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and can be used for future

the model is very versatile,
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UFEMISM - documentation

dr. C. J. (Tijn) Berends

Abstract The Utrecht Finite voluMe Ice-Sheet Model (UFEMISM) is an ice-sheet-shelf model that solves the
hybrid STA/SSA ice-dynamical equations on a dynamic adaptive grid. It has been developed at IMAU since

applications

2020. While intended mainly for palaeo

projections as well. This document contains a complete description of the model; a derivation of the underlying
equations, a description of the data and code structure, descriptions of (most of) the subroutines, and results of
several important benchmark experiments. In theory, this should give the user enough information to be able

to freely use and adapt UFEMISM for their own research.
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1 Introduction

1.1 Background

The Institute for Marine and Atmospheric research Utrecht (IMAU) has a long, rich history of ice-sheet mod-
elling. In the early 2000’s, GRICE (GReenland ICE-sheet model) was created: an SIA-only model for studying
the evolution of the Greenland ice sheet during glacial cycles. Several years later this model was adapted for
the Antarctic ice sheet, including a module that solved the SSA for floating ice shelves, thus becoming ANICE
(ANtarctic ICE-sheet model). Around 2010 this was extended into the coupled model ANICE-SELEN, which
included four copies of ANICE to simulate the large continental Pleistocene ice-sheets (North America, Eurasia,
Greenland, and Antarctica), as well as the sea-level equation solver SELEN. In early 2021 ANICE was replaced
by its spiritual successor IMAU-ICE; still a square-grid hybrid STA/SSA model, but thoroughly cleaned up and
restructured, so as to enable a new generation of PhD’s and postdocs to use and develop it without having to
first know all the details and peculiarities of the work of their numerous predecessors.

In the late 00’s and early 10’s, several studies were published that showed that the phenomenon of grounding-
line migration was much more important for large-scale ice-sheet evolution then previously thought, particularly
in Antarctica. They also showed that the increasingly common hybrid SIA/SSA ice models (like ANICE and
IMAU-ICE) performed poorly at capturing this phenomenon, partly due to their often coarse resolution. The
first few of these studies suggested that, in order to solve the problem, a resolution of 100 m or less was required.
This is completely unachievable for palaeo-ice-sheet models; they must be able to simulate tens or sometimes
hundreds of thousands of years, which is why researchers typically use resolutions of 10 - 40 km. However,
several later studies developed clever ”heuristic” solutions to this problem, which allowed them to use much
coarser resolutions (ranging from 1 km to 20 km, depending on which study you believe) and still get good
results. Aside from these numerical issues with resolution, it also became clear that small-scale topographical
features like fjords and underwater hills could significantly affect large-scale ice-sheet dynamics, implying that
even the "heuristic” models would still need a resolution of a few kilometres or less.

However, while 20 km is still manageable, 10 km is already pushing the limits of what can reasonably be
done with a square-grid model, and the even finer numbers required for resolving bed topography are simply
not feasible for long palaeo-simulations. The obvious solution to this, in our view, was not to use a square grid.
The studies that investigated the resolution problem already noted that in order to get good results, a high
resolution was required only at the grounding line, not everywhere on the ice sheet. This intuitively makes
sense; surface curvature (the leading term in the truncation error of any first-order discretisation scheme) is
highest near the grounding line, as are the strain rates in the ice. Also, since grounded ice is thinnest and fastest
there, this is where the topographical features of the underlying bedrock become most important. By creating a
grid that has a high resolution only at the grounding line and nowhere else, you can ”skip” a lot of non-essential
calculations in the interior (determining velocities for essentially stagnant ice), freeing up computation time for
the rest of the model. This line of reasoning led to the inception of UFEMISM: the first palaeo-ice-sheet model
to use a dynamic adaptive grid.

1.2 Objectives
When the development of UFEMISM first began, the following objectives were set:

e Dynamic adaptive grid: a key difference between palaeo-simulations and future projections is that the
changes in ice-sheet geometry are much larger in the former. Since it is not feasible to create a single mesh
that has a high resolution everywhere the grounding line might be at some point in time (which would
defeat the purpose of the unstructured grid!), the mesh must be able to adapt to the ice sheet.

e Flexibility: a large part of palaeoglaciological research consists of inventing new features to add to ice-
sheet models, just to see what they do. This is one of the main reasons why most palaeoglaciologists use
simple square-grid models; not only are they fast enough for such long simulations, they’re also very easy
to build by hand, enabling the individual researcher to adapt the model to suit the needs of whatever
project they’re working on. We wanted UFEMISM to have that same flexibility.

e Performance: since the whole point of creating UFEMISM was to be able to run very long simulations at
a high resolution without requiring excessive amounts of computer time, good computational performance
was an important goal.

The first objective, that of the dynamic adaptive grid, immediately created the biggest challenge, since
no other ice-sheet model in existence has this feature. The second objective, that of flexibility, led to the
decision to create a dedicated mesh-generation algorithm for UFEMISM, rather than to build upon existing



external software. While there are several packages available, developed both academically and commercially,
to generate meshes and solve equations (using finite elements or other methods), from the point of view of
a palaeoglaciologist these are ”black boxes”: they work, but you won’t know how, or how to make them do
something else if you need them to. Since this conflicts strongly with the objective of flexibility, we decided
not to rely on such external packages, but instead develop our own codes for mesh generation and PDE solving
from scratch.

1.3 Status quo
Currently (March 2021), the following features in UFEMISM are operational, in development, and planned:
e Hybrid SIA/SSA ice dynamics
e Adaptive mesh
e Shared-memory (single node) MPI parallelisation
e Simultaneous, coupled simulation of four continental ice sheets
e Glacial index / inverse-3'®0 forcing
e Matrix-method climate model
e Insolation-temperature-based SMB
e Basic temperature-depth-based BMB
e ELRA GIA model

e Coupling to sea-level equation model SELEN

e Multi-node MPI parallelisation

e Englacial tracers (COs,680)

e Improved thermodynamics (enthalpy-based, energy-conserving)
e Basal hydrology

e Figencalving, cliff failure, shelf crevasse failure

e Improved SMB and BMB parameterisations

Currently (March 2021), a simulation of all four ice sheets over the entire last glacial cycle (120 kyr) with a
grounding line resolution of 10 km takes about 40 wall clock hours.



2 Model structure

UFEMISM is intended mainly for simulations of glacial cycles. For this reason, it has the ability to simultane-
ously simulate the evolution of ice sheets in Greenland and Antarctica, as well as North America and Eurasia
(where large ice sheets existed during the Pleistocene glacial cycles). It also includes an elaborate mix of mod-
elled data and extrapolations for both climate and mass balance, as well as an ELRA GIA model (the coupling
to the sea-level/GIA model SELEN is being worked on, but is currently not yet operational). UFEMISM has
been designed from the start to include all these components, and the code/data structure has been created so
as to make this easy to achieve.

2.1 Coupler

The Fortran90 program UFEMISM_PROGRAM.F90 contains the coupler: the overarching routine that calls the
different regional ice-sheet models, updates the global climate forcing, and calls the sea-level equation solver
SELEN (in progress). This is done in a loop using the coupler time step dt_coupling. The general structure of
the coupler looks as follows:

PROGRAM UFEMISM _program

! Initialise the ice model regions

CALL initialise_model ( [North America] )
CALL initialise_model( [Eurasia] )

CALL initialise_model( [Greenland] )
CALL initialise_model( [Antarctica] )

! Initialise the global climate forcing
CALL initialise_climate_forcing

t_coupling = t_start
DO WHILE (t_coupling < t_-end)

! Run each ice model region from t_coupling to t_coupling + dt_coupling
CALL run_model North America] )

CALL run_model Eurasia] )

CALL run_model Greenland]| )

CALL run_model Antarctica] )

NN S

! Advance the coupler time
t_coupling = t_coupling + dt_coupling

! Update the global climate forcing
CALL update_climate_forcing

! Solve the sea—level equation
IF (time_since_last_SELEN > dt.SELEN) THEN
CALL run_SELEN
END IF
END DO

END PROGRAM UFEMISM _program

Note that, since we generally want to update the global climate more often than the sea-level equation,
SELEN is given its own seperate time step. Also note that model initialisation has been separated from model
running, a practise that we have adopted everywhere in the model.



2.2 Ice model

The main ice model of UFEMISM is contained in the subroutine RUN_MODEL in the module UFEMISM _MAIN_MODULE.F90.
This subroutine is called from the coupler and is provided one of the model regions as an in/output argument.

When called, it will run that model region up till the next coupling moment. The general structure of the ice

model looks as follow:

SUBROUTINE run_model( [region] )
DO WHILE (region%time <= t_end)

IF (do_GIA) run_ELRA _model( [region] )

CALL update_ice_thickness( [region] )

IF (mesh fitness < threshold) update.mesh( [region] )
IF (do_SIA) CALL update_SIA_velocities( [region] )
IF (do-SSA) CALL update_SSA _velocities( [region] )
IF (do.climate) CALL run_climate_model( [region] )
IF (do-SMB) CALL run_SMB_model( [region] )

IF (doBMB) CALL run_BMB_model( [region] )

IF (do_thermo) CALL run_thermodynamics( [region] )
IF (do-output) CALL write_output( [region] )
region%time = region%time + region%dt

END DO

END SUBROUTINE run_model

An important feature of UFEMISM is the asynchronous time stepping of the different model components.
All components have their own independent time step. The model time step REGION%DT is determined in
every loop to equal the difference between the current model time, and the first time one of the components
requires an update. This is visualised below.
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Figure 1: Asynchronous time stepping in UFEMISM.

The time steps dtgra, dtgsa of the SIA and SSA are calculated dynamically using their own respective sta-
bility criteria (eqs. (4) and (17)). All the other model components have fixed time steps, which are set through
the config. At the end of every model loop, the subroutine DETERMINE_TIMESTEPS_AND_ACTIONS determines
which model component(s) should be run next, and advances the model time to that particular moment. The
mesh fitness is checked after the ice-sheet geometry has been updated. If the fitness lies below the prescribed



fitness threshold, a mesh update is triggered. When this happens, only ice thickness and englacial temperature
are remapped from the old to the new mesh; all other model data is calculated by running all of the model
components.

The order of the different model components is such that output written at time ¢ exactly represents the
modelled ice thickness and velocity fields at that time. In order to achieve this, in the very first iteration of
the first time RUN_MODEL is called, bedrock deformation, ice thickness, and englacial temperature are updated
with a time step of zero. By the time output is written, the ice velocities, climate, SMB, and BMB are all given
exactly for the initial model state at ¢t = 0.

2.3 Data structure

Data fields in UFEMISM have been organised into Fortran90 TYPEs. This main advantages of this approach
are that it makes the header sections of subroutines a lot smaller (since instead of passing 10 or 20 different
arrays as arguments, only the type containing them needs to be passed), and that it makes it impossible to
accidentally use different names for the same variables in different subroutines.

Different data fields related to the same model component have been grouped into several TYPEs called ”sub-
models”, such as TYPE_ICE_MODEL for ice dynamics and TYPE_SMB_MODEL for the surface mass balance. These
submodels are grouped together into TYPE_REGION, which contains all the model data describing one of the
four model regions. In this context, the mesh too is treated as a submodel.

e TYPE_REGION

— TYPE_MESH
* REAL(DP), DIMENSION(:,:) = 'V
* INTEGER, DIMENSION(: ) :: NC
* INTEGER, DIMENSION(:,:) :: C
* INTEGER, DIMENSION(: ) :: NITRI
* INTEGER, DIMENSION(:,:) :: ITRI
*

— TYPE_ICE_MODEL
* REAL(DP), DIMENSION(: ) :: HI
* REAL(DP), DIMENSION(: ) :: HB
% REAL(DP), DIMENSION(: ) :: Hs
* REAL(DP), DIMENSION(:,:) :: TI

— TYPE_SMB_MODEL
* REAL(DP), DIMENSION(:,:) :: ALBEDO
* REAL(DP), DIMENSION(:,:) :: SNOWFALL

* REAL(DP), DIMENSION(:,:) :: RAINFALL

All these different data TYPEs are defined in the DATA_TYPES_MODULE. This prevents interdependency
issues, and also keeps the modules containing the subroutines clean and easy to read.

The different submodels gathered in TYPE_REGION are:

e MESH (TYPE_MESH): All the data particular to the mesh: the basic mesh geometry and connectivity data
described in Sect. XXX, as well as all the different neighbour functions.

e ICE (TYPE_ICE_MODEL): All the data required to calculate ice dynamics and thermodynamics: ice thick-
ness, bedrock elevation, surface elevation, geoid elevation, partial derivatives to (z,y, 2, t) of all of these, ice
velocities (STA and SSA), englacial temperature, temperature-dependent ice physical properties (thermal
conductivity, heat capacity, flow factor), different masks, etc.

e CLIMATE (TYPE_CLIMATE_MODEL): All the different climate fields mapped to this regions grid, divided
into ”subclimates” containing present-day observations, GCM snapshots, and the final applied climate.
This is explained in more detail in Sect. XXX.



e SMB (TYPE_SMB_MODEL): All the different components of the surface mass balance: snowfall, rainfall,
melt, refreezing, runoff, albedo, etc.

e BMB (TYPE_BMB_MODEL): All the different components of the basal mass balance (currently only the
yearly melt).

e PD (TYPE_PD_DATA_FIELDS): The present-day ice-sheet geometry, used to calculate different anomalies:
surface load for the GIA model, change in surface elevation for the parameterised climate, etc. This data
is stored both on the current mesh, and on the original x,y-grid on which it is provided (so that, after a
mesh update, it can be projected onto the updated model mesh from its original grid, to prevent numerical
diffusion from accumulating).

e INIT (TYPE_INIT_DATA_FIELDS): The initial ice-sheet geometry at the start of the simulation. Stored on
both the mesh and the original data grid, just as the PD reference data.

2.3.1 Shared memory

The current version of UFEMISM has been parallelised using MPI shared memory, allowing the model to run
in parallel on any number of cores that have direct access to the same memory chip. MPI uses its own routines
to allocate shared memory and associate pointers with it. These have been wrapped in different routines in the
PARALLEL_MODULE:

e ALLOCATE_SHARED_DP_0D

e ALLOCATE_SHARED_BOOL_1D
e ALLOCATE_SHARED_INT_2D
e ...

The naming convention of these routines is " ALLOCATE_SHARED_[TYPE|_[DIM]”. With the exception of the
0D variants (which allocate scalars rather than arrays), they require the dimensions to be allocated as input
arguments, and return two output arguments: a POINTER to the memory space (which is accepted by For-
tran subroutines just like the array it points to), and an MPI wINDOW (really just an INTEGER) associated
with this memory space. The WINDOW is needed to deallocate the memory later. The subroutine ALLO-
CATE_SHARED_INT_2D looks like this:

SUBROUTINE allocate_shared_int_2D ( nl,n2,p,w)

! Dimension(s) of memory to be allocated
INTEGER, INTENT(IN) :: nl, n2

! Pointer to memory space
INTEGER, DIMENSION(:,:), POINTER, INTENT(OUT) :: p

I MPI window to the allocated memory space
INTEGER, INTENT(OUT) :: w

(allocate shared memory for the (nl-by-n2) array p

END SUBROUTINE allocate_shared_int_2D

The MPI windows generated by the ALLOCATE_SHARED routines are all stored in the same TYPEs that hold
the variables the point to, and have the same name as the variable prefixed by the letter w. For example, ice
thickness is stored in the type TYPE_ICE_MODEL like:

e REAL(DP), DIMENSION(:), POINTER :: HI
e INTEGER :: WHI

This shared memory can be deallocated by simply calling DEALLOCATE_SHARED, e.g.:
CALL DEALLOCATE_SHARED( ICE%WHTI)



2.3.2 Parallelisation

All subroutines in UFEMISM, apart from those involved in mesh generation, are parallelised by simple domain
decomposition. This is achieved by assigning to each processor a range of vertices that it is allowed to operate on.
These are stored as non-shared integers v, vo in TYPE_MESH. For example, suppose that we wish to calculate
the surface slope of the model region. This will then look something like this:

DO vi = mesh%vl, mesh%v2

ice%dHs dx( vi) = ddx( ice%Hs, vi)
END DO
CALL sync

If, for example, the mesh has 1000 vertices and the model is running on 4 processors. Then the vertex ranges
for the different processors will be:

Processor ‘ vl ‘ v2

0 1 250
1 251 | 500
2 501 | 750
3 751 | 1000

These ranges are assigned during mesh generation using the PARTITION_LIST subroutine. Note that proces-
sors are indexed from 0; this is the MPI standard. Note also the CALL SYNC statement after the DO loop. This
is simply a wrapper for the MPI_BARRIER command, which ensures synchronisation. Although the work load of
each processor is nearly the same, one of them might still be finished a little faster than the others. The SyNC
statement ensures that the program is only allowed to continue once each processor has finished its work and
therefore the entire data field (in this case, ICE%DHS_DX) has been updated.

This kind of parallelisation works only for ”embarassingly parallel” problems, where operations on an ele-
ment on an array do not depend on operations on any other elements. This is the case for the vast majority of
calculations done in the ice model. There are a few exceptions where great care must be taken to ensure that
the program will behave properly. For example, the SOR iteration in the SSA needs to stop when the smallest
residual velocity across the entire mesh has decreased below the specified tolerance. This must be checked after
all processes have finished updating values in their range, and the smallest value must be found for the entire
mesh. Another problem that is not easily parallelised is the flood-fill algorithm that is used to determine the
ocean mask; instead, this is done only by the master process, while all other processors simply wait around.

Mesh generation is parallelised in a very different manner. This is explained in Sect. XXX.

2.4 Output
2.4.1 Text files

UFEMISM creates a number of ASCII text files containing scalar output data. These are given the prefix ”AA_”
so that they will always be the first to show up in the results directory (since long simulations with frequent
mesh updates can produce a large number of NetCDF files, see next section).

The file ”GENERAL_OUTPUT.TXT” lists some global scalars such as global mean sea level, atmospheric COa,
deep-sea temperature, regional ice volume, contributions to the benthic 68O signal, etc.

The regional ” GENERAL_OUTPUT” files list regional scalars such as ice-sheet area, volume, volume above flota-
tion, mean surface temperature, and the integrated mass balance components.

The regional "TIME_LOG” files list the computation time used by the different model components used by
each region.



Lastly, the Point-Of-Interest (POI) files list ice thickness and englacial temperature over time for the different
POIs that have been specified through the config, to enable easy comparison with ice core data.

2.4.2 NetCDF files

Data fields are written to a number of NetCDF files. Each model region has its own set of output files, which
are divided into "RESTART” and "HELP_FIELDS” files, and into "MESH” and ”GRID” files.

RESTART files, as their name suggests, contain everything that is needed to restart a simulation (either in
the event of a crash, or when it is convenient to split a long simulation into parts): ice thickness, bed topogra-
phy, englacial temperature, the depth of the overlying firn layer, and the amount of melt that occurred during
the previous year (used in the albedo parameterisation).

HELP _FIELDS files can be configured by the user to contain a wide selection of data fields. Ice velocities (surface,
basal, 3D), mass balance components (yearly or monthly), climate fields (temperature, precipitation, wind;
yearly or monthly), etc. A full list of all the data fields that can be chosen can be found in the routine CRE-
ATE_HELP_FIELD in the NETCDF_MODULE (where additional options can also easily be added).

MESH files contain the data on the model mesh, as well as all the data describing that mesh. Since the mesh is
irregularly updated during simulations, changing the number of vertices, this data cannot be contained within
a single NetCDF file. Instead, whenever the mesh is updated, a new NetCDF file is created. The UFEMISM
Github repository contains a number of Matlab scripts that can display mesh data.

GRID files contain the data on a regular square grid. The resolution of this grid can be specified through
the config; UFEMISM internally generates this grid, and whenever output is written, it projects the specified
model data to this grid and writes it to the grid output file. Note that here too, a distinction is made between
RESTART and HELP_FIELDS files, but that the grid restart files cannot be used to restart the model. They are
intended mainly for fast and easy output inspection, for example with NcView.



3 Ice dynamics and thermodynamics

UFEMISM uses the hybrid STA /SSA approximation to the stress balance developed by Bueler and Brown (2009).
In this approach, the SIA is used to determine deformational velocities over land, while the SSA provides both
deformational velocities for floating ice, and sliding velocities over land. Here, we will briefly list the equations
describing these approximations.

3.1 Shallow Ice Approximation

The SIA assumes that all velocity gradients inside the ice sheet are negligible except for the vertical gradients
of the horizontal velocities. This assumption simplifies the Navier-Stokes equation to a form that expresses the
horizontal ice velocities solely in terms of local quantities (ice thickness, surface gradient, ice viscosity). This
means no differential equation has to be solved numerically to obtain the velocity field, which makes it a very
computationally efficient approach. The general consensus is that the SIA is accurate for the interior of an ice
sheet, but cannot accurately describe ice flow near the ice margin, near the grounding line, or in other areas
where the local ice thickness is no longer negligibly small compared to the horizontal length scale of the local
topography.

The STA expresses the horizontal ice velocities u(z), v(z) in the vertical column in terms of the depth-dependent
ice diffusivity D(z):

D(z) = 2(pgH)"|VH|""" /OZA<T*(<))<”d< (1)
oh

u(z) = D(z) 5 (2)

v(z) = D(z)ah (3)

Ay

The depth-dependent ice diffusivity D(z) is defined as a function of the ice density p, gravitational acceler-
ation g, ice thickness H, surface gradient Vh, Glen’s flow law exponent n, and the temperature-dependent ice
flow factor A (T*(z)). For a comprehensive derivation of these equations, see e.g. Bueler and Brown (2009).

In most ice sheet models a staggered grid is used for either the ice velocities, defining ice thickness on the regular
grid, or vice versa. Early experiments with STA ice models have shown that this approach strongly increases
numerical stability, so that much larger time steps can be used. In UFEMISM this is done using the staggered
mesh described in Sect. XXX. The ice thickness H and the surface elevation & are defined on the regular mesh,
whereas the surface gradient Vh and the ice velocities u, v are defined on the staggered mesh. This also makes it
very straightforward to calculate ice thickness change over time using a finite-volume approach (see Sect. XXX).

SIA ice velocities are updated with a dynamical time step according to the CFL-criterion, which relates the
largest time step that does not cause numerical instability to the (local) resolution R and the STA diffusivity
D. For this calculation, these quantities are defined on the staggered vertices c:

R2

dtsra < mcin 61; (4)

3.2 Shallow Shelf Approximation

The SSA assumes that all velocity gradients inside the ice sheet are negligible except for the horizontal gradients
of the horizontal velocities. This means that the gravitational driving stress is balanced by the longitunal (or
"membrane”) stresses, plus a (small) basal shear stress for ice on land. A concrete form of this stress balance
is given by Bueler and Brown (2009), based on the work by MacAyeal (1989) and Weis et al. (1999):
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The first two terms on the left-hand sides of these equations describe the membrane stresses, in terms of
the horizontal ice velocities u, v, the vertically averaged ice viscosity 7 and the ice thickness H. The last terms
on the left-hand side describe the basal shear stress, related to the ice velocity through a Coulomb-type sliding



law (where the magnitude of the stress is independent of the magnitude of the velocity). These stresses are
balanced out by the driving stress, which is described on the right-hand sides in terms of the ice thickness H
and the surface slopes h, and h,. The vertically averaged ice viscosity 7 is described by MacAyeal (1989) as a

function of ice velocity:
1-n
@2+ @24_6’&8’0_'_1 %4—@2 2n (7)
oz dy Oordy 4\0y Oz
In UFEMISM, the SSA is further simplified following the approach by Determann (1991) and Huybrechts
(1992), where the lateral variations of the effective strain rate %, g—z are neglected. Determann (1991) and
Huybrechts (1992) show that, since these terms are small compared to variations of the individual strain rates,
this does not significantly affect the solution, while improving numerical stability and computational efficiency.
Using this simplification, setting the basal shear stress 7, = I%CI’ and using subscript notation for partial

derivatives u, = % simplifies to:

_A
=75

vu  pghy

4u$3¢ + Uyy + 3’ny - ﬁif‘[ = ﬁ 5 (8)
v pgh,
4Uyy + Vg + 3U3¢y — ﬁ7H = 7‘] (9)

These equations are discretised on the mesh using the neighbour functions derived in Sect. XXX:

hl
e (10)

ul <4N’ + N, niTH ) + 30N, Z (4N, + N&,) +30°Ng, ] =

pgh’
771

% % % ) RN c c cnre
v <4N + N, 2H1)+3uN Z (ANg, + Ng,) + 3u°Ng,| = (11)
This system of linear equations can be solved using any preferred method. In UFEMISM, this is done with
successive over-relaxation (SOR). This approach was chosen because the boundary conditions of the SSA (i.e.
ice-sheet geometry and viscosity) tend to change very slowly over time, so that the velocity field at time ¢ is
usually very similar to that at time ¢ 4+ §¢. This means that an iterative solver using the solution from the
previous time step as an initial guess will generally be more efficient than a direct solver. The choice for SOR
as the particular iterative method is one of convenience, since it is very easy to implement without even having
to construct a matrix representation of the system of equations.

Let a system of linear equations be of the general form a;f; + Zj# bjf; = ¢;. The SOR iteration scheme
to find the solution f then looks like:

aiff + 3 bifF — e

fk-‘rl fk (12)
a;
Applying this general form to the SSA yields the following SOR iteration scheme:
hz 7
ubHl = ok — 2 (u Cui + 305 Ny + Z (ANpp e + Nyy.o) + 30N, ] — 2222 ) : (13)
€u,i i
’ c=1
hy i
ot =k - w (U Cvi+ 3NNy i + Z (4Nyy,c + Nug.o) + 3ulNyy o] — pg%) _ (14)
€v,i i
’ c=1
The centre coefficients e, ;, €,; are defined as:
Cu,i = 4Nza:,z + N'L/'L/, :b];} 3 (15)
Tb,i
€y,i = 4N, ,7;+N:1:x,i_i’ . 16

Currently, no boundary conditions are applied at the calving front. Instead, following the approach by
Bueler and Brown (2009), a nearly-infinitely thin (10 cm) ice shelf extends all the way to the model domain,
where Neumann boundary conditions are applied.
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The over-relaxation parameter w is currently set to w = 1.1. Higher values generally yield faster convergence,
but risk numerical instability. Preliminary experiments indicate that in this case, divergence tends to occur at
specific vertices, and that using a spatially variable value of w (which is low only at these vertices and high
elsewhere) can significantly decrease the number of iterations required to find an accurate solution. However,
determining rules for how w is to be defined as a function of mesh geometry such that numerical instability is
guaranteed to never occur, has turned out to be difficult, and a robust implementation of this solution is left as
a future project.

SSA ice velocities are updated with a dynamical time step according to the CFL-criterion, which relates the
largest time step that does not cause numerical instability to the (local) resolution R and the SSA ice velocities
u,v D. For this calculation, these quantities are defined on the staggered vertices c:

dtssa < min (17)

C
e |ucl + v

3.3 Mass continuity

In UFEMISM, ice thickness changes over time are calculated using a finite volume approach, which is conceptu-
ally very similar to the more commonly used combination of finite differencing with a staggered grid. Consider
the conservation law for flowing ice, equating the time derivative of the ice thickness H to the (two-dimensional)
divergence of the ice flux (being the product of H and the vertically averaged ice velocity u), and the mass
balance M:

OH
Ez—V-(uH)—i—M (18)

By applying the divergence theorem, this can be rewritten as:

a

Here, € is some arbitrary 2-D region (the control volume after which the finite volume approach is named),

enclosed by the 1-D curve 92 with outward unit normal vector fi . The unstructured triangular mesh partitions
the 2-D domain into Voronoi cells, which function as the control volumes (see ).

OHg Tlf (uH-dﬁ)]+M (19)

Aq Joo

Figure 2: The Voronoi cell (grey) of a vertex serves as the control volume in the finite volume approach. Ice
flows through the vertical faces of the volume, while the surface and basal mass balance add or remove ice from
the top and bottom faces, respectively

The conservation law for a single Voronoi cell reads:

n

1 /
— (u.H, - di.)
Ai ; o, cllc

Here, the Voronoi cell of vertex i shares the boundary 0. with that of neighbouring vertex c. The equation
is then discretised in space by assuming that the ice velocity u and the ice thickness H are constant on 0., so
that the line integral becomes a simple multiplication with the length L. of the shared boundary 9,:

OH;
ot

7% (20)

n

oH;
ot

-1 R
x > (LeuH, - dri.)

7T (21)

Lastly, the equation is discretised explicitly in time:
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n

-t > (LeucH. - dric)

HIFA = HE + At
1 K3 + ( AZ

+ M) (22)
c=1
In order to solve this equation, we need to know the ice velocities u, on the Voronoi cell boundaries. Both
the STA and the SSA are therefore solved on the staggered vertices described earlier. The staggered ice thickness
H._ is determined using an up-wind scheme (H, = H; if ice flows from ¢ to j, H. = H; if it flows fromj to ¢). This
means that the finite volume approach is essentially identical to the "mass-conserving up-wind finite difference
scheme” used in PISM (Winkelmann et al., 2011), and very similar to the combination of finite differences with
a staggered grid used in many other ice-sheet models.

A simple flux-correction scheme is applied to prevent negative ice thicknesses from occurring. After the fluxes
across all Voronoi cell boundaries have been calculated, a check is done to find vertices where H. f AL . There,
all outgoing fluxes are reduced by a scaling factor so that HZHM = 0. Since this rescaling is applied to the
staggered fluxes before the final ice thickness update is applied, this scheme is still mass-conserving.

3.4 Thermodynamics

UFEMISM uses the approach developed for SICOPOLIS (Greve et al., 1997) to solve the heat equation in a
flowing medium:
or

k P
— = —V*T—u-VT + —. (23)
ot pep PCp

Here, the first term %VQT represents diffusion, the second term u - VT represent advection, and the third
P

term p% represents internal heating. For ice on land, internal heating is related to the vertical shear strain
P
rates:

D =2 (€12Taz + €yaTyz) - (24)

Furthermore, since the horizontal dimensions of the ice sheet are so much larger than the vertical dimension,
horizontal diffusion of heat is neglected, simplifying the heat equation to:

2
or _ k0T yrs 2 (25)
ot pep 022 PCp

This equation is discretised on an irregular grid in the vertical direction. All vertical derivatives are discre-
tised implicitly, whereas horizontal derivatives are discretised explicitly. This mixed approach, which was first
used in the ice-sheet model SICOPOLIS (Greve, 1997), is numerically stable (since both the steepest gradients
and shortest grid distances are in the vertical direction), relatively easy to implement, and fast to compute.

Using 15 layers in the vertical direction, a time step of 10 years is typically sufficient to maintain numerical

stability, independent of the horizontal resolution.

In order to calculate a depth-dependent temperature distribution, a vertical spatial discretisation is required.
Following the approach used by many ice-sheet models, we adopt a scaled vertical coordinate:

h—z
C=—Fx
This guarantees that the top and bottom of the vertical ice column always coincide with the first and last
vertical grid point, 5 respectively. This coordinate transformation results in the appearance of a few extra terms
in the heat equation:

(26)

OT T  k OPT(9C\? (T 9T oT | 9T ¢ aTaC\ | ®
o tacan e (o) (5t acan) (5 ) (55

ofoc & o1 9L 9% 9L 9 GO L 2 g
ot Y aC Bt pe, 00 oz ¢ oz oy T ¢ oy o¢c0-) " e, (27)

The different spatial derivatives of ¢ follow from (26):
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K1 (mom) o

ot H \ ot ot
%:% (31)

The partial derivatives %%, ‘gg can be discretised on the irregular vertical grid using Taylor expansions,
yielding expressions of the form:

aTk k—1 k k+1

TC =acT + b + e T, (32)
0*T*
TCQ = G/CCTk_l + bCCTk + CCCTkJrl. (33)

Note that these expressions are very similar to the neighbour functions we saw earlier. We will not include
their derivation here. Using these expressions to discretise the vertical derivatives of T', and using an implicit
time-discretisation for the vertical derivatives, yields:

W%ﬁ (acTEED + 0T+ e TERY) =
e (ace TR + b Ty + e Tt T)
—u {gi (acTE + b TR + e TED) + ZZ} (34)
v {g; (acTED 4 0 TEA e TEHAY) 4 gﬂ
o [ ettt ez + 2
This can be rearranged to read:
e
[ (9¢ 9C 0 beck 1
T b <8§ " uﬁé " U(?*zg B Z) - pijHQ B At} (35)
it s (oo ooy ) i

T 9T 9T @

= U— —V— + .
At Ox dy  pcp
If the vertical direction is discretised into n unevenly spaced layers, this system of equations can be repre-
sented by the matrix equation AT*T4t = §, where the lower diagonal «, central diagonal 3 and upper diagonal
~ of the tridiagonal n-by-n matrix A and the right-hand side vector § are given by:

Cap (964,00 08w L Ak

a—a<<6t+uax+v8y H> PR (36)
o (96,00, 00w bk 1

ﬁ_b<<8t+u8x+vay H) pep,H? At (37)
e (96,00, 00w | ack

7—c¢<8t+uax+vay H) pe, 2 (38)
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This matrix equation can be solved for every individual grid cell independently, making this an embarrass-
ingly parallel problem. In UFEMISM, this is done with the Fortran package LAPACK; in Matlab, it can be
done with the backslash method: T = A \delta. We apply a Dirichlet boundary condition at the top of the
column, keeping ice temperature equal to surface air temperature (limited to melting point). At the base, a
Neumann boundary condition is applied, keeping the vertical temperature gradient fixed to a value dictated
by the geothermal heat flux and the frictional heating from sliding. Ice temperature throughout the vertical
column is limited to the depth-dependent pressure melting point (a non-energy-conserving approach).
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4 Climate

UFEMISM’s climate model is the same as that in IMAU-ICE, which in turn is same as in its predecessor AN-
ICE2.1. It uses the matrix method developed by Berends et al. (2018). Quoting that paper: ”A climate matrix,
as defined by Pollard (2010), is a collection of output data from different steady-state GCM simulations that
differ from each other in one or more key parameters or boundary conditions, such as prescribed atmospheric
pCOa, orbital configuration, or ice-sheet configuration. At every point in time during the simulation, the loca-
tion of the model state within this matrix is extracted from the matrix by interpolating between its constituent
precalculated climate states.”

Berends et al. (2018) developed a way to use modelled ice-sheet geometry as a spatially variable interpolant
between two GCM snapshots, respectively describing the PI and the LGM (Singarayer and Valdes, 2010). The
ice-albedo feedback and the orographic forcing of precipitation are parameterised by this interpolation, result-
ing in a modelled ice-sheet geometry at LGM that agrees better with geomorphological evidence than was the
case with earlier versions of the IMAU ice-sheet models. Since temperature and precipitation (which together
constitute the entirety of the ”climate” that’s needed to calculate the surface mass balance) are affected by
ice-sheet geometry in different ways, two separate interpolation schemes are used for these quantities.

4.1 Temperature

The equations described here are contained in the subroutine RUN_CLIMATE_MODEL_MATRIX_PI_LGM_TEMPERATURE
of the CLIMATE_MODULE.

During the LGM, temperatures in the high latitudes of the northern hemisphere were between 10 and 15
K colder than pre-industrial, much more than the global mean cooling of 5 K. This temperature change has
three main causes: a lower CO2 concentration in the atmosphere (global), a much higher albedo (regional), and
a much higher surface elevation (local).

The temperature interpolation scheme of the climate matrix is based on the absorbed insolation I,;s, which is
defined as the product of insolation at the top of the atmosphere Qroa with the inverse of the surface albedo
a:

12
Iabs(xvy) = Z QTOA($7y7m) . (1 - a(x7y7m)) (40)

m=1

The absorbed insolation is calculated for the modelled ice-sheet geometry at time ¢ using the insolation at
the top of the atmosphere at that point in time, using the solution by Laskar et al. (2004). Absorbed insolation
fields are also calculated for the two GCM snapshots, so that we have three fields: Iopsmod, Labs,P1, Labs,LGM-
For all three, the albedo a is modelled with UFEMISM’s own SMB model. The insolation-based weighting field
Wins (2, y) is calculated by scaling Iyps moq between the two reference fields:

Iabs,mod(xa y) - Iabs,LGM (1'7 y)
Labs,p1(%,y) — Labs,Lam (2, )

To account for the fact that a change in albedo will affect temperatures not only locally but also regionally,
a Gaussian smoothing filter F' with a smoothing radius of 200 km and a region-wide average value are added
to find the weighting field w;c,:

1 3 3———
Wice (xv y) = ?wins (.’13, y) + ?F (wins (.’13, y)) + ?wins (3:7 y) (42)

NOTE: preliminary attempts at writing a proper (i.e. conservative, monotonic, efficient) smoothing algo-
rithm on an unstructured mesh have not been successful. Instead, a fixed square grid is included for these
operations. The weighting field w;,s is mapped from the mesh to the square grid, smoothing is applied on
the grid, and the smoothed field is mapped back to the mesh. The two mapping operations generate a certain
amount of numerical diffusion, which fortunately is not a problem for a smoothing operation.

Lastly, the atmospheric COy concentration is included to yield the final weighting field wyy¢:

15



CO2 — 190

_ 4
WC02 = 580 — 190 (43)
w + Wice(Z,
Wtot (LC, y) = S 9 ( y) (44)

This weighting field is then used to interpolate between the two GCM snapshots:

Tref,GCM(-T; Z/) = wtot('ra Z/) . TP](QI‘, y) + (1 - wtot(xa y)) : TLGM(x7 y) (45)

Since the native resolution of the GCM snapshots is much lower than that of the ice-sheet model, this
interpolated temperature is still very ”smooth”. To correct for this, an elevation-based downscaling scheme is
used. First, the reference orography of the GCM snapshots is interpolated with the same weighting field. Then,
the GCM-derived lapse rate is derived to find the ice-sheet model temperature:

href,GCM(x7 y) = wtot(x7 y) . hPI(xa y) + (1 - wtot(x7 y)) . hLGM(xv y) (46)
Tonod(x,y) = Trep,com + Agem (2,Y) - (hmod(T,y) — hrep.aonm(x,y)) (47)

Rather than using a constant lapse rate (typical values range from 6 to 8 K / km), a GCM-derived, spa-
tially variable lapse rate Agon(x,y) is calculated from the temperature and orography fields of the two GCM
snapshots:

Trom(v,y) — (Tpr(z,y) + ATrgar)
hrem(z,y) — hpr(z,y)

The temperature offset ATy g is the mean difference in GCM-calculated temperature between the LGM
and PI fields over the ice-free area in the respective model region (either North America or Eurasia) at the
LGM. The rationale behind this approach is explained in detail by Berends et al. (2018); in short, it ensures
that, during the inception phase of the glacial cycle, the ice-free parts of the continent experience an appropriate
amount of cooling so that the ice-sheet can expand.

Aram(z,y) = (48)

4.2 Precipitation

The equations described here are contained in the subroutine RUN_CLIMATE_MODEL_MATRIX_PI_LGM_PRECIPITATION
of the CLIMATE_MODULE.

At present, Antarctica is the driest desert on Earth, with the interior of East Antarctica receiving barely a
centimetre of precipitation per year. The two main reasons for this are the extreme cold, which strongly reduces
the moisture carrying capacity of the atmosphere, and the geometry of the ice-sheet. The dome shape of the
Antarctic (or indeed any) ice sheet results in relatively steep slopes at the margin. As the wind blows moist
air from the sea towards the ice sheet, the air has to move up this slope. Moving upwards means the pressure
and temperature decrease, reducing the moisture carrying capacity, and so most of the moisture precipitates
onto the ice-sheet margin. Any air that reaches the plateau of the ice-sheet interior is very dry, and so hardly
and precipitation occurs there. This ”plateau desert” effect is also expected to have existed over the North
American and Eurasian ice sheets during the LGM.

This geometry-induced precipitation change is captured in the matrix method by using a different way to
calculate the weighting field. Instead of absorbed insolation, ice thickness is used an interpolant:

(49)

Hmo ) - H ) Vmo -V ?
i) = ) Hoi). Voot~ Ve )

Hiagm(z,y) — Hpr(z,y) \Viem — Ver

Here, H(z,y) is the local ice thickness, while V = [[ HdA is the total regional ice volume. Note that (49)
is slightly different from Eq. 12 in Berends et al. (2018); the version in the paper is wrong, in the actual model
code the scaled local ice thickness is multiplied with the square of the scaled ice volume.

The final weighting field w;o(x,y) is obtained by applied a Gaussian smoothing filter F' with a radius of
200 km:

Wiot(2,y) = 1 = F(wice(7,y)) (50)
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Note that the weight is inverted so that a value of 1 corresponds to PI conditions.
The GCM precipitation fields are then interpolated with this weighting field:

Prepaom(,y) = wior(,y) - Ppr(z,y) + (1 = wior (2, y)) - Pram(2,y) (51)

As with the temperature, the resulting precipitation is still very ”smooth” because of the low GCM resolution.
Here too, an orography-based downscaling scheme is used to transform the precipitation from the smooth
reference orography to the ”fine” model orography. This is done using the temperature/orography precipitation
model developed by Roe and Lindzen (2001), which models precipitation as a function of surface temperature,
wind speed and direction, and surface slope (parameterising both the effects of temperature on atmospheric
moisture carrying capacity, and of orographic forcing of precipitation).

c1(T—Ty)

Csat = €0€°2TT 10 (52)
oh oh
Wyy = max(O, uwind% + Uwind@) (53)
1 _ UY,/Uva—iﬂo
Flun,) = e () (54)
dPRL = esatmax(oa a+ bw;w)f(w:w)dw:w (55)

Here, e4,: is the saturation vapour pressure at the surface, which is a good proxy for the moisture content
of the overlying air column. It is described by a Clausius-Clapeyron relation using the monthly mean surface
temperature 7', where ey = 6.112 mbar, ¢; = 17.67, and co = 243.5 K. The vertical wind velocity w,, is
calculated from the 850 hPa wind [wwind, Vwind)and the surface gradient. The precipitation Pgy, is related to
vertical wind velocity w,, through a probability distribution f(w’)dw’ , which is the probability that w,, lies
between w!,, and w!, + dw!,. o = 1.15 cm s is the measure of variability in the vertical wind velocity (Roe,
2002). The precipitation dPry, is given by Eq. XX, where the constants a = 2.5 - 10-11 kgt s2 m and b =
5.9 - 10 s3 kg were obtained by tuning to observations of Greenland (Roe, 2002). This equation is solved
analytically using error functions (Roe and Lindzen, 2001), resulting in the following expression:

To = % + Wayo (56)
2 —a?z?
xo  xierf(alxzg|) e 0
P = besat | =
RL = DCsat | 7y el | 2/ma (57)

The Roe and Lindzen precipitation model is applied to both the ”smooth” interpolated GCM orography
hrep,com (calculated with the weighting field for precipitation, which is not the same as the interpolated
orography used in the temperature scheme) and to the ”fine” modelled orography to calculate a correction
factor with which the interpolated GCM precipitation Pr.r o is adjusted:

PrL mo
Pmod = PTef,GCMM (58)

Prr.com
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4.3 Data structure

The current implementation of the matrix method uses the PI and LGM climates produced by Singarayer and
Valdes (2010) as GCM snapshots, plus the ERA-40 reanalysis as a present-day reference state.
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Figure 3: The ERA-40 reanalysis data.
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Figure 4: The PI GCM snapshot by Singarayer and Valdes (2010).
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Figure 5: The LGM GCM snapshot by Singarayer and Valdes (2010).

The data structure of UFEMISM’s climate model has been created specifically to accommodate the matrix
method. The TYPE_CLIMATE_MODEL is subdivided into several ”subclimates”, which describe either the present-
day observed climate PD_OBS (typically the ERA-40 reanalysis), the different GCM snapshot used in the matrix,
or the final applied climate resulting from the matrix interpolation. This structure looks as follows:

e TYPE_CLIMATE_MODEL

— PD_OBS (TYPE_SUBCLIMATE_REGION)

REAL(DP), DIMENSION(:,:) :: T2M ! Monthly mean 2-m air temperature [K]
REAL(DP), DIMENSION(:,:) :: PRECIP | Monthly total precipitation [m)]
REAL(DP), DIMENSION(:) :: Hs ! Reference surface elevation [m]

REAL(DP), DIMENSION(:) :: WIND_WE ! Zonal wind [m/s]

REAL(DP), DIMENSION(:) :: WIND_SN ! Meridional wind [m/s]

REAL(DP), DIMENSION(:) :: WIND_LR ! Wind in regional grid x-direction [m/s]
REAL(DP), DIMENSION(:)

REAL(DP), DIMENSION(:)

:x WIND_DU ! Wind in regional grid y-direction [m/s]
:: 1_ABS ! Yearly total absorbed insolation [.J/m?]

* K K X X X X X ¥

— GCM_PI (TYPE_SUBCLIMATE_REGION)
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— GCM_LGM (TYPE_SUBCLIMATE_REGION)
— APPLIED (TYPE_SUBCLIMATE_REGION)

All data fields in the TYPE_CLIMATE_MODEL are defined on the mesh. To easily handle mesh updates,
global climates (on their respective original lat/lon grids) are stored in memory as well. These are kept in
the TYPE_CLIMATE_MATRIX, which is declared in UFEMISM_PROGRAM and passed to the different models as an
argument. The TYPE_CLIMATE_MATRIX has the same structure as the TYPE_CLIMATE_MODEL, with subclimates
containing the present-day observed climate and the GCM snapshots. When the mesh is updated, the different
subclimates are remapped from the global fields to the new mesh.
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5 Mass balance

The surface mass balance is modelled in UFEMISM using IMAU’s in-house insolation-temperature model IMAU-
ITM (Berends et al., 2018). This model took part in the GrSMBMIP intercomparison exercise (Fettweis et al.,
2021), where it was shown to perform well in comparison to other parameterised SMB models when simulating
the different components of the mass balance of the Greenland ice sheet during the satellite era.

The basal melt currently consists of the temperature/depth-dependent sub-shelf melt parameterisation by Mar-
tin et al. (2011), combined with the glacial/interglacial parameterisation by Pollard and DeConto (2012), and
the subtended-angle/distance-to-open-ocean parameterisation also by Pollard and DeConto (2012). Basal melt
underneath grounded ice is currently not included. All of these parameterisations are currently the same as in
IMAU-ICE and its predecessor ANICE2.1.

5.1 Surface mass balance

The surface mass balance is modelled in UFEMISM using IMAU’s in-house insolation-temperature model IMAU-
ITM (Berends et al., 2018; Fettweis et al., 2021). This 0-D model takes monthly values of surface temperature
and precipitation, and insolation at the top of the atmosphere, to separately calculate different components of
the surface mass balance.

First, the snow fraction of precipitation is calculated according to the parameterization by Ohmura (1999),

so that the monthly precipitation P is partitioned into the monthly snowfall S and the monthly rainfall R (all
expressed in metres of water equivalent):

1—0.796 - tan~* (L12)

fsnow = 9 3.5 (59)
S=P- fonow (60)
R=P- (1 - fsnow) (61)

The monthly snowmelt A is parameterised as a linear function of the 2-m air temperature 7', the albedo a,
and the insolation at the top of the atmosphere Q1o 4 following the approach by Bintanja et al. (2002):

AZCl(T—T0)+CQ(QTOA(1—a))—03 (62)

The refreezing F is calculated from the available liquid water content L and the (parameterised) super-
imposed water content L,, following the approach by Huybrechts and de Wolde (1999) and Janssens and
Huybrechts (2000):

L=R+A (63)
Lsyp = 0.012 - maz(0,To — T) (64)
F = min(L, Lyuy, P) (65)

The surface mass balance Mj is equal to the sum of snowfall, (minus) ablation, and refreezing, and converted
from metres of water equivalent to metres of ice equivalent:

M,=(S—A+F)2 (66)
Pi
In order to calculate the albedo used in the snowmelt parameterisation, the thickness of the firn layer H; is
modelled as well, using a simple no-compaction model where any snowfall is assumed to immediately become
firn with the density of ice. The firn layer thickness is limited to 10 m. The albedo a is then parameterised
according to the thickness of the firn layer Hy and the amount of snowmelt A,,., that occurred during the
previous year:

a4 = Aspow — (asnow - asurf)e_ISHf - 0~0]-5Ap7‘ev (67)

Here, asnou = 0.85 is the albedo of fresh snow, and asy,¢ is the albedo of the surface underneath the firn
layer (either 0.5 for bare ice, or 0.2 for bare soil).
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5.2 Basal mass balance

The basal melt currently consists of the (linear) temperature/depth-dependent sub-shelf melt parameterisation
by Martin et al. (2011), combined with the glacial /interglacial parameterisation by Pollard and DeConto (2009),
and the subtended-angle/distance-to-open-ocean parameterisation also by Pollard and DeConto (2009).

Pollard and DeConto (2009) provide a highly parameterised relation for sub-shelf melt, which depends only
on horizontal shelf geometry. They provide three uniform values for sub-shelf melt underneath ”protected”,
"exposed”, and ”deep ocean” shelves. A weighted average between these values is calculated as follows:

ze = max[0, min[1, 30 ]]eT00 (68)
. h— hdeep
= 1, L Cdeep
za = maz[0, min[l, 500 1l (69)
M= (1—2q9)[(1 — ze) My + ze M) + 2qg My (70)

Here, the protected/exposed weighting factor z. is calculated based on the angle A (degrees) subtended
by the set of all straight lines from the point in question that reach open ocean without encountering land or
grounded ice, and the shortest linear distance D (km) from the shelf point to the open ocean. The deep-ocean
weighting factor z4 is calculated from the bathymetry h, scaled with respect to a threshold depth hgeep Which
represents the transition from the continental shelf to the oceanic basin (configurable per model region).

The three uniform melt rates for protected shelves M), exposed shelves M. and deep-ocean shelves M, are
calculated as weighted averages from fixed values for the present-day, and hypothetical ”cold” and ”warm”
ocean states. The values for these states were derived by Bas de Boer for ANICE somewhere in the early 2010’
to provide reasonable patterns of Antartic advance/retreat. They are configurable per model region, with the
default values copied from ANICE. The interpolation between these fixed values is done based on CO_2 and
high-latitude insolation.

As in ANICE and IMAU-ICE, the melt rate for protected shelves is replaced with the parameterisation by
Martin et al. (2011). Here, the sub-shelf melt rate M, is parameterised as a linear function of the (mean) ocean
temperature To,, according to Martin et al. (2011):

Tfreeze =—1.9011 — 7.64 - 10*4H& (71)
Pw

Mp = PwCpOYTCM (72)

qus Pi

Here, the freezing temperature Tt cc.. of ocean water at the base of the shelf is expressed as a linear function
of the water depth (which is simply the ice thickness H times the ratio of densities). The sub-shelf melt rate
M is then found from the heat capacity Cpo = 3.97- 103Jkg= 'K~ of the ocean, the thermal exchange velocity
yr = 107*ms~1, a tuning factor cps (default value 0.005), the mean ocean temperature To,,, and the heat of
fusion L yys = 3.335 - 107kg=! for liquid water.
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6 Glacial isostatic adjustment

Currently, glacial isostatic adjustment (GIA) is calculated with a simple ELRA (Elastic Lithosphere, viscously
Relaxed Asthenosphere) model according to Huybrechts (1992). In future improvements, the option to instead
use bedrock deformation rates supplied by SELEN will be included as well.

6.1 ELRA
6.1.1 Theory

The ELRA model uses three scalar values to completely describe the response of the solid Earth to changes
in loading: the flexural ridigity D = 10°kgm?2s~2 of the lithosphere, and the relaxation time 7 = 3000yr and
density p,, = 3300kgm =3 of the viscous mantle (all configurable). These are used to calculate the 2D flexural
profile F' (i.e. the equilibrium deformation in response to a unit point load), using the Kelvin function Klv:

F(r) = KZU(LLT) (74)

Here, L, (m) is the influence radius of lithospheric rigidity, and r is the linear distance (m) from the point
load. The equilibrium bedrock deformation dhe, in response to a load distribution P(z,y) is calculated by 2D
convolution of the load with the flexural profile:

Oheq(x,y) = F(r) * P(z,y) (75)

The lithospheric deformation rate %’Z is proportional to the difference between the modelled deformation :

@ _ 5h($,y,t) - 5h€q(x7y)
g (&Y t) = . (76)

6.1.2 Implementation

Due to the highly diffusive nature of glacial isostatic adjustment, the ELRA model needs neither a high spatial
resolution nor a small time step. Therefore, the calculation of the deformation rate % has been given its
own separate time step DT_ELRA (configurable, default value 100 yr). Note that the bedrock elevation itself
is updated in every model loop to prevent ”jumps”. Since the ELRA model does not require a high spatial
resolution, and also since performing a proper 2D convolution on an unstructured mesh is not easy, the ELRA
model is run on a fixed square grid (resolution configurable, default value 100 km). The surface load (relative
to the present-day load, which includes both ice and liquid water) is calculated on the mesh, and then projected
to this square grid. The 2D convolution is performed on the grid, and the resulting deformation rate is mapped
back to the mesh. While the two mapping operations induce some small amount of numerical diffusion, this

does not significantly affect the results due to the already highly diffusive nature of the ELRA model itself.

A similar square grid construction is being developed for the coupling to SELEN.
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7 Unstructured grid

The core of UFEMISM is the unstructured triangular grid (the mesh) upon which the ice-dynamical equations
are discretised and solved. The data structure used to describe the mesh (based on connectivity lists rather
than matrices) has been created specifically for UFEMISM.

7.1 Basic concepts

Before we get started, we will briefly review some important concepts in mesh geometry.

7.1.1 Nomenclature

Consider the simple mesh shown in Fig. 77.

Figure 6: A simple mesh.

This mesh consists of five vertices, each connected to several others by lines and/or segments, which together
span four triangles. Note: a connection between two vertices is called a line when the connection is a shared
border of two triangles. Connections that are part of the domain boundary (and thus form the border of only a
single triangle) are called segments. Vertices 1 and 2 are connected by a segment, vertices 1 and 5 are connected
by a line.

7.1.2 Voronoi cells and Delaunay triangulation

For a given set of points in R?, a triangulation is a way to connect the points with straight lines, such that each
point is connected to at least two others by lines spanning triangles (and nothing else), without any intersecting
lines. There generally exist many different triangulations for any set of points, but there is always a single
unique one, called the Delaunay triangulation, which exhibits several useful properties. Formally, the Delaunay
triangulation is defined as the triangulation where the circumcircle of any triangle contains does not contain
any points inside it other than the three points spanning the triangle. However, this definition is not very easy
to comprehend. Instead, it is more intuitive to define the Delaunay triangulation from the concept of Voronoi
cells.

For a given set of points in R?, each point can be assigned a region of space that is closer to that point than to
any other point. This region is called the Voronoi cell belonging to that point. The Delaunay triangulation is
the triangulation where a point is connected to another point if and only if their Voronoi cells share a boundary.
This is illustrated in Fig. ?7.

While we will not prove them, some useful properties of the Delaunay triangulation are:

e The line connecting two points is always perpendicular to the shared boundary of their respective Voronoi
cells.

e The Delaunay triangulation minimises the smallest internal angle of all triangles.

These two properties are especially useful in the context of ice-sheet models (and other fluid dynamics
models). The first property is very useful when using a finite volume approach to solve the mass conservation
equation, while the second one is useful for improving numerical stability. As far as I’ve been able to find, all
models that use unstructured triangular grids use the Delaunay triangulation.

It can be proven mathematically (if one were of a mind to do so) that any triangulation can be changed
into the Delaunay triangulation by iteratively finding triangle pairs that violate the local Delaunay criterion
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(b)

Figure 7: (a) A collection of points in R?, (b) the Voronoi cells of the points, (c) the Delaunay triangulation.

(i.e. where the fourth vertex lies inside the circumcircle

of the other three), and "flipping” them. This is
illustrated in Fig. ?77.

-

- -

(b)

Figure 8: (a) This pair of triangles violates the local Delaunay criterion, (b) the pair has been ”flipped”, and
now satisfies the criterion.

7.2 Data structure

Theoretically, all that is needed to uniquely and completely describe a mesh is a list of the coordinates of its

vertices. Everything else flows from there; their position in space determines the geometry of their Voronoi
cells, which determines the Delaunay triangulation, which determines the connectivity. However, deriving all

this information from the vertex coordinates can be a lengthy process, so instead several different forms of the
mesh connectivity are stored in memory as well.

A mesh consisting of nV vertices and nTri triangles is stored in memory in the form of vertex data and
triangle data:
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Table 1: Vertex data

Name Description Size

v Vertex [x,y] coordinates DOUBLE(nV,2)
nC Number of connected vertices INT(nV)

C Indices of connected vertices INT(nV,32)
niTri Number of triangles containing this vertex | INT(nV)

iTri Indices of triangles containing this vertex | INT(nV,32)
edge_index | Edge index INT(nV)

Table 2: triangle data

Name ‘ Description ‘ Size

Tri Indices of the three vertices spanning this triangle | INT(nTri,3)
Tricc [x,y] coordinates of the triangle’s circumcentre DOUBLE(nTri,2)
TriC Indices of connected triangles INT(nTri,3)
Tri_edge_index | Edge index INT(nTri)

As the name ”unstructured mesh” suggests, there is no particular order to the indices of the vertices or
triangles, and no relation between their indices and their position. However, the following rules apply:

e C: neighbouring vertices are listed in counterclockwise order, and only the first nC' entries of the 32 values
per vertex are used; all other entries are zero. For vertices lying on the domain boundary, the list may not
”jump” outside the domain; if, for example, this vertex lies on the eastern border, the first entry must be
the neighbour lying north of the vertex on the boundary, and the last one must be the neighbour lying
south of the vertex on the boundary.

e iTri: triangles containing the vertex are listed in counterclockwise order, and only the first niTri entries
of the 32 values per vertex are used; all other entries are zero. For boundary vertices, the same rule applies
as for C.

e Tri: the three vertices spanning a triangle are listed in counterclockwise order. There are no rules for
which vertex is listed first, but it must correspond to the entries in TriC.

e TriC: the three neighbouring triangles are sorted such that the first neighbouring triangles lies opposite
of the first vertex, the second one across from the second vertex, etc. If no neighbouring triangle exists
(i.e. when this side of the triangle is part of the domain boundary), a zero is listed.

e edge_index: the edge index describes if a vertex lies on the domain boundary: 1 = northern boundary,
2 = north-east corner, 3 = eastern boundary, etc., 0 = not on any boundary.

e Tri_edge_index: similar to the edge index of vertices. The corner values (2,4,6,8) are used when a triangle
is situated such that two if its sides lie on different parts of the domain boundary.

We will illustrate these variables with an example. Consider the simple mesh shown in Fig. 77.
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Figure 9: Another simple mesh.

The mesh data for this mesh is shown in Tables 7?7 and ?7. Vertex coordinates V and triangle circumcentre

coordinates Tricc are omitted for brevity.

Table 3: Vertex data

vi nC | C niTri | iTri

1 3 7,9,10 2 7,12

2 4 8,6,9,7 3 5,11,2

3 3 10,5,13 2 13,14

4 3 11,6,12 2 10,3

5 6 13,3,10,9,6,11 | 6 8,9,4,14,13,1
6 7 9,2,8124,11,5 | 7 3,10,9,8,11,5,6
7 3 2,9,1 2 2,7

8 3 12,6,2 2 6,5

9 6 10,1,7,2,6,5 6 2,11,8,1,12,7
10 4 1,9,5,3 3 12,1,13

11 4 13,5,6,4 3 4,9,10

12 3 4,6,8 2 3,6

13 3 3,5,11 2 14,4
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Table 4: Triangle data

ti | Tri Tricc | TriC
1 [9510 | .. 13,128
2 1972 | .. 0,11,7
3 11246 | .. 10,6,0
4 [ 135,11 | ... 9,0,14
5 1286 | .. 6,11,0
6 | 12,68 | .. 5,0,3
71791 | .. 12,0,2
81965 | .. 9,1,11
9 | 6115 | .. 4,8,10
10 | 4,116 | ... 9,3,0
11926 | .. 5,8,2
12 | 10,1,9 | ... 7,1,0
13 | 53,10 | ... 0,1,14
14 | 1335 | .. 13,4,0

7.3 Staggered mesh

In order to apply the finite volume method, we need to define ice fluxes on the boundaries of the Voronoi cells
of the vertices. This means we need a way to efficiently keep track of these boundaries. This is done by creating
a "staggered mesh”, which is conceptually very similar to the Arakawa C mesh used in square-grid models.

Figure 10: The staggered vertices (green) correspond to the connections between the regular vertices (blue).

Each connection between two regular vertices is given a unique index, and represented by a staggered vertex
lying halfway along the connection. Two lists are created, Aci and iAci, which relate regular vertices to
staggered vertices, and vice versa. For the simple mesh shown above, these lists look like this:
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vi | iAci ai | Aci

1 1,2,3 1 1,7,9,0

2 4,5,6,7 2 1,9,10,7

3 8,9,10 3 1,10,0,9

4 11,12,13 4 2,8,6,0

5 14,9,15,16,17,18 5 2,6,9,8

6 19,5,20,21,12,22,17 | 6 2,8,7,6

7 7,23,1 7 2,7,0,9

8 24,20,4 8 3,10,5,0

9 25,2,23,6,19,16 9 3,5,13,10

10 | 3,25,15,8 10 | 3,13,0,5

11 | 26,18,22,11 11 | 4,11,6,0

12 | 13,21,24 12 | 4,6,12,11

13 | 10,14,26 13 | 4,12,0,6
14 | 5,13,3,11
15 | 5,10,9,3
16 | 5,9,6,10
17 | 5,6,11,9
18 | 5,11,13,6
19 | 6,9,2,5
20 | 6,8,12,2
21 | 6,12,4,8
22 | 6,11,5,4
23 | 7,9,1,2
24 | 8,12,6,0
25 | 9,10,1,5
26 | 11,13,5,0

iAci lists the staggered vertices surrounding each regular vertex. The ordering corresponds to that of C,
so that the j'th staggered vertex listed for vertex ¢ lies halfway along the connection between v; and its j’th
neighbour. Aci lists the regular vertices along whose connection each staggered vertex lies. Additionally, it lists
the two regular vertices lying to the left and right of this connection, so that the four columns in a row of Aci
read [v;, v, vy, vy, with vy lying to the left of the line from v; to v;, and v, lying to the right. If either v; or v,
does not exist (which can happen when v; and v; lie on the domain boundary), the entry is zero. Keeping track
of v; and v, is very useful for calculating derivatives on the staggered vertices, as we will see in Sect. XXX on
discretisation.

7.4 Mesh refinement

UFEMISM uses an iterative mesh refinement approach to create the model mesh. The basis for this is Ruppert’s
algorithm (Ruppert, 1995), which iteratively ”splits” triangles (i.e. adds new vertices at their circumcentres)
whose smallest internal angle lies below a certain prescribe threshold value (typically 25°) In pseudo-code form,
this reads as follows:

WHILE (bad triangles exist)
Find next bad triangle
Add new vertex at this triangle’s circumcentre

Update Delaunay triangulation (i.e. flip triangle pairs if needed)
END WHILE

Ruppert (1995) proved that this algorithm converges (i.e. produces a mesh with no angles below the thresh-
old value, no excessively small triangles, and a generally limited number of vertices) as long as the prescribed
mesh boundary contains no sharp angles. Since the mesh boundary in UFEMISM is a simple rectangle, this is
not a problem.

For clarity, we will give a brief example of triangle ”splitting”. Consider the simple mesh shown in Fig. 77.

The four panels show the steps of ”splitting” triangle 8 by adding a new vertex at its circumcentre, and flipping
some of the newly formed triangle pairs to ensure the new mesh satisfies the Delaunay criterion.
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Figure 11: (a) Triangle 8 is marked for splitting. (b) A new vertex is added at the circumcentre of triangle 8,
replacing it by three new triangles. (c) New triangle pair 8-1 is found to violate the local Delaunay criterion,
and is flipped. (d) New triangle pairs 15-11 and 16-9 were also flipped; the mesh now once again is a Delaunay
triangulation.

In UFEMISM, Ruppert’s algorithm has been extended to include more conditions that can cause a triangle
to be marked as "bad” than just the smallest internal angle, which are based on the ice model data. Currently,
the following conditions are included:

Table 5: mesh refinement conditions

config parameter Description: triangle is marked as bad if...

...any of its three internal angles is smaller than this value (original condition in Ruppert’s
ALPHA_MIN .

algorithm).
RES_MAX ...any of its three sides exceeds 2 * this length.
RES_MAX_GL ...any of its three sides exceeds 2 * this length and the grounding line passes through it.
RES_MAX_CF ...any of its three sides exceeds 2 * this length and the calving front passes through it.
RES_MAX_MARGIN ...any of its three sides exceeds 2 * this length and the ice margin passes through it.
RES_MAX_COAST ...any of its three sides exceeds 2 * this length and the coastline passes through it.
POI_RESOLUTIONS ...any of its three sides exceeds 2 * this length and it contains a POL.

..any of its three sides exceeds 7.y = 2€e¥ In(resmountain)+(1-w) 1“(”5'"“"), with w =
RES_MAX_MOUNTAIN min(1, max(0, £bmar=500)) where Hbypg, is the highest ice-free bedrock elevation inside the

triangle.
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Points of interest (POIs) are specified by their lat/lon-coordinates, and can be given individual resolutions.
The RES_MAX_MOUNTAIN condition ensures a high resolution over ice-free mountains, scaling smoothly from
the coarsest allowed resolution at elevations of 500 m and below, to the prescribed mountain resolution for
elevations of 1500 m and above. This ensures that locations where inception can occur always have a high
resolution, preventing a sudden jump in resolution when the mesh is updated from ice-free land (which typically
has a resolution res;,q.) to ice margin.

7.5 Paralellisation

Mesh generation has been parallelised using a form of domain decomposition. Each processor is assigned a
portion of the total model domain, and will generate a ”submesh” for that portion only. Once this is done, the
different meshes are "merged” to create one single mesh covering the whole model domain.

(a) (b) () (d)

Figure 12: Four submeshes for Antarctica.

The process of mesh merging hinges on the fact that, when Rupperts algorithm refines a boundary triangle
whose circumcentre lies outside the (sub)mesh domain, a new vertex is added at the midpoint of the triangle’s
segment. This means that boundary vertices always lie at integer sums of power-of-two fractions of a boundary
edge. Looking carefully at submeshes a) and b) in the figure, we can see that many vertices on the eastern
boundary of submesh a) lie at the same y-coordinate as vertices on the western boundary of submesh b). These
vertices can then be merged. Generally, a small number of vertices on either boundary will have no correspond-
ing vertex on the opposite boundary. During submesh merging, additional vertices are added first to ensure
that all vertices on either boundary have corresponding vertices on the opposite boundary (a process called
"submesh alignment”).

Since only two submeshes can be merged at a time, submesh merging is an iterative process. For example,
the four submeshes in the figure would be merged in two phases. In the first phase, processor a) would be given
access to the data of the submesh created by processor b). It allocates new memory that can accomodate the
new (merged) submesh ab), and then merges submeshes a) and b) into this new memory. The old memory for
submeshes a) and b) is then deallocated. At the same time, processor c¢) will do the same with submeshes c)
and d), creating a new submesh cd). In the second phase, processor a) will merge submeshes ab) and cd) into
the final mesh.

The four submeshes shown above all have equal domain widths. This is generally not the case; domain widths
for mesh generation are determined such that each processor will have (roughly) the same number of vertices.
This is done by looking at the vertex coordinates of the previous mesh, which is assumed to be a reasonable
approximation of the new mesh.

7.6 Discretisation

Here, we will derive a way to discretise the first and second partial derivatives of a function defined on a mesh.
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7.6.1 First-order partial derivatives

Figure 13: A simple mesh.

Consider the simple mesh in Fig. ?7?. Let f be a function defined on the vertices of the mesh. Let vertex ¢ be
connected to n neighbouring vertices, thus spanning n triangles (in Fig. ??, n = 6). In order to derive the first
partial derivatives f, Iy i of f on vertex i, we will first derive the partial derlvatlves on the triangles surrounding

. Since these triangles are plane sections in R3, they have well-defined first partial derlvatlves which can be
expressed using the normal vector to the plane. Let vertex ¢ be described by a vector v* = [ Lyt ] Triangle
t is then spanned by v?, v* and vi*!, and its normal vector is given by:

' 4 POt =y )+ Ay =y + £ - y)
nt = (Vt _ VZ) x (Vt+1 _ VZ) — fZ(ZEt _ lit+1) + ft( -t+1 T ) ftJrl(:Z?Z T ) . (77)
(@ —2) (™" =) = (' —y) (@ -2
Note that indices of the "next neighbour” (¢ + 1) need to be taken mod(n) so that if ¢ = n, then ¢t + 1 = 1.

The first partial derivative f;m» of f on t is given by:

t
—n
;,tri = 7:3 (78)

This can be written as a linear combination of the values of f on the three vertices spanning triangle ¢:

are = SN S N+ SN, fm (79)
The linear coefficients N 1” = _y N; 2= yH N; 3= * follow from (77) and depend only

on mesh geometry, which means they only need to be Calculated once. Slich linear coefficients, which combine
function values into a function derivative, we shall call "neighbour functions”. The coefficients in (79) are the
triangle neighbour functions for the first partial derivative on triangle ¢.

Since the vertex f represents the point where n plane sections meet, the gradient of the resulting piecewise
smooth surface is undefined here. We solve this by averaging the gradients of the surrounding the triangles:

1 n
] § t
f:zv = - fm,tri
n
t=1

1 n
2 [N TN 1IN (80)

7

kﬁ

Z x, tm + - Z |:-ftN; %m ft+1N:i §r2:| :

t=1

Since the sum index ¢ is periodic in n (i.e. if ¢t = n then ¢t + 1 = 1), we can use the following identity:

Xn: ft+1gt — z": ftgt71
t=1 t=1

This simplifies (80) to
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fi= % S ONLL+ D [P N

t=1 t=1
= - (81)
fi L -
= 2 Naers 3 2 P (N 4 Norer?).

t=1 t=1

To further simplify this expression, we introduce the vertex neighbour functions N¢ for the first partial
derivative on vertex :

1 n
i 7} : t,1
Nﬂc - n Na:,tri’
t=1

) (82)
Ne=Lvez e,
This simplifies (81) to:
fo= PN+ [N (83)
=1

7.6.2 Second-order partial derivatives

In the previous section, we expressed the first partial derivative f¢ on vertex i as the average of the values on the
surrounding triangles. In order to derive an expression for the second partial derivatives, we view the geometric
centres of those triangles as staggered vertices, where the values of the first partial derivatives constitute new
function values. We then construct a new set of subtriangles, spanned by vertex i and these staggered vertices,
as illustrated in Fig. A3. Since we know the values of ff .. and f! .. on these new vertices, we can use the
same approach as before to calculate the second derivatives on the sub-triangles, and average them to get the
value on vertex i. Preliminary experiments showed that using the geometric centre instead of the circumcentre
yields more stable solutions when using these to solve differential equations. A mathematical proof of why this
is the case might be interesting, but lies beyond the scope of this study.

Figure 14: A simple mesh, with the regular vertices shown in blue. The temporary ”staggered” vertices, used to
derive an expression for the second partial derivatives, are shown in red. They span a new set of ”subtriangles”,
shown in green.

A new, staggered vertex v’ is created in triangle ¢, using the horizontal coordinates of the geometric centre

of ¢, and the first partial derivative f;m of f on t as the vertical coordinate:

¢ xi +1.t +l.t+1 yl+yt+yt+1
Ve = 3 ’ 3

’ f:i,tri . (84)

The subtriangle s is spanned by vi, v$ and vit!, where vi = [wi, e, f;], and fi given by (83). The normal
vector n? to subtriangle s is then given by:

ng = (vi —vi) x (vt = vi)
1 o2 =)+ £ (2 =y =) Sy ) (85)
=3 File® = @)+ £ (@ 22 = 2 4 foiL(20 - ot - oY)
3@+ 2% =20 (y o2 = 2y") — 3 (y° T - 2 (2 + 20— 20
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The second partial derivatives f; 2y.sub Of J on s are then given by:

z,sub’

s _ _n(%w
zx,sub — s )
’ nz,z (86)
s _ x,Y
zy,sub — s :
’ Ny 2

We then introduce the neighbour functions Ny sub for the first partial derivative on subtriangle s (note that,
since the function we’re applying them to right now is already a first partial derivative, the result is actually a
second partial derivative):

s 1 s s s s ) 7 s s

s = — [0 =), T+ =200, (20" — v — "],

X,z (87)
— (72 — 2%), (22" — 2%t! — 2°%2) (2° + 2°F! — 227)].

s
y,sub

This simplifies (86) to:

_ pipgsl 2 +1 7r8,3
ir,sub - f;NxS,sub + fi,triN;,sub + f;,triN;,sub’
_ sl 5,2 +1 7783
msy,sub - fal:Nys,sub + fasi,triNyq,sub + f;,triNyg,sub'
We then substitute (79) and (83) into (88). From here on, only the xx-derivative is shown xy and yy follow
similar derivations:

(88)

n
s _ sl i ATE § : t ATt
zx,sub — Nq;7sub (f Nz + f Nx)
t=1
z,sub z,tri z,tri z,tri

+Ns,2 (fiNs,l 4+f8NS’2 +f5+1NS,3 )

_|_Ns,3 <fiNs+1,1+fs+1Ns+1,2+fs+2Ns+1,3>

x,sub z,tri z,tri x,tri

_ri s,1 7 s,2 s,1 s,3 s+1,1
- f (Nm,subN:L’ + Nx,subNx,tri + Nm,subNm,tri )
s s,2 s,2
+ f (Na:,subNa:,tri)
s+1 5,2 5,3 5,3 s+1,2
+ f (Na:,subNa:,t'ri + Nm,suwa,t'r‘i )
s+2 5,3 s+1,3
+ f (Nx,subNm,tri )
n
s,1 t ATt
+ Nx,sub Z f Nx
t=1

Again, we approximate the second derivative fi, of f on vertex i by averaging over the surrounding subtri-
angles:

n
T l fs
T T zx,sub
n
s=1

:LZ[NS)I Ni—&-NS’Q Nl +Ns,3 Ns+1,1]

n T, sub” ' x x,sub” " x,tre z,sub” x,tri
s=1

s,2 s,2
|:f3 (Nx,subNx,tri)}

—fs+1 (NS’2 NS,S —|—N;’3 Ns+1,2)}
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First, we isolate the neighbour function N?, of vertex i itself:

. 1 < .
N o— = Z [Ns’l N4 N2 el N3 Ns+1,1j| _ 91

z,sub z,sub” "x,tre x,sub” "z, tre
s=1

Then, we rearrange the sum terms containing 5! by lowering the summing index by one:
n
SO (N2 N+ NN
. (92)
=3 [ (Vo N+ NN
s=1

We do the same for the term containing f*+2:

s+2 s,3 s+1,3
[f (Nm,subNx,tri )}

-

»
Il
_

(93)

M=

s—2,3 775—1,3
|:f8 (Nm,sub Nr,tri ):| .

Il
-

S

Then, by observing that the inner sum in the last term in (90) does not depend on the index of the outer
sum, we rearrange this term to:

n

t=1 t=1

s=1 s=1

Substituting (91), (92), (93) and (94) into (90) yields:
z,sub ,sub

n s

i __ fipNTE f s,2 s,2 s—1,2 a75—1,3

l.L_le.L+ E : |:TL (N Nz,tri+Na: Nw,t’r‘i
s=1

sub T 'x,tri sub T 'x,tri

n
—1,3 Ar8,2 —2.3Ar5—1,3 t,1
+N;j7 NS +Nws7 NS +N§ZNI,SUZ)>‘|
t=1

. (95)
=N+ Y [J; (Mo (N2 + N0y
AN (NI N e Y Ni:lubﬂ :
t=1
As we see, this simplifies into the same form as (83):
L= PN YN (9)
s=1

The neighbour functions for the second partial derivative fi_ (and, following the same derivation, f}Cy and

i) of f on vertex i are therefore given by:

vy
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, 101
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7.6.3 First-order derivatives on staggered vertices

In order to solve the SIA, we require a way to discretise the first-order partial derivatives of a function on the
staggered vertices described in Sect. XXX. While it is possible to just take the average value of the derivatives
on the vertices themselves, as defined by (83), the resulting value would be a linear combination of the function
values on all the neighbours of these two vertices, resulting in an undesirable degree of numerical diffusion.

Figure 15: A very simple mesh, showing the staggered vertex v. (green) connecting regular vertices v; and v;.

Consider the simple mesh in Fig. 7?, consisting of four vertices spanning two triangles. On the two adjacent
triangles ¢; and t,, the first-order partial derivatives f., é, [z and f; are well-defined:

. e (109
O e Tk 099
O ke o
R et (o)

As before, we define the derivative f¢ of f on v. as the average of the values on the two adjacent triangles:
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fi= S+ £, (107)
fi = UL+ ). (108)

The purpose of the staggered mesh is to separate velocities on cell boundaries into components parallel
and orthogonal to those boundaries. The component orthogonal to the boundary carries a flux from one cell
into another, while the parallel component does not. On the mesh, this is complicated by the fact that the
orientation of boundaries is not fixed. Let u be the vector pointing from v; to v;:

. {%‘ - 9«%} (109)
Yi —¥i

The parallel and orthogonal derivatives f7,,. and fg,, of f on v, are then given by:

c _ cuﬂf uy

= o 110
par $|u| +fy‘u|7 ( )
—Uy Uy
frt:f.fWJr gfm (111)
It can be shown that the expression for fy,, results in:
fi—f;
zfar = . (112)

|u

This is, of course, simply the slope of the line between v; and v;.

7.6.4 Least-squares discretisation scheme

An alternative scheme for discretising derivatives on an unstructured triangular grid, based on a (weighted)
least-squares approximation, is given by Syrakos et al. (2017). This discretisation is arrived at by expressing
the function values on the surrounding vertices as a Taylor expansion around v;, and then solving the resulting
(generally over-determined) matrix equation for the different derivatives. A derivation of the theoretical order of
convergence is also given by Syrakos et al. (2017), showing that this discretisation is second-order convergent for
the first-order partial derivatives. Here, we provide an extended derivation which also includes the second-order
partial derivatives. This discretisation scheme is not included in UFEMISM, but is investigated here only for
comparison.

The value f(G.) of f on the geometric centre G. of the Voronoi cell of neighbouring vertex wv., which is
separated from that of vertex ¢ by the vector [Ax., Ay,.], can be expressed as a second-order Taylor expansion
of f around v; as follows (where f; = f(G:), fz,i = f2(G;), etc., dropping the argument G; for ease of notation):

1 1
fc = fz + A-cha;,i + Aycf’y,i + §szfun,z + Achylfly,z + iAyzfyy,z +0 (Ax:szf) . (113)

As vertex v; has n neighbours, this results in the following system of n linear equations (defining A f. = f.— f;,
dropping the truncation error O (A:ri’ .Ayg’), and introducing the vertex weights w, for the weighted least-squares
approximation:

w1 0 - 0 Afl w1 0 Ca 0 Axq Ayl %ASU% Al’lAyl %Ay% fm,i

0 we ... O Af 0 wy ... O Axy  Ayo §A;U§ AxoAys §Ay§ fy,i
. .. . . = | . . . . . . . . fowi| - (114)

. . . . . . . T, : : . . . : fa:y i

1 A2 1A,2 ’

0 0 ... wy| |Afn 0 0 ... wyl [Azy Ay, 347, Ar,Ay, 35Ay; Fuyi

—_——
w b w A

Using matrix notation, this equation reads Wb = W Az, which is solved for z by writing:
2= (ATWTWA) " ATWTWb = M, (115)
Here, we have grouped the A and W terms into M = (ATWTWA)_1 and B, = ATWTWb. The symmetric
matrix ATWTW A, which needs to be inverted to find M, reads:
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Az? Az Ay, %A:cg’ Az? Ay, %Achyf
n Ay? %AxiAyc Az Ay? %Ayg’
ATWTWA = Z w? 1Az 1AzEAYy. TAZ2AYZ| . (116)
e=1 Az2Ay? %A%Ayg’
A
The second term, [y, is expressed as:
Az Af,
n AycAfc
By=>Y wl| §Az2Af. |. (117)
c=1 Ax Ay Af.
STAVAVE

The matrix M, which contains only information about mesh geometry, can be inverted in Matlab using the
inv function, or in Fortran using the LAPACK linear algebra package. Once M has been calculated, the first
partial derivative f,; of f on i can be expressed as:

n

(w2ByA) + 3ML3) Y (wPAsAL,)
1 c=1

+M(1,4)> 0 (wiAz Ay Afe) + M(1,5) > (wlAy2Af.) . (118)

c=1 c=1

NE

foi=M(1,1)> (w2AzAf) + M(1,2)
c=1

C

Since we defined that Af. = f. — f;, we can once again introduce the neighbour functions N, and rewrite
this expression to read:

fr,i - szx,z + chNm,o (119)
c=1

The neighbour functions are then given by:

n
- Z wztm,ca Nz,c = wgtz,ca (120)

n
= watyyc, Nye=wty ., (121)
:mc i = = Zw ta::r ¢y Nzw,c = wgtww,& (122)
Nay,i Zw tay,cs Ney,c = wgtwy,w (123)
- Z wgtyy,w Nyy,e = wztyy,c- (124)

=1

The constant terms t; ¢, ty.c, tez,cs tay,c and tyy . are given by:

tee=M(1,1)Az. + M(1,2)Ay. + %M(l, 3)Ax? + M(1,4) Az Ay, + %M(L 5)Ay?, (125)
tye=M(2,1) Az, + M(2,2)Ay. + %M(Q, 3)Ax2 + M(2,4)Ar Ay, + %M(Z 5)Ay2, (126)
towe = M(3,1)Ax, + M(3,2)Ay. + %M(S, 3)Ax? + M(3,4) Az Ay, + %M(?., 5)Ay?, (127)
toye = M(4,1) Az, + M(4,2)Ay. + ;M(zl 3)Az? + M(4,4) Az Ay, + ;M(4 5)Ay?, (128)
tyye = M(5,1) Az, + M(5,2)Ay. + 1M(5 3)Ax? + M(5,4) Az Ay, + ;M(5 5)Ay?. (129)

Syrakos et al. (2017) prove that the first-order partial derivatives f,;, f,; are at least first-order accurate
on any unstructured grid, and approach second-order accuracy when all neighbouring vertices are separated by
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equal angles, and when the exponent ¢ in the weights w, = % (with r. = \/Ax2 4+ Ay?) is chosen to be ¢ = %
Although we will not attempt it ourselves, we very strongly Suspect that their proof can be easily extended to
show that, under these circumstances, the second-order partial derivatives approach first-order accuracy.

7.6.5 Convergence

Syrakos et al. (2017) provide a theoretical proof that their least-squares-based discretisation of the first-order
partial derivatives is second-order accurate on "nice” vertices (i.e. vertices whose neighbours are separated by
roughly the same angles, and whose distances to the vertex don’t vary too much). If these conditions are not
met, the convergence decreases to first-order. While they do not investigate the second-order partial derivatives,
it makes sense intuitively that these would be first-order convergent with resolution, just as they are on a regular
grid (which is a special case of a mesh, where all vertices are perfectly "nice”).

We investigated the convergence behaviour of both the averaged-gradients discretisation scheme used in UFEMISM,
and the least-squares approach from Syrakos et al. (2017). This was done by evaluating a simple analytical
function of the form f = sinz cosy on every vertex and its neighbours, and comparing the discretised derivatives
resulting from both approaches to the analytical value. This was done on a mesh that was created by UFEMISM
for the present-day geometry of the Antarctic ice sheet. The results of this experiment are shown in ??. Panels
a-e show the discretisation errors of all first- and second-order partial derivatives for the averaged-gradients
discretisation used in UFEMISM, while panels f-j show the errors for the least-square approach from Syrakos
et al. (2017). As can be seen, both results show generally the same results, with the discretisation errors being
smallest where the mesh resolution is finest (i.e. at the grounding line).
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Figure 16: Panels a-e: discretisation errors for the averaged-gradients approach used in UFEMISM for, from
left to right, fz, fy, fews fey and fyy. Panels f-j: the same for the least-squares approach from Syrakos et al.
(2017).

To determine the order of convergence, discretisation errors are plotted against mesh resolution in 77,
with the panels ordered the same as in ??7. Again, the results for both discretisation methods are virtually
identical, with both showing a clear second-order convergence for the first-order partial derivatives, and first-
order convergence for the second-order partial derivatives.
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Figure 17: Panels a-e: discretisation errors vs. mesh resolution for the averaged-gradients approach used in
UFEMISM for, from left to right, fz, fy, fez, foy and fy,. Panels f-j: the same for the least-squares approach
from Syrakos et al. (2017). Logarithmic fits have been made for all graphs, with the order of convergence shown
in the labels.
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7.7 Remapping
7.7.1 Theory

Whenever UFEMISM updates the mesh, (some of) the model data must be remapped from the old to the new
mesh. Extensive preliminary experiments have shown that the his to be done using a conservative remapping
scheme. If, for example, simpler schemes like nearest-neighbour, linear, quadratic, or even cubic interpolation
are used, significant errors show up in the results of the schematic benchmark experiments. In the Halfar
experiment, the ice thickness tends to ”flatten out”. In the EISMINT experiment, the basal temperature at the
ice divide shows a significant warm bias. All of these anomalies disappear when a conservative remapping scheme
is used. The conservative remapping scheme developed for UFEMISM is based on the work of Jones (1999).
The mathematical principles behind this approach are quite straightforward, but creating an implementation
that is both robust and fast enough to handle meshes of hundreds of thousands of vertices was surprisingly
difficult.

Let there exist two meshes that both cover the same domain: a ”source” mesh (indicated henceforth by the
subscript s) and a ”destination” mesh (subscript d). Suppose the source mesh is the one that existed before a
mesh update, and the destination mesh is the newly generated mesh, so that we want to find a way to remap a
data field fs from the source mesh to the destination mesh. In the conservative remapping approach proposed by
Jones (1999), the values f; on the vertices of the destination mesh are found by integrating fs over the regions
of overlap A,q between the Voronoi cells Ay of the source mesh, and the Voronoi cells A4 of the destination
mesh:

fa= ‘A—ldl ZS://M fodA. (130)

Since the Voronoi cells of a mesh generally are irregular polygons, these surface integrals are not very
straightforward to solve. Instead, Jones (1999) uses the divergence theorem to convert the surface integrals
f A, OVer the region of overlap A4 into a line integral around the perimeter Cyq of this region. However, Jones
(1999), having an implementation in general circulation models in mind, derived his expressions in spherical
coordinates. UFEMISM uses Cartesian coordinates, so the solution derived here will look slightly different.

In order to define the surface integral in (130), the function fs is "undiscretised” using a simple first-order
Taylor expansion:

fslw,y) = fo + <g£>s(xxs) + <g£)8(yys)- (131)

Here, ry = [z, ys] is 5 the geometric centre of the Voronoi cell of vertex s (which is generally not the same as
the vertex itself!), and f, is the discrete value of f on source vertex s. Substituting (131) into (130) yields:

e ] (5 () e+ () )

] ) U, ot rina) (), [ a-win)

Using the divergence theorem, we rewrite the three remaining surface integrals as line integrals:

// dA 27{ zdy, (134)

Asd Csd

// xdA = —j{ xydx, (135)
Asd Csd

// ydA :7{ zydy. (136)
Asa Csa
Substituting these into (132) yields:

fa= Z {wofer Wiy (g;)s + Wiy <g£>j . (137)

S

—~

133)

The three remapping weights wo, w1z, and wi, are defined as:
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wy = — zdy, 138
0 A4 Jo, Y (138)
-1
= — de, 139
W= §, avie (139)
1
Wiy = —74 xydy. (140)
Ad Csa

7.7.2 Implementation

The basic theory of conservative remapping described in the previous section is fairly straightforward. Creating
an implementation that is both robust (being able to handle any possible combination of meshes, including the
possibility of overlapping vertices or lines) and fast (being able to remap data between meshes counting tens of
thousands of thousands of vertices without significantly slowing down the model) turned out to be a surprisingly
difficult problem, which took almost three months of full-time work to solve.

The main routines for remapping are CREATE_REMAPPING_ARRAYS_CONSERVATIVE (for creating the remap-
ping weights, stored in the TYPE_REMAPPING_CONSERVATIVE) and REMAP_CONS_2ND_ORDER_2D/3D (for using
them to remap a data field), which are located in the MESH_MAPPING_MODULE. A basic program that uses
these routines to remap some data fields between a source mesh MESH_SRC and a destination mesh MESH_DST
looks like this:

PROGRAM remap_data_between_meshes

! Declare the source and destination meshes

TYPE(type_-mesh) :: mesh_src

TYPE(type_-mesh) :: mesh_dst

! Declare the original (source) and remapped (destination) data fields
REAL(dp), DIMENSION(:), POINTER :: dl_src, d2_src, d3_src

REAL(dp), DIMENSION (:), POINTER :: dl.dst, d2.dst, d3_dst

INTEGER :: wdl_src, wd2_src, wd3_src, wdl_dst, wd2_dst, wd3_dst

! Declare the remapping arrays

TYPE(type_remapping_conservative) :: map

! Create the two meshes

I Create the remapping arrays
CALL create_remapping_arrays_conservative( mesh_src, mesh_dst, map)

! Allocate memory for the data fields

CALL allocate_shared_dp-2D ( mesh_src%mV, dl_src, wdl_src)
CALL allocate_shared_dp-2D ( mesh_src¢%mV, d2_src, wd2_src)
CALL allocate_shared_dp_-2D( mesh_src%mV, d3_src, wd3_src)
CALL allocate_shared_dp_2D( mesh_dstymV, dl_dst, wdl_dst)
CALL allocate_shared_dp-2D ( mesh_dst%mV, d2_dst, wd2_dst)
CALL allocate_shared_dp-2D ( mesh_dst%mV, d3_dst, wd3_dst)

! Remap the data

CALL remap_cons_2nd_order_2D( mesh_src, mesh_dst, map, dl_src, dl_dst)
CALL remap_cons_2nd_order_2D ( mesh_src, mesh_dst, map, d2_src, d2_dst)
CALL remap_cons_2nd_order_2D ( mesh_src, mesh_dst, map, d3_src, d3_dst)

END PROGRAM remap_data_between_meshes

In the previous section, we showed that the values of f on the vertices of the destination mesh consist of
linear combinations of the values of f on the vertices of the source mesh. As with the neighbour functions, we
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can calculate the linear coefficients (i.e. the remapping weights in egs. (138)) once for a pair of meshes, then
apply them to any and all data fields that need to be remapped. These remapping weights are expressed using
line integrals around the perimeter Cyq of the area of overlap Agq between the Voronoi cells of source vertex s
and destination vertex d. Since the perimeter Cyq is made up of subsets of the perimeters of the two Voronoi
cells, we can therefore calculate the line integrals around the Voronoi cells of all vertices of both meshes, keeping
track of the Voronoi cells of the opposite mesh through which they pass. The results of these two calculations
can then be combined to give the line integrals around each of the areas of overlap, which will then be used to
give the remapping weights defined in (138).

Consider the (zoomed-in selections of) two meshes in 7?7, panels A and C. The Voronoi cells of these meshes
are shown in panels B and D, respectively.

A

Figure 18: A) the source mesh, B) the Voronoi cells of the source mesh, C) the destination mesh, D) the Voronoi
cells of the destination mesh, E) two Voronoi cells of the destination mesh overlaid on the source mesh

Suppose we want to calculate the three line integrals from (134) over the shared boundary between the
Voronoi cells of destination (green) mesh vertices 7 and 10, shown by the solid green line in ??, panel E. This
line passes through the source (red) mesh Voronoi cells of vertices 10, 5 and 11. In order to integrate over all
the individual areas of overlap, the line integrals must be calculated over the three subsections of this line, and
the results stored separately, recording the indices of both the source and destination vertices, lying on both
the left-hand and right-hand sides of the line subsections. For this particular line, the results look like this:

Left-hand Right-hand | Left-hand Right-hand

source source destination | destination | [ady [ xydx [ zydy
vertex vertex vertex vertex

10 10 10 7

5 5 10 7

11 11 10 7

The number of Voronoi cells of the opposite mesh through which a line passes is not generally known in
advance. Finding the results shown above therefore requires an iterative algorithm which ”traces” a line through
a mesh; starting at one of the endpoints of a line, it will find the first point along the line where it crosses a
Voronoi cell boundary of the mesh. The section of the line between the endpoint and the crossing point is
integrated over, and is removed from the line, so that the crossing point now becomes the new end point. This
is repeated until the entire line has been integrated over.
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For the three sections of this particular line, the left-hand and right-hand source vertex indices are the same.
This is not the case when Voronoi cell boundaries of the two meshes coincide something that, due to the
deterministic nature of Rupperts algorithm, occurs quite frequently in UFEMISM. If the line integrals over
coinciding line sections are calculated for both meshes, they will be double-counted when calculating the closed
loop integrals, and the resulting surface integral will be incorrect. To prevent this, a flag must be raised when
a coincidence is detected. When this is the case, only one of the two meshes is allowed to calculated the line
integrals; the other one will simply list zero.

The subroutine CREATE_REMAPPING_ARRAYS_CONSERVATIVE, which calculates the remapping weights, is struc-
tured like this:

SUBROUTINE create_remapping_arrays_conservative

! Find the coordinates and relevant indices of the Voronoi boundary lines.
CALL find_Voronoi_boundary_lines( mesh_src)
CALL find_Voronoi_boundary_lines( mesh_dst)

! Integrate over all Voronoi cell boundary lines for both meshes
CountCoincidences = .FALSE.

CALL integrate_over_Voronoi_boundaries( mesh_src, mesh_dst, CountCoincidences)
CountCoincidences = .TRUE.

CALL integrate_over_Voronoi_boundaries( mesh_dst, mesh_src, CountCoincidences)

! Rearrange integral contributions from Aci to vertices
CALL rearrange_contributions_from_lines_to_vertices( mesh_src)

CALL rearrange_contributions_from_lines_to_vertices( mesh_dst)

! Integrate around domain boundary
CALL integrate_around_domain_boundary ( mesh_dst, mesh_src)

! Add contributions from mesh_src to mesh_dst
CALL add_contributions_from_opposite_mesh( mesh_dst, mesh_src)

! Finish incomplete mesh_dst vertices
CALL finish_incomplete_vertices( mesh_dst, mesh_src)

! Convert line integrals to remapping weights
CALL calculate_remapping_weights_from_line_integrals( mesh_dst, mesh_src, map)

! Check if everything worked
CALL check_if_remapping_is_conservative( mesh_src, mesh_dst, map)

END SUBROUTINE create_remapping_arrays_conservative

The different subroutines called here perform the following operations:

e FIND_VORONOI_BOUNDARY _LINES: First, the coordinates of the endpoints of all the line segments consti-
tuting the Voronoi cell boundaries are determined for both meshes. Most of the time these are simply the
circumcentres of the triangles of the mesh; the only exceptions occur for the Voronoi cells of vertices lying
on the domain boundary.

e INTEGRATE_OVER_VORONOI_BOUNDARIES: Then, the line integrals over all subsections of these line seg-
ments are calculated, as illustrated in Fig. ?7. It is possible that a Voronoi cell boundary of MESH_SRC will
(partly) coincide with one of MESH_DST. In that case, that line must be integrated over only once, to pre-
vent double-counting. The line-tracing algorithm that is used by INTEGRATE_OVER_VORONOI_BOUNDARIES
can detect such coincidences; if the flag COUNTCOINDIDENCES is set to FALSE, the line integral over that
segment will be listed as zero.

¢ REARRANGE_CONTRIBUTIONS_FROM_LINES_TO_VERTICES: Once the line integrals have been calculated,
they are stored ”"per line”. However, we want to have them available per vertex, so that they can be
added together to give the loop integrals in Eqgs. (138). This rearrangement step is done here.
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INTEGRATE_AROUND_DOMAIN_BOUNDARY: Since the Voronoi boundaries were defined using staggered ver-
tices, the boundary sections lying on the domain boundary are not included. These are treated separately
by this subroutine.

ADD_CONTRIBUTIONS_FROM_OPPOSITE_MESH: The perimeter of a region of overlap between Voronoi cells
of MESH_SRC and MESH_DST is made up of Voronoi cell boundaries of both meshes. In order to calculate
the loop integral, the line integral sections from both meshes must be combined, which is done in this
subroutine.

FINISH_INCOMPLETE_VERTICES: Sometimes the Voronoi cell of a MESH_DST vertex will be completely
enclosed by that of a MESH_SRC vertex, or vice versa. These relatively rare exceptions are handled
separately by this routine.

CALCULATE_REMAPPING_WEIGHTS_FROM_LINE_INTEGRALS: In this last step, the loop integrals are filed
into (138) to calculate the remapping weights.

CHECK_IF_REMAPPING_IS_CONSERVATIVE: To make sure everything works as intended, the remapping
weights are applied to a dummy data field. On very rare occasions (estimated 1 in 100,000 vertices),
minor errors occur when a vertex of one mesh lies exactly on the Voronoi cell boundary of a vertex of
the other mesh. These erroneous vertices are detected by this routine, and their remapping weights are
replaced by those representing simple bilinear interpolation.
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8 Personal note

By Tijn Berends, February 2021.

In early 2019, the last year of my PhD at IMAU, I found myself with some spare time, sitting around and
waiting for some particularly long ANICE simulations to finish (simulating the Lake Agassiz outburst flood
during the last deglaciation, I believe). For some reason, the idea popped into my head that I should write a
little Matlab program to create an unstructured grid. Not unusual for me - over the course of my PhD I wrote
three different multi-purpose plotting programs, two text adventures, and a program for making 3D-printed ice
sheets (I still have one lying on my desk!), all with the excuse of ”my model’s running!”. Got to do something
to keep the brain gears from rusting.

The first few attempts didn’t look like much, but after a day or two I figured out a nice way to describe a
triangular grid data-wise. A quick internet search and some late nights spent drawing triangles on paper got me
to write out a very basic refinement scheme. By then the idea that I’d use this as the basis for a new ice-sheet
model had already crept up on me. It just seemed so very elegant; triangles can fit together any way you want
them to, so you can make them small or large wherever you please. The benefits of this seemed obvious to me,
though I hadn’t yet started digging into the literature on grounding-line migration or other resolution-related
issues. Creating a proper algorithm for mesh adaptation and writing out the discretisation of the model equa-
tions took me almost half a year. Around July I had a version that could solve the SIA, but creating a solution
for the SSA took until early December. At that point I had a model that could do basic simulations of the
Antarctic ice sheet; reading in input data for geometry and climate, calculating a mass balance, solving the ice
dynamics, and updating the mesh whenever the ice geometry changed.

So, in January 2020 I put together a few nice, sleek-looking animations and went to visit Roderik (then my
promotor, now still my supervisor). Do you have a moment for me somewhere this week? I have something
nice to show you.”, I mailed late on Sunday evening. Not ten minutes later came the reply: "If it’s really nice
I have time first thing tomorrow morning.” So, on Monday morning I spent just over an hour describing my
pet project to Roderik. He asked a handful of questions throughout, otherwise just leaning back and observing.
When I was finished, he was quiet for a moment, and he said to me, ”Well, I think it’s interesting.”. He’s not
a very wordy man. However, early the next day he came to my office again, together with Heiko (Goelzer,
then a postdoc at IMAU). ”Show him what you showed me”, Roderik told me. So I did. The two of them
were very enthusiastic this time, and we agreed that I should finish up what I had into a paper, and they’d see
if they could find a good way to put it to use. A few weeks later, on 31 January 2020, I defended my PhD
thesis. In the laudatio, Roderik stated that the most memorable moment of my PhD happened at the very
end of it when, "having already finished the thesis, one day Tijn showed up and said he had something nice to
show me - and I nearly fell from my chair with amazement!”. Not exactly how I remember it going, but I'll take it.

In May 2020 we wrote and submitted (I wrote, Roderik submitted) a proposal to NWO, asking them to fund
a project to finish develop UFEMISM and apply it to some nice palaeoglaciological research. While initially
the plan was to use the funding (if we got it) to hire myself for a three-year postdoc, another position opened
just after we’d submitted the proposal. Rather than gamble on a proposal that would take another 8 months
at least to be processed, I decided to take the other position instead, and use the funding (if we got it) to hire
someone else to carry out my ideas. Just over a week ago (early Feburary 2021) we received word that the
proposal was accepted, and so it’s now confirmed that UFEMISM will be, as they say, a thing. Where before
I’d kept only some very basic ”documentation” just for myself, I’ve now set myself to the task of writing out
a complete description of everything I've created. That will be the rest of this document; this final page right
here I wrote simply to please my own ego. Both the paper and the documentation are, as is tradition, phrased

”»o”

as "we developed”, ”we chose”, "we, we, we”, and I wanted to have just a little bit all to myself. Sue me.
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