compound-interaction	pairs	and	207	+	194	similarities	as	features,

from	compound	and	target	similarity	matrices	respectively.

Algorithms	and	model	selection/optimization

During	the	course	of	the	two	rounds	of	the	challenge	we	experimented	with	two	ensemble	based	algorithms:	we

started	using	Random	Forest	(randomForest	R	package)	and	Round	1	submissions	were	based	on	the	models

produced	using	RF	[3].	The	models	were	based	on	500	and	2000	trees,	respectively,	controlling	for	the

depth/complexity	of	the	trees	by	limiting	the	size	of	terminal	nodes	to	80	samples.	For	the	Round	2	we	used	Boosting

trees	–	or	XGBoost	algorithm	implementation	of	R	package	[6].	We	optimized	the	algorithm	parameters	using	train

function	from	caret	package	[9].

The	tuning	parameter	grid	had	the	following	parameters:	max_depth	(maximum	tree	depth,	default:	6)	eta	(learning

rate)	gamma	(used	for	regularization	tuning)	colsample_bytree	(column	sampling,	default:	1)	subsample	(row

sampling,	default:	1)	min_child_weight	(minimum	leaf	weight,	default:1)	This	parameter	optimization	was	performed	on

the	reduced	training	set	(6,450	pairs)	and	using	3-fold	cross	validation.

Discussion

We	unfortunately	entered	the	challenge	very	late,	and	have	managed	to	produce	first	models	on	time	before	Round	1b

was	closed.	This	models	were	based	on	simple	set	of	features	describing	compounds	and	targets,	and	large	portion	of
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the	original	training	set	was	used	for	the	model	development.	Our	results	in	Round	1	were	of	low	quality	(Spearman

correlation	<	0.1;	AUC	~	0.55;	RMSE	~	1.1).	In	Round	2	we	started	to	experiment	more	with	compound/target

similarities	as	features	upon	which	regression	ensemble	models	were	based.	We	also	used	clustering	of	training/test

interaction	pairs	that	served	several	purposes:	(i)	as	the	way	to	extract	more	meaningful	training	and	validation	set	for

the	model	development;	(ii)	try	to	focus	our	model	on	the	instances	in	the	neighborhood	of	test	set	instances;	(iii)	use

clusters	as	means	for	feature	selection,	as	we	used	similarity	matrices	in	compound/target	space	as	features	to	make

regression	models.	Our	final	Round	2	submission	results	were	(Spearman	correlation=0.296;	AUC=0.685;

RMSE=1.196)	which	represented	significant	improvement	from	the	Round	1	results.	Our	findings	from	the	Round	2

experiments	show	that	the	approach	based	on	similarities	is	promising	approach	for	the	treatment	of	this	type	of	the

problem	(large	and	diverse	set	of	compounds	and	targets),	and	that	learning	methodology	should	be	capable	to

capture	highly	non-linear	and	very	localized	interactions	–	in	that	respect	learning	models	based	on	smaller	number	of

samples	in	close	proximity	of	test	samples	(learning	in	the	neighborhood	–	or	proximity	of	the	actual	tested	interaction

pairs)	is	better	than	learning	from	large,	non-localized	training	set.

Authors	Statement

DO	implemented	the	code	and	performed	calculations.	TS,	BL,	VS,	conceived	and	supervised	the	study.	TS	and	DO

wrote	the	text	(write-up).

Command	required	to	run	the	docker	container:

docker	run	-it	--rm	-v	${PWD}/io:/input	-v	${PWD}/io:/output
docker.synapse.org/syn18553372/prospectors_idg:9686257
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Introduction

Our	efforts	focused	on	building	a	deep	end-to-end	model	similar	to	Ozturk	et	al.	(Ozkirimli	Hakime	Ozturk	and	Arzucan

Ozgur.	Deepdta:	Deep	drug-target	binding	affinity	prediction.arXiv:1801.10193,	2018.),	that	takes	as	input	the	SMILES

representation	of	a	compound	and	the	amino	acid	sequence	of	a	protein	and	outputs	the	KD	value	of	the	compound-

protein	pair.	On	this	front,	we	investigated	several	deep	architectures	in	order	to	represent	the	SMILES-sequence

pairs	in	a	latent	space	that	best	captures	the	nature	of	the	binding	affinity	prediction.	Furthermore,	a	considerable

amount	of	our	effort	focused	on	augmenting	the	initial	DTC	dataset,	with	more	compound-protein	pairs	having

available	KD	values	in	the	literature.

Methods

Data	and	augmentation

The	initial	dataset	from	DTC	was	augmented	using	various	compound-kinase	binding	datasets	that	are	publicly

available	in	the	web	and	in	the	literature.	Overall,	compound-kinase	pairs	with	KD	values	from	DTC,	BindingDB,	KKB,

PKIS,	HMS	LINCS	and	Davis	et	al.	were	combined	to	create	the	final	dataset	for	training	and	validation.	The	final

dataset	consisted	of	over	105K	unique	drug-protein	interactions	labeled	with	the	Kd	affinity	metric.	A	detailed	report	of

this	work	can	be	found	on	https://github.com/bsl-ntua.

Models

We	experimented	with	different	end-to-end	architectures	that	utilize	different	methods	for	the	latent	representation	of

the	SMILES	and	a	deep	CNN	for	the	latent	representation	of	the	amino	acid	sequences.

1.	 The	first	architecture	used	a	3	layer	deep	graph	convolutional	network	similar	to	(Jorge	Aguilera-Iparraguirre

Rafael	Gomez-Bombarelli	Timothy	Hirzel	AlanAspuru-Guzik	David	Duvenaudy,	Dougal	Maclauriny	and	Ryan	P.

Adams.	Convolutional	networks	on	graphs	for	learning	molecular	fingerprints.	NeuralInformation	Processing

Systems	(NIPS),	2015.),	to	extract	application	specific	neural	fingerprints	from	the	compound	structures.	These

fingerprints	were	then	concatenated	with	the	output	of	a	3	layer	deep	CNN	that	encodes	the	amino	acid

sequences	of	the	proteins.	The	combined	feature	vector	was	fed	through	2	fully	connected	layers	for	the	final	KD

prediction.	Batch	normalization	layers	and	relu	activations	were	used	throughout	the	network	except	for	the	final

prediction	layer.	In	order	to	reduce	overfitting,	dropout	and	L2	regularization	was	used	between	the	fully

connected	layers.

2.	 Regarding	the	second	architecture,	a	deep	LSTM	autoencoder	was	first	trained	on	the	SMILES	sequences	of	all

the	compounds	in	the	training,	validation	and	test	sets.	The	autoencoder	used	as	input	the	one-hot	representation

of	the	SMILES	and	was	tasked	to	predict	the	next	letter	in	the	sequence.	The	output	of	the	trained	encoder	can

serve	as	a	compressed	latent	representation	of	the	SMILES	space.	The	idea	behind	training	an	autoencoder	first,

is	that	the	encoder	learns	to	represent	all	the	available	SMILES	(training	and	test)	and	the	final	model	should
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perform	better	than	a	fully	end-to-end	architecture	that	has	never	seen	the	structures	of	the	test	set.	Thus,	the

final	model	used	as	input	the	output	of	the	encoder	along	with	the	one-hot	encoded	amino	acid	sequences.	The

sequences	were	encoded	again	using	a	3	layer	deep	CNN	and	concatenated	with	the	output	of	the	encoder	to

build	the	final	feature	vector.	This	feature	vector	was	then	passed	through	2	fully	connected	layers	for	the	final	KD

prediction.	Batch	normalization	layers	and	relu	activations	were	used	throughout	the	network	except	the	final

prediction	layer.	In	order	to	reduce	overfitting,	dropout	and	L2	regularization	was	used	between	the	fully

connected	layers.

Training	and	Evaluation

The	final	augmented	dataset	consisted	of	105431	unique	pkd	values	between	12041	compounds	and	1690	kinases,

with	more	than	70000	pairs	having	a	pkd	value	close	to	5	(KD=10000μM).	In	order	to	reduce	the	bias	of	the	trained

model	towards	inactive	compounds	we	decided	to	filter	the	interactions	resulting	in	a	final	3:1	ratio	between	inactive

(pkd<7)	and	active	pairs	(pkd>=7).	For	model	evaluation	and	parameter	tuning	a	competition	specific	5-fold	cross

validation	scheme	was	employed.	More	specifically,	we	identified	5	sets	of	compounds,	with	similarity	profiles	with	the

training	set,	almost	identical	to	the	similarity	profiles	of	the	test	set.	During	each	step	of	the	cross-validation	all

interactions	that	included	the	compounds	of	the	validation	set	were	used	for	model	evaluation	and	the	rest	for	model

training.	The	data	augmentation	pipeline	was	implemented	using	R	while	the	models	were	built	in	python	using	keras

with	tensorflow	as	back	end.	Training	was	performed	on	a	NVIDIA	GPU	GTX-1080Ti.

Results	and	discussion

The	best	predictions	for	the	test	set	came	out	of	the	second	architecture	we	implemented	which	included	the	encoder.

Having	in	mind	how	difficult	it	is	to	really	generalize	to	new	compound	scaffolds	never	previously	seen	during	training

(Izhar	Wallach	and	Abraham	Heifets.	Most	ligand-based	classification	bench-marks	reward	memorization	rather	than

generalization.	J.	Chem.	Inf.Model.,	58:916–932,	2018.),	an	encoder	that	has	been	trained	to	represent	the	combined

train	and	test-set	distribution	is	expected	to	boost	performance	when	its	encoded	feature	vector	is	fed	for	further

training.

As	a	disclaimer	we	should	say	that	the	predictions	we	submitted	in	the	final	round	of	the	competition	are	not	the	true

ones	our	model	predicts.	This	is	because	of	a	code	error	we	discovered,	unfortunately,	after	the	submission	deadline,

which	implicitly	changes	the	dictionary	according	to	which	the	SMILES	are	encoded	to	1hot	arrays	every	time	one

loads	the	model.	This	means	that	the	autoenoder	was	trained	with	a	different	1hot	encoding	than	the	one	used	for	the

test	compounds	predictions.	We	strongly	believe	that	if	it	wasn't	for	this	error,	our	latest	submission	would	have	scored

substantially	better.

Docker	instructions

The	command	to	run	the	docker	is:

$	docker	run	-it	--rm	-v	${PWD}:/input	-v	${PWD}:/output	
docker.synapse.org/syn18525357/druginase-model:9686322

As	per	the	instructions	on	the	contest's	website,	the	script	included	in	the	docker	container	reads	a	provided	file	with

the	name	"input.csv"	that	is	similar	to	the	round	2	template	file,	as	well	as	the	.h5	files	necessary	to	load	our	pre-

trained	keras	deep-learning	model	to	make	the	predictions.	All	of	these	files	are	put	into	the	/input	directory	of	the

docker	container.	Running	the	docker	locally	with	the	provided	command,	requires	the	input	file	and	the	two	.h5	files	in

the	working	directory,	and	will	result	in	the	creation	of	the	"predictions.csv"	file,	that	is	stored	in	the	/output	directory	of

the	docker	container.	In	the	instructions	it	is	stated	that	the	provided	file	should	be	named	"input.csv"	or

"template.csv",	and	we	decided	to	go	with	the	former.	In	order	for	the	container	to	run	succesfully,	an	active	Internet

connection	is	required	on	the	host	machine,	as	the	script	queries	the	website	of	UniProt,	in	order	to	retrieve	the	protein
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sequences	of	the	respective	Uniprot_IDs	of	the	kinases	provided	in	the	"input.csv"	file.	In	a	system	with	a	moderately

stable	Internet	connection,	this	may	take	up	to	15	minutes.	If	the	querying	is	successful,	a	message	will	be	printed	with

the	number	of	proteins	queried	equal	to	the	number	of	interactions	in	the	"input.csv"	file.	It	should	be	noted	that	to	run

the	container	locally,	not	only	the	"input.csv"	file	is	necessary,	but	also	the	two	.h5	files	that	contain	the	trained	model,

namely	"docker_model22_4.h5",	and	"test_encoder21.h5".
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Abstract

This	document	explains	the	basic	methodology	followed	for	our	submission	in	the	IDG-DREAM	Drug-Kinase	Binding

Prediction	Challenge.	A	total	of	394	kinase	binding	predictions	were	required	in	this	challenge.	Binding	data	only	from

Drug	Target	Commons	database	is	exploited.	However,	three	other	databases	were	used	for	the	representation	of

chemicals	and	proteins.	Our	submission	has	achieved	a	final	RMSE	score	of	1.113	in	round	2.

Introduction

Protein	ligand	binding	score	prediction	is	a	fundamental	issue	in	drug	discovery.	It	has	a	great	potential	to	decrease

the	large	cost	of	the	drug	discovery	process.	In	this	DREAM	challenge,	the	binding	scores	of	the	protein-chemical

pairs	were	to	be	predicted	by	exploiting	available	knowledge	in	binding	databases.

The	first	database	to	be	used	is	the	Drug	Target	Commons	(DTC)	database	[1].	It	has	a	large	number	of	protein	ligand

binding	data	in	terms	of	different	metrics	such	as	the	IC50,	Ki	and	Kd.	DTC	is	the	only	database	we	used	for	binding

data.	In	addition	to	this	database,	we	used	the	EBI-ChEMBL	[2]	for	protein	and	chemical	representations.	We	used	the

basic	representations	of	SMILES	and	amino	acid	sequences	for	chemicals	and	proteins	respectively.

The	following	sections	describes	the	methodology	and	conclusions.

Methods

Data	sets

The	challenge	requires	the	prediction	in	terms	of	pKd.	Therefore,	as	a	first	step,	we	extracted	the	rows	corresponding

to	the	Kd	values	from	the	DTC	database.	The	other	types	of	binding	data	did	not	improve	the	results	for	our	model	so

we	did	not	include	them	in	our	dataset.	This	amounts	to	55678	protein	ligand	binding	data	samples.

For	chemicals,	we	used	the	well-known	Extended	Connectivity	FingerPrints	(ECFP)	as	the	descriptors.	We

downloaded	the	SMILES	strings	for	each	of	the	compounds	from	the	EBI-ChEMBL	database	and	used	the	rdkit	ibrary

[3]	to	produce	512	length	binary	bit	vectors	to	represent	the	compounds.	Similarly,	for	representing	kinases,	we

downloaded	the	amino	acid	sequences	from	EBI-ChEMBL	in	fasta	format.	From	those	sequences,	we	used	PyBioMed

library	[4]	to	construct	descriptors	of	proteins.	From	this	library,	we	used	the	composition,	transition	and	distribution

features	(calculateCTD	method	from	CTD	module)	and	dipeptide	composition	features

(CalculateDipeptideComposition	method	from	the	AAComposition	module)	as	the	feature	set.	We	simply	concatenated

these	two	feature	vectors	to	build	a	descriptor	for	proteins.

As	a	second	preprocessing	step,	we	removed	those	features	whose	variance	are	below	a	threshold.	For	this,	we	used

the	VarianceThreshold	module	of	the	scikit-learn	library	[5]	with	a	threshold	of	0.1	for	chemicals	and	proteins

separately.	After	this,	we	obtained	descriptors	vectors	of	length	185	and	206	for	chemicals	and	proteins	respectively.

Finally,	we	standardised	the	feature	vectors	separately	to	zero	mean	and	unit	standard	deviation.	Therefore,	at	the

end,	our	final	descriptor	for	a	compound-protein	pair	is	a	vector	of	length	391,	a	simple	concatenation	of	the	above

mentioned	vectors.

Models
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The	machine	learning	models	that	we	use	to	model	the	protein	ligand	binding	data	is	neural	networks	and	gradient

boosted	decision	tree	models.	These	two	models	are	the	best	performing	models	from	a	number	of	other	models	that

we	executed.

The	neural	network	model	we	use	is	a	network	of	two	hidden	layers	of	size	1500	and	400	respectively.	In	addition	to

that	an	input	layer	of	391	and	output	layer	of	a	single	neuron	exist	in	the	network.	The	activation	functions	of	hidden

layers	are	sigmoid	functions	and	the	output	neuron	has	a	linear	activation	function.	We	exploited	the	Keras	library	[6]

to	construct	and	train	this	network.	We	trained	the	network	with	a	batch	size	of	128	for	400	epochs	by	using	ADAM

method	for	the	optimization.

For	gradient	boosted	trees	(GBT),	we	used	the	official	implementation	[7]	of	the	efficient	LightGBM	algorithm	[8].	This

algorithm	usually	works	faster	than	other	GBT	methods	by	exploiting	the	size	of	gradients	for	the	samples	in	the

dataset	and	eliminating	those	that	have	a	small	sized	gradient.	We	used	all	the	default	values	for	the	parameters

except	that	the	number	of	estimators	is	set	to	3960	which	is	the	value	we	found	by	parameter	optimization.

After	training	these	two	models,	the	final	predictions	are	produced	by	a	linear	ensemble	of	these.	The	ensemble	is	a

simple	weighted	model	that	computes	$$(w_1	*	o_{nn}	+	w_2	*	o_{gbt})$$	where	$$(o_{nn})$$	and	$$(o_{gbt})$$	are

the	predictions	of	neural	network	and	GBT	model	for	a	given	test	sample,	respectively.	Based	on	a	simple	parameter

optimization,	we	observed	that	an	equal	weighting	gives	the	best	results,	therefore	we	set	$$(w_1	=	w_2	=	0.5)$$.

Conclusion

This	submission	has	used	one	type	of	binding	data,	the	Kd	values.	In	the	future,	we	plan	to	extend	the	work	here	to

also	exploit	the	other	types	of	binding	data	as	well.	Also	the	performance	can	be	improved	by	extending	the	ensemble

with	other	models.

Author	Contribution	Statement

This	is	a	single	author	submission.

Running	the	docker	image

Please	run	the	following	command	to	run	the	image	associated:

docker	run	-it	--rm	-v	${PWD}/io:/input	-v	${PWD}/io:/output	demo

where	'demo'	represents	the	name	of	the	image	and	'io'	is	a	folder	in	the	host	machine	for	the	input	(the	template.csv

file	in	the	challenge).
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Introduction

Convolutional	neural	networks	(CNNs)	represent	the	current	state-of-the-art	algorithms	in	image	and	video	recognition.

[1]	In	the	recent	years,	CNNs	were	applied	to	predict	bioactivity,[2-3,9]	learn	molecular	fingerprints,[4]	detect	chemical

motifs,[5]	and	predict	properties	of	small	molecules[6].	In	this	work	we	used	SMILES	(Simplified	Molecular	Input	Line

Entry	System)	and	sequences	of	aligned	ATP	binding	sites	(85	amino	acids)	of	protein	kinases	downloaded	from	the

KLIFS	database	containing[7-8]	as	input	for	the	CNNs	to	predict	the	compound-kinase	binding	interactions.	SMILES

are	widely	used	for	encoding	molecular	structures	and	represent	compounds	in	the	form	of	a	string	over	a	fixed	set	of

characters,	describing	all	the	atoms	and	structure	of	small	molecules	including	chirality,	bonds,	aromaticity	and	more.

The	KLIFS	(Kinase-Ligand	Interaction	Fingerprints	and	Structures)[7-8]	database	systematically	aligns	and	process	all

current	human	and	mouse	protein	kinase	structures,	focusing	on	the	interactions	of	ligands	in	the	binding	site	of

protein	kinases,	assessment	of	binding	pockets,	kinase	motifs	and	overall	kinase	and	ligand	properties.	The

representation	of	the	compounds	(SMILES	string)	and	protein	kinases	(aligned	ATP	binding	sites)	in	the	form	of	a	2D

matrix,	allows	CNNs	to	identify	import	motifs	and	map	them	to	compound-kinase	binding	interactions.

Methods

Prediction

The	data	from	ChEMBL	(v24.1),	DrugTargetCommons,	IUPHAR/BPS	Guide	to	pharmacology,	and	literature	was

integrated	and	curated.	The	Kd,	Ki	and	IC50	measurements	in	combination	with	a	protein	kinase	were	filtered	out	and

used	for	training	of	the	CNN.	The	integrated	data	set	comprised	of	298,595	compound-kinase	measurements,	439

unique	kinases	and	101,189	compounds.	The	SMILES	of	the	compounds	and	the	sequences	of	the	ATP	binding	sites

(downloaded	from	KLIFS)	were	one-hot-encoded	and	used	as	input	for	the	2D	convolutional	layers	of	CNN	(Figure	1).

The	CNN	comprised	of	a	single	2D	convolutional	and	2D	max	pooling	layer	for	the	SMILES	(shape=33,156,1)	and

single	2D	convolutional	and	2D	max	pooling	layer	for	the	sequences	(shape=21,85,1).	The	convolutional	layers	used

64	filters.	After	both	max	pooling	layers,	dropout	(0.5)	was	applied.	The	output	of	the	dropouts	was	given	to	dense

layers,	each	with	256	nodes.	In	addition	to	these	layers,	2	dense	layers	were	used	-	one	received	ECFP-4	fingerprints

as	input	and	the	other	received	kinase	family	as	input	(one-hot	encoded).	By	complementing	the	one-hot	encoding	of

SMILES	with	a	chemical	fingerprint	such	as	the	ECFP-4,	the	chemical	information	can	probably	be	better	encoded	into

features	for	the	CNN.	The	output	of	all	described	layers	was	concatenated	and	given	to	a	dense	layer	with	32	nodes.

A	dropout	of	0.4	was	applied	and	the	output	was	given	to	the	output	layer.
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Figure	1.	The	convolutional	neural	network	used	to	predict	the	compound-kinase	binding	interactions.

Refinement

After	applying	the	model	the	predicted	pKd	values	were	further	refined	using	literature	data	from	both	DTC/ChEMBL

and	the	KiEO	(Kinase	Experiments	Omnibus	(http://tanlab.ucdenver.edu/KIEO/KIEOv1.0/).	This	simplistic	refinement

approach	was	applied	as	follows	for	each	kinase-compound	pair:

1.	 If	one	or	more	fully	characterized	(p)Kd/(p)Ki/(p)IC50	values	were	available	from	literature	the	median	value	was

used	instead	of	the	prediction.

2.	 If	step	1	was	not	applied	,	then	all	(p)Kd/(p)Ki/(p)IC50	values	for	highly	similar	compounds	for	the	same	kinase

target	(Tanimoto	score		0.6	using	the	Morgan	fingerprint	RDKit)	were	collected	and	the	minimum,	maximum	and

average	were	calculated.	If	no	data	for	similar	compounds	was	available,	then	the	following	step	was	applied.	If

the	difference	between	the	maximum	and	the	minimum	value	was	smaller	than	0.1,	the	minimum	and	maximum

values	were	changed	to	the	average	value	-	0.5	and	+	0.5,	respectively	to	account	for	potential	larger	variations	in

the	data.	Subsequently,	if	the	predicted	value	was	outside	the	range	of	the	current	minimum	and	maximum	value,

the	predicted	value	changed	to	the	average	value.

3.	 If	none	of	the	previous	steps	were	applied	and	a	minimum	expected	pKd	value	was	available	(from	the	single

concentration	KINOMEscan	for	the	PKIS2	dataset	[10]	),	then	the	predicted	value	was	increased	with	0.5	if	the

predicted	value	was	below	the	minimum	expected	pKd	value.

4.	 If	none	of	the	previous	steps	were	applied	and	the	predicted	pKd	value	was	higher	than	6	the	prediction	was

scaled	up:	predpKD	+	(predpKD-6)*0.5.	This	step	performed,	as	we	noticed	that	the	predictions	for	which

literature	data	was	available	(step	1)	the	predicted	value	was	overall	lower	than	the	literature	values.

Finally,	to	correct	for	outliers	values	above	>	9.5	were	scaled	down	to	9.5.	As	no	values	below	5	were	present,	not

lower	limit	was	applied.

The	literature	data	applied	in	steps	1-3	is	available	here:	https://www.synapse.org/#!Synapse:syn18635344
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Conclusion

Here	we	show	that	by	using	an	unbiased	approach	to	train	a	CNN	network	with	2D	convolutional	layers,	we	are	able	to

predict	the	bioactivity	of	compounds	with	a	RMSE	of	1.125	and	a	rounded	average	AUC	of	0.658.	Despite	this,	the	low

spearman	correlation	(0.259)	indicates	that	the	model	was	probably	overfitted	and	requires	further	optimization	and

validation.
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1.	Summary

This	project	contains	the	submission	2	(objectID	9686285)	method	from	Q.E.D	team,	for	both	sub-challenges	of	IDG-

DREAM	Drug-Kinase	Binding	Prediction	Challenge	round2.

2	.Methods	-	submission	2	(objectID	9686285)

2.1	Data	pre-processing

Generally,	we	used	the	compound-protein	affinity	data	from	Drug	Target	Commons	(DTC)	(Tang	J,	Ravikumar	B,

Alam	Z,	et	al.	DrugTargetCommons:a	community	effort	to	build	a	consensus	knowledgebase	for	drug-target

interactions.	Cell	Chemical	Biology,	2018,	25(2):224-229.e2.)	(downloaded	from

https://www.synapse.org/#!Synapse:syn17017461).

2.1.1	Used	compounds:

Among	the	compounds	curated	in	DTC,	we	only	considered	compounds	that	(1)	have	CHEMBL	ID	or	(2)	have	PKD

affinity.	Compounds	that	have	CHEMBL	ID	have	structure	information	encoded	by	InChI	or	SMILES	(stored	in	DTC).

Compounds	that	have	PKD	affinity	are	encoded	as	InChIkey	in	DTC.	We	used	PubChem	Identifier	Exchange	Service

(https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi)	to	map	InChIkey	to	corresponding	SMILES	(stored	as

"DTC_pkd_inchikey_to_smiles"	in	the	data	folder	in	docker).

2.1.2	Used	proteins:

Among	the	proteins	curated	in	DTC,	we	only	considered	proteins	that	(1)	have	Uniprot	ID	and	were	labeled	as	kinase

in	Uniprot	or	(2)	came	from	round_2_template.csv	(i.e.,	test	compounds,	downloaded	from

https://www.synapse.org/#!Synapse:syn16809885).

2.1.3	Used	affinities:

Among	the	binding	affinity	pairs	curated	in	DTC,	we	only	considered	the	pairs	that	satisfied	the	following	conditions:
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(1)	compounds	that	came	from	2.1.1;	(2)	proteins	that	came	from	2.1.2;	(3)	the	binding	affinity	measurement	type	was

Ki	or	KI	or	Kd	or	KD	or	EC50	or	PKD;	(4)	the	binding	affinity	measurement	relation	was	"="	(i.e.,	equal);	(5)	if	the

binding	affinity	measurement	type	was	Ki	or	KI	or	Kd	or	KD	or	EC50,	the	standard	unit	should	be	"NM";	(6)	In	DTC

dataset,	each	row	represents	a	binding	affinity,	the	"target	id"	column	(i.e.,	the	fifth	column)	should	contain	only	one

Uniprot	ID,	otherwise	(e.g.,	multiple	Uniprot	IDs)	we	did	not	use	this	row.

We	used	the	binding	affinity	pairs	that	satisfied	the	above	conditions.	Then,	for	the	pairs	that	had	the	type	Ki	or	KI	or

Kd	or	KD	or	EC50,	we	converted	the	binding	affinity	x	using	the	transformation:	-log10	(x	/	10
9).	For	pairs	that	had	the

type	PKD,	we	did	not	do	such	transformation.	Some	compound-protein	pairs	can	have	multiple	binding	affinities.	In

such	cases,	the	median	of	the	binding	affinities	was	used.	Note	that,	the	median	operation	was	applied	after	the	-log10

(x	/	109)	transformation.

After	the	above	pre-processing,	the	total	number	of	compounds	we	used	in	training	process	is	13,608;	the	total

number	of	proteins	we	used	in	training	process	is	527;	and	the	total	number	of	binding	affinities	we	used	in	training

process	is	60,462.

2.2	Prediction	method

Under	the	problem	setting	that	requires	fine-grained	discrimination	between	similar	compounds	or	targets,	we	found

the	explicit	introduction	of	similarity	metrics	as	model	input	generally	outperformed	other	more	complex	model

architectures	that	attempt	to	organize	representative	features	from	scratch.	In	particular,	we	defined	a	comprehensive

set	of	compound	structure	similarity	and	protein	sequence	similarity	metrics	as	the	input	of	our	model.	Then,	we

leveraged	CGKronRLS	method	(Pahikkala	T.	Fast	gradient	computation	for	learning	with	tensor	product	kernels	and

sparse	training	labels[C]//Joint	IAPR	International	Workshops	on	Statistical	Techniques	in	Pattern	Recognition	(SPR)

and	Structural	and	Syntactic	Pattern	Recognition	(SSPR).	Springer,	Berlin,	Heidelberg,	2014:	123-132.)	(implemented

in	Pahikkala	T,	Airola	A.	RLScore:	regularized	least-squares	learners[J].	The	Journal	of	Machine	Learning	Research,

2016,	17(1):	7803-7807.	https://github.com/aatapa/RLScore)	as	the	regression	model	to	predict	the	binding	affinity.

2.2.1	Features	of	compounds

We	computed	the	following	compound	similarity	matrices	as	compound	features	(computed	by	RDKit:

https://github.com/rdkit/rdkit):

1:	Tanimoto	similarity	of	morgan	fingerprint	with	arguments	radius=2,	nBits=1024,	useChirality=True.

2:	Tanimoto	similarity	of	morgan	fingerprint	with	arguments	radius=2,	nBits=1024,	useChirality=False.

3:	Tanimoto	similarity	of	morgan	fingerprint	with	arguments	radius=3,	nBits=1024,	useChirality=True.

4:	Tanimoto	similarity	of	morgan	fingerprint	with	arguments	radius=3,	nBits=1024,	useChirality=False.

5:	Dice	similarity	of	morgan	fingerprint	with	arguments	radius=2,	nBits=1024,	useChirality=True.

6:	Dice	similarity	of	morgan	fingerprint	with	arguments	radius=2,	nBits=1024,	useChirality=False.

7:	Dice	similarity	of	morgan	fingerprint	with	arguments	radius=3,	nBits=1024,	useChirality=True.

8:	Dice	similarity	of	morgan	fingerprint	with	arguments	radius=3,	nBits=1024,	useChirality=False.

2.2.2	Features	of	proteins

We	computed	the	protein	similarity	matrix	as	protein	features	(computed	by	https://github.com/mengyao/Complete-

Striped-Smith-Waterman-Library).	Specifically,	protein	similarity	is	defined	as	the	normalized	Striped-Smith-Waterman

similarity.	Let	sw(s1,	s2)	be	the	alignment	score	of	Striped-Smith-Waterman	algorithm	between	protein	sequences	s1

and	s2.	The	protein	similarity	between	s1	and	s2	can	be	defined	as	sw(s1,	s2)	/	sqrt(sw(s1,	s1)	*	sw(s2,	s2)).
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2.2.3	Regression	model

We	used	CGKronRLS	as	the	regression	model.	It	took	the	compound	and	protein	similarity	matrices	as	input	and

output	the	binding	affinity.

2.2.4	Model	ensemble

Instead	of	using	single	model,	we	used	the	ensemble	of	multiple	CGKronRLS	(with	different	iterations,	regularization

parameters	and	input	features)	models.	We	ensembled	440	CGKronRLS	models	with	the	following	setting:	protein

feature	∈	{the	protein	similarity	matrix	from	2.2.2}	x	compound	feature	∈	{eight	compound	similarity	matrices	from

2.2.1}	x	regularization	parameter	of	CGKronRLS	∈	{0.1,	0.5,	1.0,	1.5,	2.0}	x	iteration	of	CGKronRLS	∈	{400,	410,	420,

430,	440	,450,	460,	470,	480,	490,	500},	where	x	means	cartesian	product.

After	training	the	440	CGKronRLS	models,	we	averaged	the	predictions	among	them	to	produce	the	final	prediction.

3.	Testing	environment

Submission	2	(objectID	9686285)	model	was	trained	and	tested	on	a	server	with	the	following	configuration:	System

version:	Ubuntu	16.04.2	LTS;	Cores:	Intel(R)	Xeon(R)	CPU	E5-2630	v3	@	2.40GHz,	32	in	total;	Memory:	264024700

kB.

4.	Running	the	final	model

To	run	our	docker	image	and	get	only	the	final	output	file	for	our	submission	2	(objectID	9686285),	run	the	following

command:

$	docker	run	-it	--rm	-v	${PWD}/input:/input	-v	${PWD}/output:/output	
docker.synapse.org/syn18519352/qed-sub2:9686285

To	run	our	docker	image	and	get	all	the	output	files	of	intermediate	processes	for	our	submission	2	(objectID

9686285),	run	the	following	command:

$	docker	run	-it	--rm	-v	${PWD}/input:/input	-v	${PWD}/output:/output	-v	
${PWD}/data:/data	-v	${PWD}/SW_based_prediction:/SW_based_prediction		
docker.synapse.org/syn18519352/qed-sub2:9686285

5.	Author	contribution

F.W.,	S.L.,	Y.L.,	H.H.,	J.P.,	and	J.Z.	conceived	the	method.	F.W.	and	S.L.	conducted	the	data	pre-processing.	F.W.,

S.L.,	Y.L.	and	H.H.	calculated	the	features.	F.W.	and	S.L.	wrote	and	ran	the	regression	model.	S.L.	prepared	the

docker	with	the	help	of	F.W.	F.W.	wrote	the	writeup	with	support	from	all	authors.
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In this challenge given a training drug-target affinity matrix, the task is to estimate
the empty cells in the matrix. We evaluate several approaches on benchmark databases
of similar problems where the ground-truth is available and suggest to use the best on
the validation datasets, deep learning models, to tackle the challenge.

1 Introduction
Protein kinases are enzymes that catalyze phosphorylation reactions within the cells,
thus regulating cell function. More than 500 kinases have been identified, representing
approximately 2% of the human genome [6]. About 30% of human proteins may be
modified by kinase activity [8], making kinases attractive targets for drug interventions.
Measuring drug-kinase interactions through clinical trials is costly and time-consuming
[3, 7]. Estimating the strength of the interactions for novel couples of drug-kinase
based on the interactions already measured becomes an important alternative, where
the challenge is a crowd effort.

Apparently the challenge could be considered as a collaborative filtering problem
(CF). For example, in movie ratings as in the Nexflix competition1, the rating for a
couple of movie-user is learned, or collaboratively filtered, from the ratings by the
movies/users similar to the given movie/user. The lesson from Nexflix competition is
that if the number of training user-movie ratings is big enough, external information for
users or movies does not make significantly contribution to the recommendation sys-
tems. However this is not always the case for drug-target binding prediction problem,
where the affinity available is often sparse.

Another approach is kernel based, as in [2, 1]. In these work, kernels for drugs and
targets are built from their molecular descriptors, input into a regularized least squares
regression model (RLS) to predict the binding affinity.

For the challenge, the information of drugs, which are novel, is limited, making it
difficult to compute biologically sensible kernels or similarity matrices among drugs,
and hence the performance of CF or kernel-based methods could be compromised. It

1https://www.netflixprize.com/rules.html
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is worse, or even inapplicable, when the drugs/proteins in the couples to be predicted
the affinity are not in the training sets.

On the other hand, deep learning based modeling becomes a suitable approach
when only 1D representation for drugs (SMILES) and proteins (sequences) is provided.
Then the model learned from training data can predict the affinity for couples of drugs-
targets in testing data with their 1D representation provided, regardless they are in the
training data or not.

2 Methods
2.1 Collaborative filtering (CF)
For drug-target binding prediction problem, from the training affinity matrix we could
build similarity matrices for both drugs and targets. Any distance measure can be used
to calculate the similarity, e.g., cosine or correlation. With these similarity matrices at
hand we can run drug-based or target-based filtering to estimate the binding power for
unknown drug-target couples.

For example, for drug-based collaborative filtering, for an input couple (d,t), its
affinity is estimated as the weighted sum of all other drug’s affinity for target t where
the weighting is the cosine similarity between d and other drugs. Similarly, for target-
based collaborative filtering, for the same input couple (d,t), the affinity for the couple
is estimated as the weighted sum of all other targets’ affinity for drug d where the
weighting is the cosine similarity between t and other targets.

âdt =

P
d0 sim(d, d0)ad0tP

d0 sim(d, d0)

âdt =

P
t0 sim(t, t0)adt0P

t0 sim(t, t0)

To void noise, instead of all, top K most similar drugs or targets can be used to
estimate the affinity.

Another problem is that the scale of affinity differ among drugs and targets, i.e.,
some drugs have extreme low or high affinity for all targets. So a relative difference
from the average can be used instead of the absolute affinity.

âdt = ād +

P
d0 sim(d, d0)(ad0t � ād0)P

d0 sim(d, d0)

âdt = āt +

P
t0 sim(t, t0)(adt0 � āt0)P

t0 sim(t, t0)

where ād and āt is the average affinity for drug d and target t, respectively.
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Figure 1: Represent a couple of drug-target through its neighbors in both drugs and
targets.

Joint similarity collaborating filtering (joint-sim CF) While the above CF models
suggest use either drugs or targets similarity to recommend affinity for a novel couple
of drug-target, we suggest to use both for the task. In particular, given a couple of drug-
target needs evaluating the affinity, we can represent it through the affinity scored by its
K neighbors, in both drugs-based and targets-based. An example is shown in Figure 1,
where K=5: the couple of (drug_id, target_id) is represented by SDR1,...,SDR5 – the
affinity with target_id scored by K drugs closest to drug_id and STG1,...,STG5 – the
affinity with drug_id scored by K targets closest to target_id.

2.2 Kernel based (KronRLS)
Given the problem is to predict the affinity for n drugs and m targets, there would be
n*m combinations of them and the kernel would be in the size of (n⇤m)2. To speed up
model training, Cichonska et al. [2, 1] suggest to use KronRLS (Kronecker regularized
least-squares). In KronRLS, a pairwise kernel K is computed as the Kronecker product
of compound kernel of size n*n and protein kernel of size m*m.

2.3 Deep learning
2.3.1 Auto-encoder (DL_AE)

Auto-encoder based modeling is claimed to be state-of-the-art model for Netflix dataset2.
In this approach, the training affinity matrix is assumed to be fully filled and is the in-
put, and output, for an auto-encoder, as shown in Figure 2. Then the loss function is
adjusted for ignoring not-in-the-train cells.

2.3.2 Embedded nodes in bipartite graph (DL_bipartite)

We consider the training affinity matrix as a bipartite graph and learn a continuous
feature representation for drugs and targets by node2vec [5] for the graph, as illustrated
in Figure 3a. Then the node vectors are concatenated in a neural network to predict the
affinity for testing data, as shown in Figure 3b.

2https://paperswithcode.com/sota/collaborative-filtering-on-netflix
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Figure 2: Auto-encoder of drug-target affinity matrix.

2.3.3 External information: SMILES and sequences (DL_1D)

No external information is used in the two deep learning models DL_AE and DL_bipartite.
However, in the testing data provided by the organizer, for drugs, SMILES strings is
given, and for targets, protein sequences can be retrieved with the UniProt_Id given
3. These strings can be seen as 1D representation for drugs and proteins, input into a
neural network to learn a model to predict the binding affinity for novel drug-kinase
couples, as shown in Figure 4. In the figure, input_1 and input_2 are drugs and targets,
respectively. As these are in 1D representation, layers of 1D convolutions and pooling
are used to capture potential patterns in the inputs. They are then concatenated, sent
through regularized layers of Dropout, and finally regressed with the training affinity.

3 Model validation
To seek a good model for the challenge we experimented the candidate models above
with benchmark datasets of similar problems.

3.1 Datasets
Two datasets were used to evaluate the models:

- Davis dataset: binding affinities observed for all pairs of 72 drugs and 442 targets,
measured by Kd value (kinase dissociation constant) [4].

3https://www.uniprot.org/uniprot

4



(a) Learning a dense representation for drugs and targets, preserving their similarity in the
bipartite graph.

(b) Drug and target vectors as input for
building a model to predict the affinity.

Figure 3: Predicting binding affinity through the bipartite graph.

Model rmse Spearman corr
CF 1.28 0.46

DL_AE 0.86 0.27
joint-sim CF 0.69 0.57
KronRLS 0.58 0.69

DL_bipartite 0.56 0.65
DL_1D 0.51 0.68

(a) For Davis dataset. Best result is in bold.

Model (Kiba) rmse Spearman corr
CF 4.29 0.21

DL_AE 2 0.31
KronRLS 0.6 0.74

joint-sim CF 0.55 0.76
DL_bipartie 0.53 0.78

DL_1D 0.43 0.85
(b) For Kiba dataset. Best result is in bold.

Table 1: Prediction performance.
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Figure 4: Predicting the affinity using external information.

- Kiba dataset: binding affinities for 2,116 drugs and 229 targets [9].
80% of data instances were used for training and 20% were for testing the models.

Same data splitting was used for learning all the models.

3.2 Results
The result for all models mentioned above on the two datasets is presented in Table 1.
DL_1D is best in two measures for Kiba dataset. It is also best in RMSE and second
best in Spearman correlation for Davis dataset.

4 Model and data for the challenge
As DL_1D performs really well in the two benchmark datasets, we choose it as the
model for the challenge.

Model is now trained on Drug Target Commons (DTC) data [10]. Only those tu-
ples with the standard_type of ["KD","Kd","KD’", "PKD"] is selected. For those with
["KD","Kd","KD’"], the standard value is converted to pKd unit. 55,816 compound-
protein pairs were included in this training data for 13,651 distinct compounds and
1,489 distinct proteins.

Model is validated on all Davis data [4]. There are 30,056 compound-protein pairs
in this validation data.

The model gaining smallest RMSE for validation data is then used to predict the
affinity for testing data.
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5 Running model
- On GPUs:

docker login docker.synapse.org docker run --runtime=nvidia -it -v ${PWD}/io_gpu:/output
docker.synapse.org/syn18518883/my-model:gpu

- On CPUs:
docker login docker.synapse.org docker run -it -v ${PWD}/io_cpu:/output docker.synapse.org/syn18518883/my-

model:cpu
- Notes:
For running on GPUs, ‘nvidia-docker’ should be installed4.
For our computers, training on GPUs is about 4.5 times faster than on CPUs, 4,003

seconds versus 18,078 seconds.
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Team:Boun	-	DeepDTA:	Deep	Drug	Target	Binding
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Abstract

For	the	IDG-DREAM	Drug-Kinase	Binding	Prediction	Challenge,	we	adopted	a	deep-learning	based	approach	named

DeepDTA	[1]	that	was	previously	introduced	by	our	team.	DeepDTA	aims	to	predict	interaction	strenghts	of	protein-

compound	pairs	by	utilizing	Convolutional-Neural	Network	(CNN)	blocks.	These	blocks	learn	high-level

representations	of	proteins	and	compounds	from	their	respective	sequences.	We	employed	DeepDTA	with	default

parameter	settings	to	predict	binding	affinities	of	Kinase-drug	interactions.	The	source	code	for	DeepDTA	is	available

here:	https://github.com/hkmztrk/DeepDTA

Introduction

The	IDG-DREAM	Drug-Kinase	Binding	Prediction	Challenge	aims	to	address	the	task	of	predicting	affinities	of	the

interactions	between	Kinases	and	drugs	in	terms	of	Kd	(dissociation	constant)	values	.	The	challenge	consisted	of

three	Rounds,	Round1,	Round1b,	and	Round2.	We	participated	in	Round1	and	Round2.	In	both	rounds,	we	used	the

DeepDTA	model	as	the	prediction	system.	In	Round1,	we	obtained	our	best	performance	with	the	public	dataset	Davis

[2]	as	training	dataset,	whereas	in	Round2,	we	obtained	our	best	performance	with	the	filtered	subset	of	Drug	Target

Commons	(DTC)	dataset.	Here	we	discuss	the	results	of	our	best	performance	in	Round2.

Methods

Training	and	test	data

We	used	Drug-Target	Commons	(DTC)	as	our	training	data	set.	We	filtered	the	original	dataset	based	on	the	activity

types	that	are	related	to	Kd	(e.g.,	pKd,	log	Kd	)	and	converted	them	to	pKd,	values.	After	the	filtration,	we	obtained	total

50181	interactions	between	1353	proteins	and	11902	targets.	We	will	refer	to	this	dataset	as	(DTC_filtered)	from	now

on.	As	for	test	dataset,	the	dataset	provided	for	Round2	was	used.	Table	1	summarizes	the	training	and	test	datasets.

Data #interactions #proteins #drugs

Training 50181 1353 11902

Round2	Test 394 25 207

DeepDTA	requires	the	sequence	information	of	proteins	and	drugs	in	order	to	perform	prediction.	For	both	datasets,

SMILES	information	for	the	drugs	were	available.	Whereas	for	proteins,	we	utilized	Python	Bioservices	[3]	to	collect

protein	sequences	from	the	UniProt	[4]	database	using	respective	UniProt	IDs	of	the	proteins.

Prediction	Model

In	this	challenge,	we	adopted	DeepDTA	model	[1]	which	is	a	Convolutional	Neural	Network	(CNN)	based	architecture

to	predict	binding	affinities	of	drug-target	interactions.	The	model	consists	of	two	respective	CNN	blocks,	each	learning



Page	2/3

high	level	representations	from	the	sequences	of	proteins	and	drugs.	The	model	combines	these	vectors	into	a	single

protein-drug	representation.	Finally,	the	concatenated	representation	is	fed	into	a	Fully-Connected	Feed	Forward

Neural	Network	that	consists	of	three	layers	with	two	dropout	layers	in	between.	Figure	1	below	illustrates	the

architecture	of	the	DeepDTA	model.

Figure	1:	The	summary	of	the	DeepDTA	architecture

We	trained	the	model	using	the	whole	training	data	that	we	obtained	after	filtering	(DTC_filtered)	using	the	default

parameter	setting.	Table	2	reports	the	default	values	of	parameters	that	we	utilized.

Parameter value

Num.	kernels 32,	64,	96

Protein	kernel	size 8

Drug	kernel	size 4

Batch	size 256

Num.	epoch 100

Dropout 0.1

FC 1024,	1024,	512

Keras	[5]	with	Tensorflow	[6]	background	is	employed	to	build	and	train	the	DeepDTA	model.

Conclusion

DeepDTA	obtained	values	of	1.156	and	0.652	in	terms	of	RMSE	and	AUC	metrics	in	Round2	which	scored	average

places	in	the	Leaderboard.	Since	the	model	was	trained	with	default	values	without	any	fine-tuning,	the	model
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achieves	a	promising	results	using	only	sequence	information	of	proteins	and	compounds.
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Docker	Instructions

Note:	You	have	to	place	"input.csv"	under	the	same	directory	as	"Dockerfile"

docker	build	-t	docker.synapse.org/syn18507647/deepdta:9686233	.

docker	run	-t	-d	-v		[your-dir]:/output		
docker.synapse.org/syn18507647/deepdta:9686233

docker	run	-it	--rm	-d	-v	[your-dir]:/output	-v		[your-dir]:/input	
docker.synapse.org/syn18507647/deepdta:9686233
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Abstract

Our	model	utilizes	random	forest	for	predicting	the	pKd	by	Circular	Fingerprints	of	SMILES	of	drugs	and	inhibition	data

of	proteins.

Introduction

Previous	studies	of	prediction	of	pKd	usually	used	structure	or	sequence	data	of	protein.	However,	these	methods	cost

lots	of	time	to	predict;	furthermore,	some	of	proteins	do	not	have	structure	data.	Experiments	of	measure	pKd	are

hard,	but	to	measure	inhibition	data	of	a	protein	and	a	drug	is	much	more	easier	and	faster.	Here,	we	developed	novel

method	to	predict	the	pKd	by	Circular	Fingerprints	of	SMILES	of	drugs	and	inhibition	data	of	proteins.

Methods

Our	model	utilizes	random	forest	for	predicting	the	pKd	by	Circular	Fingerprints	of	SMILES	of	drugs	and	inhibition	data

of	proteinÂ˜s.

pKds	,	SMILES	of	drugs,	proteins	were	obtained	on	Drug	Target	Commons	[1].	Circular	Fingerprints	(Morgan

Fingerprints)	were	achieved	from	SMILES	of	drugs	by	RDKit	[2,	3].	Inhibition	data	of	proteins	was	obtained	from	Jing

Tang	et	al.	and	David	H.	Drewry	et	al.	[1,	4].	Inhibition	data	of	the	specific	protein	and	the	specific	drug	and	circular

Fingerprint	of	the	specific	drug	as	feature	for	following	training.	Training	set	and	testing	set	were	randomly	split	as	70%

and	30%	Random	forest	was	used	to	predicting	the	pKd	using	inhibition	data	of	the	specific	protein	and	the	specific

drug	and	circular	Fingerprint	of	the	specific	drug	as	feature.	Training	set	was	used	for	building	model,	and	testing	set

was	used	for	testing	the	model.	AUC,	F1,	RMSE,	pearson	correlation	coefficient,	spearman	correlation	coefficient

were	used	for	evaluating	the	model	performance.

Result

Performance	of	testing	set	was	following:	AUC	0.98,	F1	0.92,	RMSE	0.47,	pearson	correlation	coefficient	0.95,

spearman	correlation	coefficient	0.95.	Fig.	1	was	the	plot	of	predicted	pKd	and	reference	pKd.	Table	1	was	result	of

round	1b,	and	Table	2	was	result	of	round	2.
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Fig.	1	plot	of	predicted	pKd	and	reference	pKd

Table	1	Result	of	round	1b

Table	2	Result	of	round	2

Usage	of	code

A.	Following	is	demo	of	constructing	docker	of	N121	and	run	docker	of	N121

(A)	Download	"data"	folder	(let	the	location	be	C:\idg\data)

(B)	In	cmd

cd	C:\idg\data
docker	build	-t		docker.synapse.org/syn18507261/n121_idg:9686281	.
docker	login	-u	<user_ID>	-p	<password>	docker.synapse.org
docker	push	docker.synapse.org/syn18507261/n121_idg:9686281
docker	run	-it	--rm	-v	C:/idg/data/io:/output	
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docker.synapse.org/syn18507261/n121_idg:9686281

(C)	local	directory	io	has	template.csv	and	after	running	will	contain	predictions.csv
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Abstract

For	the	drug	kinase	binding	prediction	DREAM	challenge,	we	trained	a	deep	convolutional	neuronal	network	with	the

DTC	dataset	and	three	features	for	the	proteins	as	well	as	three	features	for	the	chemical	compounds	as	input.

Hyperparameters	(e.g.	number	and	size	of	hidden	layers)	were	determined	by	random	search	on	a	parameter	grid.

Training	data	and	features

As	suggested	by	the	challenge	organisers,	training	data	was	extracted	from	the	DTC	dataset	(Jing	Tang,	Balaguru

Ravikumar,	Zaid	Alam,	Anni	Rebane,	Markus	Vähä-Koskela,	Gopal	Peddinti,	Arjan	J	van	Adrichem,	Janica	Wakkinen,

Alok	Jaiswal,	Ella	Karjalainen,	et	al.	Drug	target	commons:	a	community	effort	to	build	a	consensus	knowledge	base

for	drug-target	interactions.	Cell	chemical	biology,	25(2):224–229,	2018).	To	describe	the	proteins,	we	used	the	protein

sequence,	the	species,	and	presence	of	selected	protein	domains	as	features.	Features	describing	compounds	are

the	canonical	SMILES	sequence,	the	MACCS	166	keys	(MDL	Information	Systems.	Maccs	keys.)	and	a	1024	bit

molecular	fingerprint	computed	by	the	RDKit	chemoinformatics	software	(Open-source	cheminformatics.

http://www.rdkit.org).

Filtering	and	preprocessing	of	the	DTC	dataset

We	selected	Inchi	keys	and	Uniprot	ids	as	primary	identifiers	for	the	compounds	and	target	proteins,	respectively.	For

the	DTC	data,	we	first	complemented	missing	Inchi	keys	by	requesting	Chembl	using	the	compound	ids.	Next	we

filtered	the	data	by	value	type	for	Kd	and	similar	values	( standard_type 	in	["KD","Kd","KI","Ki","pKD"]),

concentration	units	( standard_units 	in	["NM",	"MM",	"UM",	"M",	"NMOL/L"]).	We	further	excluded	measurements

on	protein	complexes,	and	requested	the	relation	to	be	equal	( standard_relation 	'=').	Then	we	transformed	all

concentrations	to	pKd[M].	Mutated	proteins	were	kept,	but	to	avoid	ambiguity	of	the	protein	id,	we	added	the	mutation

descriptions	to	the	uniprot	id.	Finally,	we	exported	the	relevant	columns,	the	protein	and	compound	id	as	well	as	the

pKD[M]	transformed	value	as	tab	separated	text	for	easy	import.	From	these	dataset,	we	used	two	different	subsets	to

train	our	models:	a	first	subset	complete	containing	all	data	points	from	the	dataset	described	above	and	a	second

subset	human	kinases	containing	only	the	data	points	involving	human	kinases.	Details	of	the	used	datasets	can	be

seen	in	Table	1

dataset #	instances #	unique	compounds #	unique	proteins

complete 2,185,412 821,046 6,032

human	kinases 215,697 110,431 467

Table	1:	Training	datasets

Kinase	features

For	the	Proteins	we	considered	three	different	features:	the	protein	sequence,	the	species,	and	the	presence	of

different	kinase	domains.	We	obtained	the	protein	sequence	as	well	as	the	species	from	a	uniprot	fasta	file	as	well	as



Page	2/5

web	requests	for	proteins	missing	in	the	fasta.	For	mutated	proteins,	we	altered	the	protein	sequence	according	to	the

mutation.	Then	we	ran	InterProScan	(Philip	Jones,	David	Binns,	Hsin-Yu	Chang,	Matthew	Fraser,	Weizhong	Li,	Craig

McAnulla,	Hamish	McWilliam,	John	Maslen,	Alex	Mitchell,	Gift	Nuka,	et	al.	Interproscan	5:	genome-scale	protein

function	classification.	Bioinformatics,	30(9):1236–1240,	2014.)	on	the	protein	sequence	to	determine	the	domain

structure.	We	selected	domains	related	to	GO:0004672	('protein	kinase	activity')	which	were	present	in	at	least	100

proteins	from	the	DTC	dataset	to	be	considered.

Compound	features

The	three	features	we	considered	for	the	chemical	compounds	were:	the	SMILES	sequence,	the	MACCS	166	keys

and	a	1024	bit	molecular	fingerprint.	In	order	to	obtain	consistent	features,	we	used	the	RDKit	chemoinformatics

software	to	produce	and	canonicalize	SMILES.	The	same	software	was	used	to	produce	the	fingerprint	and	the

MACCS	keys.

Model	description

Model	architecture

We	used	a	deep	neuronal	network	architecture	to	predict	the	target	value.	For	the	protein	sequences	as	well	as	the

SMILES	we	used	one	to	three	convolutional	layers,	followed	by	one	to	three	dense	hidden	layers.	The	remaining

features,	e.g.	the	protein	domains	and	the	species	corresponding	to	the	proteins,	as	well	as	the	MACCS	keys	and

1024	bit	molecular	fingerprint	for	the	compounds,	were	modelled	by	one	to	three	dense	layers.	The	output	of	all	6

feature	networks	were	concatenated	and	integrated	by	one	to	three	hidden	layers,	resulting	in	a	single	output	node

representing	the	target	value.	The	overall	network	is	shown	in	Figure	1.	Our	model	framework	is	implemented	in

Python,	based	on	Keras	(François	Chollet	et	al.	Keras.	https://keras.io,	2015.)	and	Tensorflow	(Martín	Abadi,	Ashish

Agarwal,	Paul	Barham,	Eugene	Brevdo,	Zhifeng	Chen,	Craig	Citro,	Greg	S.	Corrado,	Andy	Davis,	Jeffrey	Dean,

Matthieu	Devin,	Sanjay	Ghemawat,	Ian	Goodfellow,	Andrew	Harp,	Geoffrey	Irving,	Michael	Isard,	Yangqing	Jia,	Rafal

Jozefowicz,	Lukasz	Kaiser,	Manjunath	Kudlur,	Josh	Levenberg,	Dandelion	Mané,	Rajat	Monga,	Sherry	Moore,	Derek

Murray,	Chris	Olah,	Mike	Schuster,	Jonathon	Shlens,	Benoit	Steiner,	Ilya	Sutskever,	Kunal	Talwar,	Paul	Tucker,

Vincent	Vanhoucke,	Vijay	Vasudevan,	Fernanda	Viégas,	Oriol	Vinyals,	Pete	Warden,	Martin	Wattenberg,	Martin

Wicke,	Yuan	Yu,	and	Xiaoqiang	Zheng.	TensorFlow:	Large-scale	machine	learning	on	heterogeneous	systems,	2015.

Software	available	from	tensorflow.org.)	libraries	as	well	as	the	scikit-learn	(F.	Pedregosa,	G.	Varoquaux,	A.	Gramfort,

V.	Michel,	B.	Thirion,	O.	Grisel,	M.	Blondel,	P.	Prettenhofer,	R.	Weiss,	V.	Dubourg,	J.	Vanderplas,	A.	Passos,	D.

Cournapeau,	M.	Brucher,	M.	Perrot,	and	E.	Duchesnay.	Scikit-learn:	Machine	learning	in	Python.	Journal	of	Machine

Learning	Research,	12:2825–2830,	2011.)	machine	learning	package.	We	trained	the	networks	on	a	single	server	with

a	40-core	Intel(R)	Xeon(R)	CPU	E5-2640	processor,	128	GB	of	memory	and	GeForce	GTX	TITAN	X	GPU	using	the

NVidia	CUDA	platform.
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Figure	1:	Final	network	architecture

Hyperparameter	fitting

To	find	the	best	working	parameters	for	our	CNN	we	performed	a	random	search	on	the	paramter	grid	shown	in	Table

2.	To	score	our	models	we	performed	a	test	on	a	hold-out-dataset	containing	a	small	proportion	of	compounds	not

present	in	the	training	data.	For	the	round	2	submission	we	selected	the	best	performing	model	trained	on	the	human

kinases	dataset	as	well	as	the	best	model	trained	on	the	complete	dataset	(see	Table	1)



Page	4/5

Table	2:	Range	for	hyperparameters
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Prediction	using	Docker

To	create	the	predictions	of	submission	with	objectId	$9686208$	run:

docker	run	-v	${PWD}/io/:/input/	-v	${PWD}/io/:/output/	
docker.synapse.org/syn18502700/ml-med:9686208

To	create	the	predictions	of	submission	with	objectId	$9686266$	run:

docker	run	-v	${PWD}/io/:/input/	-v	${PWD}/io/:/output/	
docker.synapse.org/syn18502700/ml-med:9686266

Experimental	Results

On	held	out	validation	data	from	DTC	the	models	are	able	to	predict	the	target	value	and	reaching	a	RMSE	under	0.8,

and	$\varnothing$	AUC	over	0.9	(Table	3).	These	results	stand	in	marked	contrast	to	the	performance	of	our

submissions.

train	data validation	data RMSE pearson spearman f1 avg	AUC

complete complete 0.76 0.84 0.8 0.74 0.94

complete human	kinases 0.85 0.77 0.76 0.71 0.89

complete round	2 1.19 0.353 0.696

human	kinases complete 1.34 0.35 0.3 0.29 0.78

human	kinases human	kinases 0.74 0.84 0.83 0.78 0.92

human	kinases round	2 1.154 0.213 0.618

Table	3:	Validation	results	for	best	models	trained	on	completeand	human	kinasesdatasets.

Conclusions

Provided	the	performance	on	the	held	out	validation	data,	we	are	disappointed	by	the	outcome	on	the	challenge

dataset.	Due	to	the	restrictive	challenge	rules	only	allowing	for	a	very	limited	number	of	submissions	and	obscuring	the

metrics,	we	were	unable	to	find	the	cause	of	this	difference	in	performance.	We	hope	for	insight	from	the	solutions	of

the	other	teams	and	from	feedback	during	the	community	phase	of	the	challenge.

Authors'	Contributions

M.L.	and	P.P.	developed,	implemented,	and	trained	the	model.	I.B.,	J.G.,	and	G.B.	created	features.	R.H.	supervised

the	project.
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Abstract  
 
The prediction of compound affinity towards protein targets is of paramount importance in the              
drug discovery and development process. The IDG-DREAM challenge addressed the question           
of the prediction of compound-protein kinase affinity as measured by pKD using machine             
learning approaches and public databases. The approach of LET_DATA_TALK consisted of           
building a regressor for each protein kinase and learning the affinity regression parameters for              
all its known interaction partners using compound features. Our approach had a rounded RMSE              
of 1.372, a rounded spearman of 0.33, and a rounded average AUC of 0.699.  
 
Introduction 
 
Preclinical drug development requires the design and optimization of novel candidate molecules            
endowed with bioactive properties to treat or decrease the progress of human diseases. The              
selection of compound in early stages of development is based on the screening of large               
libraries. The development of computational methods aided the automatic screening of           
compounds against targets of interest, particularly the tyrosine kinase family of proteins that are              
involved in several cancers ​(Arora and Scholar 2005)​.  
 
The IDG-DREAM challenge consisted of predicting the pKD affinity value for pairs of protein              
kinase and compounds. The general approach was to collect features about protein kinases and              
their inhibitors using publicly accessible databases such as the DTC ​(Tanoli et al. 2018)​,              
PubChem ​(Kim et al. 2016)​, and Chembl ​(Gaulton et al. 2012)​. Consequently, a machine              
learning model is trained on the computed features to predict the affinity of the target-compound               
pair in the test set. 
 
The baseline example provided in the challenge was based on a publication from the challenge               
organizers ​(Cichonska et al. 2017)​. The approach consisted of crafting a large set of features for                
each protein and compound in the training set including the protein sequence, the protein              
tridimensional conformation, the kinase binding site sequence, protein-protein similarity scores,          
compound chemical structure, and compound molecular weight. The features are used to train a              
pairwise regression kernel for each drug-compound pair. The baseline method achieved in            
round 1a a rounded RMSE of 1.2821, a rounded spearman of 0.4052, and a rounded average                
AUC of 0.3757. In round 2, it achieved a rounded RMSE of 1.123, a rounded spearman of                 
0.401, and a rounded average AUC of 0.72.  

https://paperpile.com/c/zFOAJo/gQrj
https://paperpile.com/c/zFOAJo/8JSk
https://paperpile.com/c/zFOAJo/wlQd
https://paperpile.com/c/zFOAJo/tH67
https://paperpile.com/c/zFOAJo/KcA8


LET_DATA_TALK presented a method that builds a regressor for each protein, thus requiring             
only the features of the compounds. The drug molecular structure is converted into a fingerprint               
containing features that are associated with the pKD values. The drug-protein parameters were             
extracted from the DTC ​(Tanoli et al. 2018) to train the machine learning models.              
Encouragingly, in round 1a, our submission did better than the baseline with a rounded RMSE               
of 1.4056, a rounded spearman of 0.3203, and a rounded average AUC of 0.3576. In round 2,                 
our submission had a rounded RMSE of 1.372, a rounded spearman of 0.33, and a rounded                
average AUC of 0.699.  
 
Data 
 
The data we used were downloaded from DTC [ ] and only records/rows that have a measured                 
Kd, KD, KDAPP, Ki, KI, or KI RATIO. Ki was treated as equivalent to Kd as we observed a                   
boost in performance from 0.33 to 0.42 in terms of Pearson correlation coefficient in round 1.                
Thus we stuck to this in round 2. We also downloaded all the measured pairs of protein and                  
chemicals in the chembl database, which shew a high overlap with the data in DTC. Only                
records related to the proteins in the testing set were included as we built a model for each                  
protein (see methods part). No training data was available for 4 kinases in the testing set. In                 
total, we had 101,469 unique protein-chemical pairs. The distribution of the number of records              
for each protein is shown in Fig. 1. 143 kinases out of the 203 kinases have 200 or more                   
records. The median was treated as the truth if there are replicates given a pair. We tried to use                   
other measured activities, e.g. IC50, as a feature when predicting kd but most of the pairs of                 
protein and chemicals that have a measured Kd don’t have measured other activities.  
 

                                              
Fig. 1. The distribution of the number of chemicals in the training set for each protein in the                  
testing set.  
 
Methods 
 
We tried to build a single model to predict the activation given a pair of protein and chemical. A                   
protein was treated as a sequence of amino acids. Each adjacent three amino-acids were              
encoded by a numeric embedding, which was published in []. A chemical was represented by a                
fingerprint (FP). The types of FP we tested include Morgan FP and Topological Torsion FP in                
the rdkit package. Each FP is a vector of 1024 binary variables. To capture the interaction                

https://paperpile.com/c/zFOAJo/8JSk


between a kinase and a chemical, we built a mixture of feedforward neural network (FNN) and                
recurrent attention network (RAN). Specifically, the FP of a chemical was fed into an FNN and                
the protein sequence was fed to RAN, and then the outputs from both networks were merged by                 
two layers of fully connected layers followed by a one-node regression layer. We conducted              
10-fold cross-validation on the training dataset and the performance is 0.58 in terms of              
Spearman correlation coefficient.  
 
Another approach we explored is to build a model for each protein considering that we don’t                
have to model the complex structure of a protein. One drawback of this approach is that the                 
records that are not related to the kinases in the testing set were excluded. However, we got                 
even better performance in cross-validation than the first approach. We did not compare these              
two approaches on the testing set in round 2. For this approach, the model we built is support                  
vector regression and kernel regression model.  
 
Results and Conclusion 
 
We observed a strong gap between the performance on the validation set and that on the                
testing set. One possible reason is that the model was overfitted on the validation set when                
tweaking the hyper-parameters in a SVR model. The two hyper-parameters in SVR are c and               
gamma, which controls the width of the soft-margin, which is also reversely related to the cost of                 
misclassifying a data point, and the locality of a support vector, respectively. A larger c and                
large gamma might raise the alarm of overfitting. But we did not test this in round 1. Another                  
possible reason is that there are very similar pairs of chemical and protein in the training set.                 
Thus the leave-out set is similar to the training set in CV, whereas the testing data set differs                  
from the training set. At this point, we are open to these reasons and other possible reasons. 
 
Table 1. The performance of the kinds of models in 5-fold cross validation trained on the 
Morgan FP and Topological FP. A tuple in each cell denotes Pearson correlation coefficient, 
Spearman correlation coefficient and mean absolute error, respectively.  
 

 Morgan Topological 

Support vector regression (0.79, 0.70, 0.43) (0.78, 0.70, 0.43) 

Kernel regression (0.79, 0.69, 0.42) (0.79, 0.68, 0.43) 

 
 



     
Fig. 2.​ ​Visualization of the measured value and prediction in CV on the training set. The 
distribution of the MAE of the model for each protein in CV.  
 
Author contributions 
 
All the authors participated in round 1. Xiaokang and Marouen lead in the round 2.  
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Two-step	kernel	ridge	regression	to	predict	drug-
kinase	interactions	for	the	IDG-DREAM	Drug-Kinase
Binding	Prediction	Challenge

Introduction

Recently,	the	Research	Unit	Knowledge-Based	Systems	(KERMIT)	has	developed	software	for	a	two-step	kernel	ridge

regression	method	that	can	be	used	in	a	variety	of	pairwise	learning	settings.	The	methods	are	implemented	in	the

'xnet'	R	package	and	are	available	via	GitHub	(https://centerforstatistics-ugent.github.io/xnet/).	The	IDG-DREAM	Drug-

Kinase	Binding	Prediction	Challenge	represented	an	ideal	opportunity	to	test	this	newly	developed	software	package.

Materials	and	methods

In	a	first	step,	the	provided	raw	dataset	was	processed.	Only	data	that	were	annotated	with	'K	DISS',	'LOGKD',	'-LOG

K',	'KDISS',	'KD',	'LOG	K',	'-LOG	KDISS',	'-LOG	KD',	'LOG	KD',	'Kd'	or	'KD'	were	kept	in	the	dataset.	Furthermore,	data

points	having	an	unspecified	compound	or	target	were	deleted	from	the	dataset.	Secondly,	for	drug-kinase	interactions

having	multiple	measurements,	the	average	of	these	measurements	was	computed	and	other	measurements	were

deleted.	In	total,	this	yielded	42730	measured	drug-kinase	interactions	from	which	machine	learning	models	could

learn	patterns.	More	specifically,	a	two-step	kernel	ridge	regression	method	was	used	(Stock	et	al.,	2018).	Therefore,

kernel	matrices	were	computed	that	represented	the	drugs	and	kinases.	For	the	drugs,	molecular	fingerprints	were

calculated	based	on	the	provided	SMILE	representations	of	the	molecules.	This	was	done	using	RDKit	in	Python.

From	these	molecular	fingerprints,	the	Tanimoto	similarity	measure	was	calculated	to	construct	a	kernel	matrix.

Additionally,	a	Gaussian	interaction	profile	(GIP)	kernel	matrix	was	computed	using	the	Tanimoto	similarities	(for

imputation	of	missing	interaction	values)	and	the	scikit-learn	toolbox	in	Python.	Both	kernel	matrices	were	transformed

to	a	positive	semi-definite	matrix	by	iteratively	adding	small	constants	to	the	first	diagonal	of	the	matrix.	The	Tanimoto

kernel	matrix	and	GIP	kernel	matrix	were	combined	to	one	final	drug	kernel	matrix.	Protein	kinases	were	represented

using	a	kernel	matrix	constructed	from	pairwise	alignment	scores.	The	computed	kernel	matrices	were	used	as	input

for	a	two-step	kernel	ridge	regression	model,	as	was	implemented	in	the	'xnet'	R	package	(https://centerforstatistics-

ugent.github.io/xnet/).	Using	leave-one-out	cross	validation,	the	two	hyperparameters	(one	for	each	kernel	matrix)

were	optimized.	Afterwards,	a	final	model	was	built	using	these	optimized	values	and	was	used	to	make	predictions

with.

Results	and	conclusion

Although	it	was	expected	for	the	method	and	computed	kernel	matrices	to	perform	well	in	this	setting,	results	were

unsatisfactory.	Performances	for	predictions	in	round	2	were	as	follows:	an	RMSE	of	8.466,	a	rounded	spearman

correlation	of	0.147	and	a	rounded	average	AUC	of	0.54.	In	retrospect,	computing	averages	for	the	interactions

occurring	multiple	times	might	not	have	been	a	good	choice.	In	addition,	the	transformation	to	positive	semi-definite

matrices	could	have	negatively	affected	the	feature	representation.	In	conclusion,	although	the	implemented	R

package	is	easy	to	work	with	and	is	useful	in	a	variety	of	pairwise	prediction	settings,	the	method	used	for	this

challenge	did	not	yield	adequate	results.	Improvement	of	the	data	preprocessing	steps	and	kernel	computation	steps

can	improve	performance	in	the	future.

Authors	contribution	statement

Michiel	Stock	designed	the	two-step	kernel	ridge	regression	methods.	Dimitri	Boeckaerts	processed	data	for	this

challenge,	implemented	scripts	for	computation	of	feature	representations,	used	the	implemented	methods	(xnet	R

package)	to	train	and	test	a	two-step	kernel	ridge	regression	model	and	analysed	results	as	to	find	the	best	performing

model.	Bernard	De	Baets	and	Yves	Briers	provided	funding	for	this	project.
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Instructions	to	run	the	docker	(source	code	under	Files	in	src	directory)

docker	run	-it	--rm	-v	${PWD}/io:/input	-v	${PWD}/io:/output	
docker.synapse.org/syn18500740/tskrr-dock:9686206



Page	1/3

DMIS_DK	Submission

Sungjoon	Park1,	Minji	Jeon1,	Sunkyu	Kim1,	Junhyun	Lee1,	Seongjun	Yun1,	Bumsoo	Kim1,	Buru	Chang1,	and	Jaewoo

Kang1,2,*	1.Department	of	Computer	Science	and	Engineering,	Korea	University,	Seoul,	Republic	of	Korea

2.Interdisciplinary	Graduate	Program	in	Bioinformatics,	Korea	University,	Seoul,	Republic	of	Korea

*	corresponding	author

Introduction

It	is	important	to	obtain	binding	affinity	between	drugs	and	kinases	in	drug	discovery	process.	However,	measuring

binding	affinity	is	cost-intensive.	To	address	this,	we	developed	a	machine	learning	model	to	predict	binding	affinity

between	drugs	and	kinases.	The	IDG-DREAM	Drug-Kinase	Binding	Prediction	Challenge	provided	the	UniProt	IDs	of

proteins	in	the	Drug	Target	Commons	dataset	and	we	could	get	sequence	information	of	the	proteins	using	the

UniProt	IDs.	In	the	binding	affinity	prediction	task,	3D	structural	information	of	proteins	is	known	to	be	more	informative

than	sequence	information	of	proteins.	However,	predicting	of	structures	of	proteins	is	a	difficult	problem.	We,

therefore,	propose	a	ligand-based	prediction	model	that	focuses	on	the	structures	of	drugs,	rather	than	using

information	such	as	sequences	of	proteins	or	structures	of	proteins.

Methods

Data

In	this	challenge,	we	used	Drug	Target	Commons	(DtcDrugTargetInteractions.csv)	[1]	and	BindingDB	data

(BindingDB_All_2019m2.tsv.zip)	[2]	for	training	binding	affinity	prediction	models.	Among	diverse	measurements,	kd,

ki	and	IC50	were	used	for	the	training.	All	binding	affinity	values	were	transformed	by	-log10(x/1e9).	We	chose	median

values	for	the	duplicate	samples	(i.e.,	same	compound-protein	pair).	We	submitted	two	prediction	models:	Random

Forest	(RF)	and	Ensemble	of	multi-task	Graph	Convolutional	Networks	(GCN).	For	the	RF	model,	128,181	samples

(compound-protein	pair)	having	199	proteins	and	57,399	compounds	were	used	for	the	training.	For	the	multi-task

GCN	model,	953,521	samples	(compound-protein	pair)	having	1,474	proteins	and	474,875	compounds	were	used	for

the	training.

Models

Random	Forest

We	trained	a	Random	Forest	model	[3]	for	each	protein.	2048-dimensioned	Extended	Connectivity	Fingerprint	(ECFP)

[4]	is	used	as	input.	ECFP	is	one	of	the	drug	structure	representation	methods	that	represents	the	presence	of

substructures	in	a	molecule	as	a	binary	vector.	The	output	of	the	model	is	the	pKd,	pKi	and	IC50	values	of	the	dataset.

We	divided	the	dataset	into	80:20	and	used	each	dataset	as	a	training	set	and	a	validation	set.	Hyper-parameters

were	selected	based	on	the	performance	of	the	validation	set.	There	is	no	model	for	S4	samples	because	we	trained

the	models	only	for	the	proteins	in	the	training	set.	For	each	S4	sample	in	Round	2,	we	measured	the	similarity

between	199	proteins	and	the	protein	of	the	sample	based	on	protein	sequences,	and	selected	the	top	3	similar

proteins.	The	predicted	pKd	value	of	the	sample	is	the	average	of	the	predicted	values	from	the	top	3	protein	models.

Multi-task	GCN	Ensemble

We	designed	4	multi-task	GCN	architectures.	The	multi-task	GCN	model	takes	a	SMILES	string	as	input	and	predict

binding	affinities	for	1,474	proteins.	In	the	1,474	proteins,	199	out	of	207	round	2	proteins	were	included.	SMILES

strings	were	converted	to	molecular	graphs	using	RDKit	python	library	[5].	We	designed	a	78	dimensional	feature



Page	2/3

vector	to	represent	a	node	(here,	atom)	in	a	molecular	graph.	Description	of	the	feature	vector	is	shown	in	Table	1.

For	the	submission,	we	averaged	the	predictions	of	the	last	K	epochs.	Then,	we	averaged	all	the	12	multi-task	GCN

models	(4	different	architecture	with	3	different	weight	initialization)	averaged	predictions.	We	selected	the	hyper-

parameters	of	the	multi-task	GCN	models	based	on	the	performance	of	the	validation	set.	We	implemented	the	GCN

models	using	PyTorch	Geometric	(PyG)	library.	Procedure	for	predicting	S4	samples	in	Round2	data	was	the	same	as

the	random	forest	model.

Multi-task	GCN	architecture	1

GAT	layer	+	GCN	layer	+	Pooling	layer	+	1	dense	layer	+	1	output	layer	GAT	layer:	Graph	convolution	layer	using

graph	attention	networks	proposed	in	“Graph	Attention	Networks”	[6].	Multi-head	vectors	were	concatenated	(#	of

head:	10,	input	dim:	78	,	output	dim:	780).	GCN	layer:	Graph	convolution	layer	proposed	in	"Semi-Supervised

Classification	with	Graph	Convolutional	Networks"	[7]	(input	dim:	780	,	output	dim:	780).	Pooling	layer:	Concatenation

of	average	pooling	and	max	pooling	across	all	node	feature	vectors	(input	dim:	780	,	output	dim:	1,560).	Dense	layer:

Fully	connected	layer	with	dropout	(dropout	rate	:	0.5,	input	dim:	1,560,	output	dim:	1,500).	Output	layer:	Fully

connected	layer	(input	dim:	1,500	,	output	dim:	1,474).

Multi-task	GCN	architecture	2	/3

4	GCN	layer	&	Pooling	layer	(after	each	GCN	layer)	+	4	GCN	layer(after	pooling)	+	1	dense	layer	+	1	output	layer

GCN	layer:	Graph	convolution	layer	proposed	in	"Weisfeiler	and	Leman	Go	Neural:	Higher-order	Graph	Neural

Networks"	[8]	(input	dim:	78	,	output	dim:	128).	Pooling	layer:	Hierarchical	graph	pooling	layer	proposed	in	“Self-

Attention	Graph	Pooling”	[9]	(pooling	ratio=0.25)	GCN	layer	(after	pooling):	Graph	convolution	layer	proposed	in

"Weisfeiler	and	Leman	Go	Neural:	Higher-order	Graph	Neural	Networks".	(input	dim:	128	,	output	dim:	128).	Dense

layer:	Fully	connected	layer	with	dropout	(dropout	rate	:	0.5,	input	dim:	512,	output	dim:	512).	Output	layer:	Fully

connected	layer	(input	dim:	512	,	output	dim:	1,474).

Multi-task	GCN	architecture	4

4	GAT	layer	&	Pooling	layer	(after	each	GCN	layer)	+	4	GCN	layer(after	pooling)	+	1	dense	layer	+	1	output	layer	GAT

layer:	Graph	convolution	layer	using	graph	attention	networks	proposed	in	“Graph	Attention	Networks”.	Multi-head

vectors	were	concatenated	(#	of	head:	2	&	4	,	input	dim:	78	,	output	dim:	128).	Pooling	layer:	Hierarchical	graph

pooling	layer	proposed	in	“Self-Attention	Graph	Pooling”	(pooling	ratio=0.25)	GCN	layer	(after	pooling):	Graph

convolution	layer	proposed	in	"Weisfeiler	and	Leman	Go	Neural:	Higher-order	Graph	Neural	Networks".	(input	dim:

128	,	output	dim:	128).	Dense	layer:	Fully	connected	layer	with	dropout	(dropout	rate	:	0.5,	input	dim:	512,	output	dim:

512).	Output	layer:	Fully	connected	layer	(input	dim:	512	,	output	dim:	1,474).

Atom	feature	type RDkit	function Encoding	type Dimension

Atom	symbol atom.GetSymbol() One	hot	encoding 44

Degree atom.GetDegree() One	hot	encoding 11

Total	number	of	Hs atom.GetTotalNumHs() One	hot	encoding 11

Implicit	valence atom.GetImplicitValence() One	hot	encoding 11

Is	aromatic atom.GetIsAromatic() Bool	(0	or	1) 1

Total 78
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Table	1.	Description	of	the	atom	feature

Results

The	results	of	round2	leaderboard

Model objectID RMSE Spearman AUC

Random	Forest 9686312 1.002 0.484 0.774

Multi-task	GCN	Ensemble 9686330 0.949 0.485 0.771
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Abstract

A	semi-supervised	deep	learning	model	that	unifies	recurrent	and	convolutional	neural	networks	[1]	has	been

developed	to	exploit	both	unlabeled	and	labeled	data,	for	jointly	encoding	molecular	representations	and	predicting

affinities.	They	are	trained	over	generic	protein-ligand	data	from	BindingDB	[19]	and	not	fine-tuned	for	the	kinase

targets	in	the	challenge.

Introduction

It	is	critically	important	to	characterize	compound–protein	interaction	(CPI)	for	drug	discovery	and	development	[2].

Considering	the	enormous	chemical	and	proteomic	spaces,	computational	prediction	of	CPIs	facilitates	experimental

parallels	and	accelerates	drug	discovery.	Indeed,	computational	prediction	of	CPI	has	made	much	progress	recently,

especially	for	repurposing	and	repositioning	known	drugs	for	previously	unknown	but	desired	new	targets	[3,4]	and	for

anticipating	compound	side-effects	or	even	toxicity	due	to	interactions	with	off-targets	or	other	drugs	[5,6].

Computational	methods	roughly	fall	in	two	categories	based	on	input	data	types:	(protein)	structure-based	and

sequence	based	methods.	Structure-based	methods	can	predict	compound–protein	affinity,	i.e.	how	active	or	tight-

binding	a	compound	is	to	a	protein;	and	their	results	are	highly	interpretable.	They	are	often	tackled	through	energy

models	[7]	or	machine	learning	[8,9].	Their	heavy	reliance	on	actual	3D	structures	of	CPI	presents	a	limitation	for	these

methods.	Sequence-based	methods	overcome	the	limited	availability	of	structural	data	and	the	costly	need	of

molecular	docking.	Rather,	they	exploit	rich	omics-scale	data	of	protein	sequences,	compound	sequences.	Sequence-

based	CPI	has	been	tackled	through	shallow	models	[10]	or	deep	learning	models	[11,12]	but	their	predictions	lack

interpretability.

To	overcome	limitations	of	current	structure-	and	sequence-based	CPI	prediction	methods,	we	have	designed

informative	yet	compact	data	representations	that	are	structurally	interpretable.	We	have	also	developed	semi-

supervised	deep	learning	models	that	unify	recurrent	and	convolutional	neural	networks,	exploit	labeled	and	unlabeled

data,	and	use	attention	mechanisms	for	interpretability.

Methods

Data

We	used	data	from	three	public	datasets:	all	Kd	labeled	compound-protein	binding	data	(17,819	samples)	from

BindingDB	[19],	compound	data	(500K	samples	for	training	and	500K	samples	for	validation)	in	the	SMILES	format

from	STITCH	[20]	and	protein	amino-acid	sequences	from	UniRef	with	50%	sequence	identity	and	length	less	than	or
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equal	to	1500	amino	acids	(	120,000	samples	for	training	and	50,525	for	validation)	[21]	for	training	our	unified	RNN-

CNN	model.

Input	formats

We	developed	a	novel	protein	representation,	Structural	property	sequence	(SPS)	by	incorporating	the	predicted

protein	structural	property	such	as	secondary	structure	elements	(SSEs),	Solvent	accessibility,	physicochemical

characteristics	and	length	of	each	secondary	structure	elements	(SSEs).	For	drug	representation,	we	used	SMILE	[13]

that	are	short	ASCII	strings	to	represent	compound	chemical	structures	based	on	bonds	and	rings	between	atoms.

Deep	learning	methods

First,	we	encoded	compound	SMILES	or	protein	SPS	into	representations,	by	unsupervised	deep	learning	from

unlabeled	data	from	STITCH	and	UniRef.	Specifically,	we	used	a	recurrent	neural	network	(RNN)	model,	seq2seq	[14]

that	has	seen	much	success	in	natural	language	processing	and	was	recently	applied	to	embedding	compound

SMILES	strings	into	fingerprints	[15].	We	choose	gated	recurrent	unit	(GRU)	[16]	with	attention	mechanism	[17]	as	our

seq2seq	model.

Next,	with	compound	and	protein	representations	learned	from	the	above	unsupervised	learning,	we	solve	the

regression	problem	of	compound–protein	affinity	prediction	using	supervised	learning.	For	either	proteins	or

compounds,	we	append	a	CNN	after	the	RNN	(encoders	and	attention	models	only)	that	we	just	trained.	The	CNN

model	consists	of	a	one-dimensional	(1D)	convolution	layer	followed	by	a	max-pooling	layer.	The	outputs	of	the	two

CNNs	(one	for	proteins	and	the	other	for	compounds)	are	concatenated	and	fed	into	two	more	fully	connected	layers.

The	entire	RNN-CNN	pipeline	is	trained	from	end	to	end	[18],	with	the	pre-trained	RNNs	serving	as	warm

initializations,	for	improved	performance	over	two-step	training.	More	details	about	how	the	final	models	are	derived

are	included	in	the	next	subsection.

Lastly,	we	have	also	introduced	protein	and	compound	attention	models	in	supervised	learning	to	both	improve

predictive	performances	and	enable	model	interpretability	at	the	level	of	letters	(SSEs	in	proteins	and	atoms	in

compounds).	In	the	supervised	model	we	just	have	the	encoder	and	its	attention	αt	on	each	letter	t	for	a	given	string	x

(protein	or	compound).	And	the	output	of	the	attention	model,	A,	will	be	the	input	to	the	subsequent	1D-CNN	model.

Suppose	that	the	length	of	protein	encoder	is	T	and	(s1,..,st,...,	sT)	are	the	output	of	protein	encoder	and	similarly	the

length	of	compound	encoder	is	D	and	$$(m_{1},..,m_d,...,	mD)	$$	are	the	output	of	compound	encoder.	We

parametrize	the	attention	model	of	unified	model	with	matrix	$$Ua$$	and	the	vector	$$va$$.	Then,	The	attention	model

is	formulated	as:	

The	attention	weights	(scores)	αt	suggest	the	importance	of	the	t
th	"letter"	(secondary	structure	element	in	proteins

and	atom	or	connectivity	in	compounds)	and	thus	predict	the	binding	sites	relevant	to	the	predicted	binding	affinity.

Models	submitted

We	give	more	details	about	the	training	process	for	final	models	as	follows.	We	trained	three	unified	RNN-CNN

models	with	different	neurons	(300,100),	(400,200),	and	(600,300)	at	their	fully	connected	layers.	For	each	of	these

unified	RNN-CNN	model,	we	at	first	pre-trained	the	RNN	encoder	part	from	the	encoder	part	of	our	seq2seq	model

and	fixed	the	encoder	parts.	We	trained	the	rest	of	the	architecture	with	Adam	optimizer	[22]	with	an	initial	learning

rate	of	0.001	for	100	epochs.	Later,	we	jointly	trained	all	the	architecture	with	Adam	optimizer	with	an	initial	learning

rate	of	0.0001	for	another	100	epochs.	Finally,	motivated	from	ensemble	methods,	we	consider	the	last	10	epochs	of

each	model	as	a	predictor.	Finally,	we	take	an	average	of	all	30	predictors	to	calculate	the	final	prediction.	Our	docker

image	and	src	directory	provides	the	3	unified	models	with	10	checkpoints	(epochs)	each.

Conclusion
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We	have	developed	accurate	and	interpretable	deep	learning	models	for	predicting	compound–protein	affinity	using

only	compound	identities	and	protein	sequences.	By	taking	advantage	of	massive	unlabeled	compound	and	protein

data	besides	labeled	data	in	semi-supervised	learning,	we	have	jointly	trained	unified	RNN-CNN	models	from	end	to

end	for	learning	context-	and	task-specific	protein/compound	representations	and	predicting	compound–protein

affinity.	Given	the	novel	representations	with	better	interpretability,	we	have	included	attention	mechanism	in	the

unified	RNN-CNN	models	to	quantify	how	much	each	part	of	proteins,	compounds,	or	their	pairs	are	focused	while	the

models	are	making	the	specific	prediction	for	each	compound–protein	pair.	Noting	that	our	models	submitted	were

trained	over	generic	data,	improvements	can	be	made	by	tailoring	and	tuning	the	models	for	kinase	targets.

How	to	run	our	image

docker	run	\-\-privileged=true	-it	--rm	-v	\$\{PWD\}/io:/input	-v	$\{PWD\}/io:/output
docker.synapse.org/syn17051692/deepaffinity
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Data	set	preparation	
1. Chemical-kinase	binding	affinity	data	collection	

To	build	a	 large-scale	chemical-kinase	binding	affinity	data	set,	we	 integrated	multiple	
public	databases	and	published	kinome	assays.	The	databases	we	used	are	ChEMBL	(ver.	
24),	 BindingDB,	 and	 LINCS-HMS	 KinomeScan	 database.	 ChEMBL	 database	 contains	
chemical-protein	binding	 affinities	 for	mutant	proteins.	We	 collected	 those	activities	 for	
mutants	from	ChEMBL.	BindingDB	contains	chemical-protein	affinity	data	sets	from	multiple	
sources,	including	PubChem,	PDSPKi,	U.S.	patents,	and	the	curated	data	set	by	BindingDB	
team.	 LINCS-HMS	 KinomeScan	 database	 contains	 chemical-kinase	 binding	 affinities	 for	
various	chemicals	and	target	kinases.	Four	published	kinome	assay	data	sets	were	included	
from	1)	Christmann-Franck	et	al.	JCIM,	2016,	2)	Drewry	et	al.	PLoS	One,	2017,	3)	Klaeger	et	
al.	 Science,	 2017,	 and	 4)	 Sorgenfrei	 et	 al.	 ChemMedChem,	 2017.	 To	 merge	 redundant	
activity	 measurements	 (e.g.	 multiple	 activity	 records	 for	 a	 chemical-kinase	 pair),	 we	
converted	chemicals	into	InChIKey	and	kinases	into	UniProt	ID.	We	converted	all	activities	
into	 log-scale	since	the	target	problem	is	 to	predict	binding	affinity	 in	pKd.	We	excluded	
activity	measurements	in	other	metrics	than	Ki,	pKi,	Kd,	and	pKd.	If	multiple	activity	records	
found	for	a	chemical-kinase	pair,	we	averaged	them.	For	feature	calculation	processes,	we	
collected	 SMILES	 strings	 for	 each	 chemical	 and	 primary	 amino	 acid	 sequences	 for	 each	
kinase.	In	case	the	data	source	does	not	provide	chemical	SMILES	or	InChIKey,	we	used	the	
PUGRest	 service	 from	 PubChem	 to	 convert	 the	 chemical	 identifiers.	 We	 used	 UniProt	
database	 to	 convert	 gene	 names	 into	 UniProt	 IDs.	 For	 mutant	 proteins,	 we	 prepared	
mutated	protein	sequences	by	replacing,	inserting,	or	deleting	sequence	parts	as	appeared	
in	protein	identifiers.	

2. Splitting	data	into	train,	dev,	and	test	sets	
We	used	Leave-Chemical-Set-Out	(LCSO)	strategy	to	simulate	new	drug	discovery	process	

and	reduce	overfitting.	To	evaluate	model	fitting	and	generalized	performance,	we	split	the	
chemical-kinase	samples	into	train,	dev,	and	test	sets.	We	used	train	set	to	train	models,	
dev	set	to	evaluate	how	well	the	model	is	trained	and	optimize	hyperparameters,	and	test	
set	 to	 evaluate	 the	 final	 performance	 of	 our	model.	 Before	 the	 final	 prediction	 for	 the	
challenge,	we	trained	the	model	again	with	the	dev	and	test	sets.		
We	split	 the	chemicals	 into	 two	groups:	42708	 training	chemical	 set	and	581	dev-test	

chemical	set.	We	kept	the	structural	similarity	for	any	chemical-chemical	pairs	across	two	
sets	lower	than	0.8,	ensuring	that	the	dev	or	test	data	represent	new	chemical	molecules	
that	are	not	found	in	training	data.	The	chemical-chemical	similarity	scores	were	measured	
by	 Tanimoto	 coefficient	 (Jaccard	 similarity)	 between	 the	 two	 ECFP4	 (1024	 bits)	



representations	of	chemical	molecules.	The	chemical-kinase	affinity	samples	 for	dev-test	
chemicals	are	split	into	dev	and	test	sets	in	approximately	8:2	ratio.	The	data	statistics	for	
train/dev/test	sets	are	in	Table	1.	
	
Table	1	 Train	 Dev	 Test	
#samples	 400170	 33701	 8618	
#unique	chemicals	 42708	 520	 343	
#unique	proteins	 482	 460	 447	

	
Method	
1. Model	architecture	

Our	model	uses	graph-based	molecular	representations	for	chemicals	and	proteins.	Our	
target	problem	is	to	predict	binding	affinity	in	pKd,	given	the	input	chemical	and	kinase.	We	
denote	each	sample	of	chemical-kinase	affinity	data	as	!" = (%", '"),	where	!" 	is	the	known	
pKd	value,	%" 	is	the	chemical,	and	'" 	is	the	kinase	in	the	)*+	sample.		
Our	 model	 processes	 chemical	 molecules	 using	 graph	 convolutional	 neural	 network	

(Neural	Fingerprint)	proposed	by	Duvenaud	et	al.	 (NIPS,	2015),	which	produces	chemical	
molecular	fingerprint	of	a	user-defined	length.	Briefly,	the	Neural	Fingerprint	applies	weight	
filters	to	atoms	and	bonds	ordered	by	their	degrees	in	each	molecule.	We	set	the	length	of	
chemical	fingerprint	to	128.	We	denote	the	chemical	fingerprint	operation	as	,-. = /-(%"),	
where,-. 	is	 the	 feature	 vector	 representation	 of	%" 	(,-. ∈ ℝ

234 ),	 and	/- 	is	 the	 Neural	
Fingerprint	operation.	We	used	RDKit	python	package	to	preprocess	chemical	molecules	for	
fingerprint	operation.	
Kinases	are	processed	into	two	different	representations:	kinase	domain	feature	vectors,	

and	kinase	active	site	feature	vectors.	We	denote	the	features	of	kinase	domain	sequence	
and	kinase	binding	site	sequence	in	the	)*+	sample	as	'"

5 	and	'"
6,	respectively,	where	both	

'"
5 	and	'"

6	are	sequence	of	27	values	for	each	amino	acid	(20	for	PSSM	and	7	for	amino	acid	
physical	 properties).	 For	 each	 kinase,	 we	 downloaded	 kinase	 domain	 sequences	 from	
UniProt,	 and	we	 calculated	 the	position-specific	 scoring	matrix	 (PSSM)	 against	UniRef50	
database	 (nonredundant	 sequence	 database	 clustered	 at	 50%	 sequence	 identity)	 using	
PSIBLAST	 standalone	package	with	3	 iterations	 for	each	kinase	domain	 sequence.	 In	 the	
kinase	domain	feature	representation,	we	used	the	PSSM	values	for	the	whole	domain	as	
'5.		
In	 the	 kinase	 active	 site	 feature	 representation,	 we	 first	 aligned	 the	 kinase	 domain	

sequences	using	CLUSTALW	web	server	with	default	option.	Then,	we	identified	the	active	
site	residues	of	the	serine/threonine-protein	kinase	pim-1	(P11309)	from	its	3D	structure.	
From	the	3D	structure,	we	also	collected	neighboring	 triplets,	 three	amino	acid	 residues	
that	are	closer	than	6.0	Å	with	each	other.	Then,	we	identified	the	binding	site	residues	and	
structural	 neighbors	 of	 each	 kinase	 from	 the	 multiple	 sequence	 alignment.	 The	
corresponding	 PSSM	 values	 for	 the	 binding	 site	 residues	were	 used	 as	 the	 input,	'6 ,	 in	
contrast	 to	 the	 kinase	 domain	 representation.	 For	 both	 representations,	 we	 also	 used	
various	types	of	physical	properties	of	amino	acids:	average	hydrophobicity	(Cid	et	al,	1992.	
PMID:	 1518784),	 van	 der	Waals	 volume	 (Fauchere	 et	 al.	 1988.	 PMID:3209351),	 polarity	



(Grantham	 et	 al.	 1974.	 PMID:4843792),	 net	 charge	 (Klein	 et	 al.,	 1984.	 PMID:6547351),	
average	volume	in	buried	state	(Chothia,	1975.	PMID:1118010),	accessible	surface	area	in	
tripeptide,	and	accessible	surface	area	in	folded	protein	(Chothia,	1976.	PMID:994183).	The	
PSSM	and	amino	acid	properties	were	normalized	by	z-scaling,	i.e.	8 = 9:;

<
,	where	=	is	the	

feature	value,	and	>, ?	are	the	mean	and	standard	deviation	of	the	features	of	same	type.		
The	kinase	feature	vectors	were	obtained	by	applying	graph	convolutional	network	with	

attention	mechanism.	Many	 recent	graph	neural	network	methods	use	message	passing	
scheme	with	attention	mechanism	as	an	aggregator	of	the	node	weights.	Our	method	uses	
a	 cardinality	 preserved	 attention	 network	 (CPAN),	 a	 novel	 graph	 convolutional	 method	
developed	by	us	(manuscript	under	review).	CPAN	takes	graph	representation	of	kinases	as	
input,	and	 it	produces	protein	feature	of	 length	154.	Each	kinase	 is	a	graph,	where	each	
amino	acid	is	a	node	with	its	feature	('"

5 	or	'"
6).	We	denote	the	kinase	feature	calculation	

as	,@. = /@ '"
5 	BC	/@('"

6),	where	,@. 	is	the	protein	feature	output	from	CPAN	(,@. ∈ ℝ
2DE),	

and	/@	is	the	graph	convolutional	operation	by	CPAN.		
2. Attentive	pooling	and	feature	transformation	

With	 the	 feature	 representation	 of	 chemicals	 and	 kinases,	we	 applied	 attentive	 pooling	
strategy	similar	to	(dos	Santos	et	al,	2016,	arXiv)	to	weigh	the	contributions	of	each	feature	
and	rescale	the	chemical	and	kinase	feature	vectors.	

,-.
F = ,-.⨀HB,IJK= ,@. ∙ Θ 	

,@.
F = ,@.⨀HB,IJK=(,-. ∙ Θ

N)	
In	 the	 above	 equations,	,-.

F ,	,@.
F 	represent	 the	 rescaled	 feature	 vectors	 of	 chemical	 and	

kinase	 in	 the	 )*+ 	sample,	Θ 	represents	 the	 attentive	 weight	 matrix	 (O ∈ ℝ234×2DE ),	⨀	
represents	 element-wise	 product	 (Hadamard	 product),	 and	 	∙	represents	 dot	 product	 of	
matrices.	
The	rescaled	feature	vectors	were	fed	into	a	feature	transformation	layer	to	make	final	

prediction.	 We	 denote	 the	 feature	 transformations	 as	,-.
FF = QR ,-.

F 	and	,@.
FF = QS ,@.

F ,	
where	,-.

FF 	and	,@.
FF 	represent	 transformed	 chemical	 and	 kinase	 features,	 respectively.	 The	

transformation	layer	contains	four	layers	of	fully-connected	64	neurons	activated	by	ReLU	
after	batch	normalization.	The	fifth	layer	contains	fully-connected	64	neurons	with	batch	
normalization	but	without	ReLU	activation.	The	predicted	pKd	activity	value	was	calculated	
by	the	dot	product	of	the	transformed	feature	vectors.	!" = ,-.

FF ∙ ,@.
FF,	where	!	denotes	the	

predicted	pKd	value.	
3. Training	procedure	

We	used	Adam	optimizer	with	cosine	annealing	for	learning	rate	adjustment.	The	initial	
learning	 rate	was	 set	 to	 1e-4,	 and	batch	 size	was	 set	 to	 128.	We	 also	 applied	 balanced	
regression	strategy	to	ensure	the	diversity	of	training	samples.	We	split	the	training	samples	
into	16	bins	by	the	pKd	values,	where	the	first	bin	contains	samples	with	pKd	≤ 4.0,	and	the	
last	 bin	 contains	 samples	 with	 pKd	> 10 .	 The	 other	 bins	 were	 evenly	 spaced	 by	 an	
increment	 of	 0.4.	 Then,	we	 chose	 8	 samples	 from	each	 bin	 to	 form	 a	minibatch	 of	 128	
samples.	The	model	was	trained	for	100	epochs	by	minimizing	MSE	(i.e.	Σ ! − ! 3)	with	
early	stopping	strategy	based	on	the	Pearson’s	correlation	coefficient	measured	on	the	dev	
set.	 From	 the	 dev	 set,	 we	 randomly	 picked	 128	 samples	 and	 measured	 the	 Pearson’s	



correlation	coefficient.	We	repeated	it	10	times	and	averaged	for	each	epoch	to	measure	
the	dev	performance.	Our	 final	model	was	 chosen	by	 the	 training	epoch	where	 the	dev	
performance	was	highest.	

	
	
Below	are	the	docker	commands	to	run	our	model	for	Round	2	prediction.	

	
$docker run docker.synapse.org/syn17037396/graphdti-v1 > round2-1.csv  
#Round 2. First submission. (objID 9686292) 

 
$docker run docker.synapse.org/syn17037396/graphdti-v2 > round2-2.csv  
#Round 2. Second submission. (objID 9686304) 


