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Abstract—Automotive Cyber-Physical Systems (ACPS) have
attracted a significant amount of interest in the past few decades,
while one of the most critical operations in these systems is the
perception of the environment. Deep learning and, especially, the
use of Deep Neural Networks (DNNs) provides impressive results
in analyzing and understanding complex and dynamic scenes
from visual data. The prediction horizons for those perception
systems are very short and inference must often be performed
in real time, stressing the need of transforming the original
large pre-trained networks into new smaller models, by utilizing
Model Compression and Acceleration (MCA) techniques. Our
goal in this work is to investigate best practices for appro-
priately applying novel weight sharing techniques, optimizing
the available variables and the training procedures towards
the significant acceleration of widely adopted DNNs. Extensive
evaluation studies carried out using various state-of-the-art DNN
models in object detection and tracking experiments, provide
details about the type of errors that manifest after the application
of weight sharing techniques, resulting in significant acceleration
gains with negligible accuracy losses.

I. INTRODUCTION

In recent years, Cyber-Physical Systems (CPSs) play an
important role in modern technology [1], by interconnecting
computational and physical resources. CPSs are realized by
embedded computers and communication networks that gov-
ern physical actuators that operate in the physical world, while
receiving inputs from sensors, thus creating a smart control
loop capable of adaptation, autonomy, and improved effi-
ciency. CPSs have impacted almost all aspects of our daily life
connected with, for instance, transportation systems, health-
care devices, household appliances, electrical power grids, oil
and natural gas distribution and many more. Specifically, in
the field of Intelligent Transportation System (ITS) [2], the
use of CPSs can lead to comprehensive systems that com-
bine advanced technologies with conventional transportation
infrastructures, improving the performance of transportation
systems, enhancing travel security, fuel economy and, ulti-
mately, enhancing the travel experience of road users.

One of the most essential operations executed at the ITS
CPSs to enable the aforementioned benefits is the perception
and understanding of dynamic and complex environments
from multi-modal sensor data. The critical nature of the
perception ability [3] in safety functions for autonomous
driving is self-evident: a deviation of, for example, 30 cm in

the estimated lateral position of the autonomous vehicle can
make all the difference between a “correct” and an “incorrect”
(and, potentially, life-threatening) maneuver initiation. One
of the major challenges to be addressed, regards the highly
dynamic behavior of road users (e.g., pedestrians, cyclists,
cars), which can change their motion style in an instance, or
start/stop moving abruptly. Consequently, prediction horizons
for active perception systems are typically short; even so, small
performance improvements can produce tangible benefits. For
example, accident analyses [4] show that being able to initiate
emergency braking 0.16 s (i.e. five frames at 33 Hz) earlier, at
a time to collision of 0.66 s, reduces the chance of incurring in-
jury requiring a hospital stay from 50% to 35%, given an initial
vehicle speed of 50 km/h. The aforementioned facts clearly
indicate the need for fast and effective scene understanding
solutions including, among others, image classification, object
detection, object tracking and semantic segmentation.

Here, we focus on DNN-based object detection and, in
particular, on the application of MCA techniques on high-
performance, pre-trained detectors. Employing MCA tech-
niques can be critical for the efficient execution of the relevant
deep models on embedded devices that are deployed on
autonomous vehicles. In the following, first, the positioning of
the paper is provided through the description of the relevant
bibliography and its contribution. Then, the MCA techniques
and the object detectors that are adopted for this study,
are briefly described. Finally, before concluding the paper, a
thorough experimental evaluation of the MCA impact on the
behaviour of the adopted models is presented.

II. RELEVANT BIBLIOGRAPHY AND CONTRIBUTION

Object detection has been evolved considerably since the
appearance of deep convolutional neural networks [5]. Nowa-
days, there are two main branches of proposed techniques. In
the first one, the object detectors, using two stages, generate
region proposals which are subsequently classified in the
categories that are determined by the application at hand (e.g.,
vehicles, cyclists and pedestrians, in the case of autonomous
driving). Some important, representative, high performance
examples of this first branch are Faster R-CNN [6], Region-
based Fully Convolutional Network (R-FCN) [7], Feature
Pyramid Network (FPN) [8] and Mask R-CNN [9]. In the



second branch, object detection is cast to a single-stage,
regression-like task with the aim to provide directly both the
locations and the categories of the detected objects. Notable
examples, here, are Single Shot MultiBox Detector (SSD) [10],
SqueezeDet [11], YOLOv3 [12] and EfficientDet [13].

Although two-stage detectors demonstrate better perfor-
mance than the single-stage counterparts, the latter have lower
computational and storage requirements which leads, gener-
ally, to faster inference time [14]. In autonomous driving,
Advanced Driver Assistance Systems (ADAS) rely on em-
bedded systems with limited resources. ADAS is responsible
of executing various machine learning tasks, including object
detection, meaning that efficient implementations that take into
account those limitations are critical [15]. To this end, single-
stage detectors have been particularly studied for autonomous
driving by either proposing specialized, compact deep mod-
els (e.g., [16], SqueezeDet [11], SA-YOLOv3 [17], Mini-
YOLOv3 [18]) or applying MCA techniques [19] to existing,
pre-trained models (e.g.,[20] [21], [22], Efficient YOLO [23],
ICME 2020 Competition [24]).

The MCA-related literature has been increasing in recent
years and there are numerous surveys that provide a compre-
hensive overview of the area ([19], [25], [26], [27]). Without
being exhaustive, some earlier works proposed parameter
pruning, in which, unimportant parameters (e.g., filters [28],
[29]) are removed and, hence, not considered during the
inference phase of the DNN deployment. Other works focus
on limiting the representation of the involved parameter by
reducing their bit-width or increasing common representations
via weight sharing (e.g., scalar, vector and product quantiza-
tion [30], [31]). Finally, several works employ tensor / matrix
decompositions on the involved quantities (e.g., filters) into
factors by utilizing, for instance, low-rankness [32].

Most of the MCA techniques that have been applied for
the problem of object recognition (as the ones mentioned
above), belong either to pruning or scalar quantization, which
currently are supported by toolboxes like the TensorFlow
Model Optimization Toolkit. Here, moving a step further, we
focus on more elaborate and high-performing MCA techniques
that belong to weight sharing [33], [34] and study their
impact on the performance of object detection for autonomous
driving. The contributions of the paper are as follows:
• Two weight sharing techniques are employed for the

compression / acceleration of two object detection deep
models that are based on the well-known ResNet50 and
on SqueezeNet DNNs [11].

• An analysis is provided on the error types that manifest
after the application of weight sharing techniques.

• The results obtained on the KITTI dataset using the
selected DNN models, reveal acceleration gains of up to
70% with negligible accuracy loss.

III. WEIGHT SHARING VIA PRODUCT QUANTIZATION

Generally speaking, the linear operation carried out by the
convolutional layers can be viewed as involving the computa-
tion of dot-products between input and kernel vectors lying

in an N -dimensional space, with N being the number of
input/kernel channels. In the product quantization framework,
the N -dimensional vector space is partitioned into S, N ′-
dimensional subspaces with N ′ = N/S. Accordingly, the
convolution operation is partitioned into S separate sub-
convolutions, each involving the N ′-D sub-vectors of a par-
ticular subspace.

The goal of product quantization is to perform vector
quantization to the kernel sub-vectors lying in each subspace,
by clustering them into a number of clusters much smaller
than the number of the original sub-vectors. This way, each
sub-vector is represented by the centroid of the cluster it
belongs to, and the acceleration occurs because the original
dot-products between the input and kernel sub-vectors, are
approximated by the ones between the input and the cen-
troids/representatives.

Although conventionally vector quantization is treated as a
clustering problem solved via the popular k-means algorithm,
a recently proposed approach that treats the problem from a
Dictionary Learning perspective, has shown very promising
results [34], achieving up to 100 % (or, 2×) acceleration gain
over conventional techniques, on state-of-the-art pre-trained
models (VGG, ResNet, SqueezeNet) from the ImageNet com-
petition. This superior performance is achieved by imposing
a special structure to the learned representatives, which, for
the problem at hand, allows more representatives than the k-
means-based approaches for the same target acceleration, thus
improving considerably the quantization error.

More specifically, the kernel approximation scheme incurred
by the conventional (referred as VQ hereafter) approach, can
be as follows:

W ≈ CΓ, (1)

where the columns of W, C, and Γ, contain the kernel
sub-vectors (of a particular subspace), the representatives (or
cluster centroids), and assignment vectors, respectively. Each
column of Γ has exactly one non-zero element, equal to 1,
meaning that each sub-vector (column) from W is approxi-
mated by exactly one of the Kvq representatives (columns) in
C.

On the other hand, the Dictionary-Learning based approxi-
mation (referred as DL hereafter) can be stated as:

W ≈ DΛΓ, (2)

where W and Γ are defined as in (1), while D and Λ
denote the dictionary and the matrix of sparse coefficients,
respectively. Specifically, the columns of D (called dictionary
atoms), are normalized, while Λ is a sparse matrix in the sense
that each of its columns contains at most ρ non-zero elements,
with ρ being the sparsity level. Thus, under the DL-based
scheme, the original sub-vectors are approximated via Kdl

representatives contained in DΛ, which, in turn, are obtained
as linear combinations of at most ρ atoms from a dictionary
of size Ldl, with Ldl < Kdl.

Due to the linearity of the operations performed in the
convolutional layer, the sparse coefficients in Λ need only



be applied to the convolution between the input and the
dictionary atoms in D, instead of the atoms themselves. This
endows the DL approximation scheme defined in (1) with
the flexibility to use a number of representatives Kdl that is
several times larger than Kvq , while restricting the size of the
dictionary (so that Ldl � Kvq), thus, reducing the number of
“heavy” convolutions. Due to this fact, the DL approximation
results in significantly higher acceleration ratios (namely, the
ratio of original vs accelerated computational complexities,
measured by required multiply-accumulate operations) for the
same quantization error, as shown in [34].

IV. APPLICATION ON WIDELY ADOPTED DNN MODELS

Two deep detection network architectures, namely
SqueezeDet and Resnet50ConvDet, were employed for the
evaluation of the presented weight sharing approach. They are
fully convolutional detection networks presented by Wu et al.
[11], consisting of a feature-extraction part that extracts high
dimensional feature maps for the input image, and ConvDet,
a convolutional layer to locate objects and predict their class.
For the derivation of the final detection, the output is filtered
based on a confidence index also extracted by the ConvDet
layer. Figure 1 presents the overall architecture of the deep
networks, the convolutional volume kernel shapes and the
feature tensor shapes.

As it can be observed from Fig. 1(a), the feature-extraction
(convolutional) part of SqueezeDet is based on SqueezeNet
[35], which is a fully convolutional neural network that
employs a special architecture that drastically reduces its size
while still remaining within the state-of-the-art performance
territory. Its building block is the “fire” module that consists
of a “squeeze” 1× 1 convolutional layer with the purpose of
reducing the number of input channels, followed by 1 × 1
and 3 × 3 “expand” convolutional layers that are connected
in parallel to the “squeezed” output. SqueezeNet consists of 8
such modules connected in series.

On the other hand, the backbone of ResNetDet is based
on the convolutional layers of ResNet50 [36], whose building
block consists of three layers, stacked one over the other, as
depicted in Fig. 1(b). The three layers are 1× 1, 3× 3, 1× 1
convolutions. The 1×1 convolution layers are responsible for
reducing and then restoring the dimensions. The 3×3 layer is
left as a bottleneck with smaller input/output dimensions. The
convolutional part of ResNetDet consists of 13 such blocks.

V. EXPERIMENTAL EVALUATION

A. Training

Both networks were trained with the KITTI odometry
dataset [37] consisting of 7477 color traffic scenes images
of 1242 × 375 pixels. Three classes are taken into account,
namely, cyclists, pedestrians and cars which were manually
annotated with bounding boxes containing the objects in the
scene. A significant observation regarding the dataset is that
not all objects of the same class are labeled in each and
every image. Such a fact plays a role in the evaluation of the
detection outcome as our analysis will reveal. The dataset was

split in a 80%, 20% for training and validation, respectively,
resulting in Ntr = 5980 training examples and Nval = 1497
validation examples.

For the training of the SqueezeDet architecture, Stochastic
Gradient Descent (SGD) was employed with the following
values for the hyperparameters (determined via experimenta-
tion); batch size B = 8, learning rate LR = 10−4, with a
weight decay rate DW = 10−4, a learning rate decay rate
of DLR = 2 ∗ LR/Ne, number of steps Ns = 3 × Ntr and
a dropout rate of 50%, over a total of Ne = 300 epochs.
Training and testing took place in an NVIDIA GeForce GTX
1080 graphics card with 8GB VRAM and compute capability
6.1 in a Intel(R) Core(TM) i7-4790 CPU @ 3.60Hz based
system with 32GB of RAM.

Likewise, for Resnet50ConvDet, we also employed SGD
with hyperparameter values as in the case of SqueezeDet.
Training and evaluation of Resnet50ConvDet took place in
an NVIDIA GeForce Geforce RTX 2080 with 16GB VRAM
and compute capability 7.5 in a Intel(R) Core(TM) i7-4790
CPU @ 3.60Hz based system with 16GB of RAM.

In all cases, training took place with a data augmentation
scheme where the bounding boxes drift by kx ∗ 150 pixels
across the x-axis and ky ∗ 150 pixels across the y-axis, where
kx, ky ∼ U(0, 1). A 50% probability is also assumed to flip
the object.

B. Acceleration scheme

In our experiment, we apply the rival techniques to the two
detection models in a “full-model” acceleration scenario. It
involves accelerating multiple (or all) convolutional layers of
the original models and measuring the achieved performance
of the accelerated networks.

It is noted, here, that, although full-range acceleration
depends heavily on the performance of the technique used for
the acceleration of each layer, it also involves experimentation
over the strategy used for accelerating the layers and the in-
volved fine-tuning (re-training) of the accelerated model. Here,
we follow a stage-wise acceleration approach (as proposed in
[33]) with each stage involving the acceleration (and fixing)
of one or more layers of the network, and, subsequently,
fine-tuning (i.e., re-training) the remaining original layers.
The starting point for each stage is the accelerated and fine-
tuned version of the previous stage. The process begins with
the original network and it is repeated until all target layers
are accelerated. For fine-tuning and performance assessment,
we use the training and validation datasets from KITTI, as
previously explained.

a) Accelerating SqueezeDet: The feature-extraction part
of SqueezeDet, namely SqueezeNet, is responsible for roughly
83% of the total 5.3 × 109 multiply-accumulate (MAC) op-
erations required. Since SqueezeNet constitutes an already
“streamlined” network, in our acceleration experiments we
followed a moderate acceleration strategy only targeting the
“expand”, as shown in Fig. 1(a). Acceleration was performed
in a one-module-per-stage fashion for a total of 8 acceleration
stages. Using acceleration ratios of α = 8, 10, 12, and 20



(a)

(b)
Fig. 1: Architectures of the employed detector networks (a) SqueeezeDet, and (b) ResNetDet. The convolutional layers highlighted by the
red frames constitute the target layers in our acceleration experiments. B is the batch size, H the height and W the width of a volume
kernel. CL−1 is the number of channels of the previous layer.

on the targeted layers, an acceleration of the SqueezeNet part
by 72%, 74%, 75%, and 78%, respectively, and a total model
acceleration by 59%, 60%, 62%, and 65%, respectively, were
achieved.

b) Accelerating ResNetDet: The feature extraction part
of ResNetDet is responsible for roughly 81% of the total
3.5 × 1010 MACs required by the network. Following the
network’s architecture, in our experiments with ResNetDet,
we accelerated its convolutional (feature-extraction) blocks in
a one-block-per-stage fashion leading to 13 total acceleration
stages. Using acceleration ratios of α = 8, 10, 12, and
20 on the targeted layers (see Fig. 1(b)), an acceleration of
the feature-extraction part by 84%, 86%, 88%, and 92%,
respectively, and a total model acceleration by 67%, 69%,
71%, and 74%, respectively, were achieved.

C. Metrics

For each detection, the Intersection Over Union (IOU) score
is computed as the ratio of area of intersection to the area of

union between the predicted and ground-truth bounding boxes.
A true positive occurs when IOU> 0.5 and the predicted class
is the same as the ground-truth class. A false positive occurs
when IOU< 0.5 or a different class is detected, meaning that
unmatched bounding boxes are taken as false positives for
a given class. Precision, recall and mean average precision
(mAP) are subsequently calculated according to [38].

D. Results

The progressive, stage-wise acceleration results for the em-
ployed networks, using both the VQ and the DL acceleration
techniques for various acceleration ratios, are shown in Fig.
2. The rightmost point in every plot depicts the performance
of the “fully” accelerated network, i.e., after all targeted
convolutional layers have been accelerated. At each point,
the performance of the detectors was assessed based on the
achieved mean average precision (mAP) and recall.

As a general comment, the results presented in Fig. 2 reveal
a very promising performance by the employed weight-sharing
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Fig. 2: Performance evaluation and comparison of DL vs VQ acceleration techniques on ResNetDet (top row) and SqueezeDet (bottom row).

techniques, and, especially so, for the DL-based one, whose
application results in significantly accelerated detectors, with
limited loss of their detection capabilities, as expressed by
both the mAP and recall values. It should be also noted that
these results could be further improved by following a more
targeted acceleration strategy (e.g., via experimentation over
the acceleration sequence, the acceleration ratio per layer,
using a more extensive fine-tuning process, etc.) which acts
as further confirmation of our conclusion. Moreover, compara-
tively speaking, the DL-based technique managed to generally
outperform its rival in our experiments, as highlighted by the
plots presented in Fig. 2, for an acceleration ratio of a = 10
(Fig. 2(a)&(c), and (e)&(g), for ResNetDet, and SqueezeDet,
respectively).

Application instances of the accelerated versus the original
networks using examples from the KITI dataset are shown in
Fig. 3, respectively.

E. Error-type analysis
For a better insight on the obtained results, we performed

an in-depth analysis of the error-types of the employed de-
tectors. For this analysis, we examined 64 images containing
the groundtruth annotation and the detection outcome and
classified the errors into seven categories; a) object located but
not labeled in dataset, b) object located buy bounding box not
in place (IOU < 0.5), c) object located but overlapping double
bounding box appeared, d) non existent object located, e)
object not located due to occlusion, f) object not located at all,
and g) mirrored object (i.e., on glass surface), object located
but in wrong class. Furthermore, we manually classified the
64 images into clear scenes with sufficient light and no
occlusions, and messy scenes with many objects some of them
being occluded. The motivation behind this perspective is that
the detector correctly detects an object but it is assumed as an
error or the detector correctly misses an object (i.e., occlusion)

but it is assumed as an error since it was originally annotated
in the dataset. As we can observe 50% of the errors in the
examined images, are objects that were actually found but
either they were not annotated or there was a bounding box
issue. The results of this qualitative analysis are summarized
by the bar-charts shown in Fig. 4.

VI. CONCLUSIONS

This work investigates the acceleration benefits of weight
sharing methods in deep learning based scene analysis for
automotive CPSs. Best practices for optimizing the available
variables and the training procedures are described based on
extensive evaluations on the KITTI dataset. The presented
results provide details about the type of errors that mani-
fest, resulting in significant acceleration gains with negligible
accuracy losses. By inspecting the error analysis it can be
easily seen that most of the errors are attributed to annotation
uncertainties. A more thorough investigation that utilizes also
synthetic datasets generated from the CARLA autonomous
driving simulator is currently under investigation and it is
expected to alleviate the impact of the uncertainties to the
training and validation errors, providing additional space for
acceleration gains.
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(a) Open street junction

(b) Narrow street

Fig. 3: Application of accelerated vs original SqueezeDet models, using examples from the KITTI dataset. Green rectangles correspond to
ground truth boxes, while red rectangles to predictions. The confidence scores are also shown in red letters. Yellow rectangles in (a) and
yellow dot in (b) highlight the most obvious performance degradation of the accelerated networks, as compared to the original one.

Fig. 4: Error type analysis using manually evaluated examples.
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