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Abstract—Extended Kalman Filters have been widely applied
for tracking the location of moving semi-autonomous vehicles.
The latter are equipped with a multitude of sensors generating
multi-modal data, while at the same time they are capable of
cooperating via Vehicle-to-Vehicle communication technologies.
In this paper, we have formulated a cooperative tracking scheme
based on Extended Kalman Filter, in order to cope with erroneous
GPS location information. It performs multi-modal fusion in a
centralized and distributed manner, assuming the existence of
an overall fusion center or local interaction among neighbouring
and connected vehicles only. It features the property of encoding
in a linear form the different measurement modalities, includ-
ing range and GPS measurements, exploiting the connectivity
topology of cooperating vehicles, using the graph Laplacian
operator. The extended experimental evaluation using realistic
vehicle trajectories extracted by CARLA autonomous driving
simulator, verify the significant reduction of GPS error under
various realistic conditions. Moreover, both schemes outperform
existing cooperative localization methods. Finally, the distributed
tracking approach exhibits similar performance and in specific
cases outperforms the centralized counterpart.

Index Terms—CAV, Cooperative Localization and Tracking,
Multi-modal fusion, V2V

I. INTRODUCTION

Connected and Automated Vehicles (CAVs) are considered
a viable option to face the operating challenges of Intelligent
Transportation Systems [1]. CAVs benefit from integrated
sensors like Camera or LIDAR, for increased awareness and
scene analysis ability. At the same time, the potential of
Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I)
wireless communications, enable the cooperation among the
members of a Vehicular Ad-Hoc Network (VANET). To this
end, CAVs can achieve their goals by the collaborating fusion
of their measurements. Such a major task is Localization [2],
i.e. exact knowledge of self and others location. Localization
improves traffic safety, road congestion and efficient planning
manoeuvring. Consider the case of estimating the right veloc-
ity in order to keep safety distances among the vehicles. This
spacing scheme requires the accurate knowledge of locations.
Although GPS sensor is widely employed to provide absolute
position information, it exhibits high localization error (even
greater than 10m), especially in dense urban conditions [5].
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Therefore, efficient cooperative localization (CL) methods for
CAVs, based on collaborating multi-modal fusion of inter-
vehicular measurements, have received increasing interest dur-
ing the last years.

There are several works that study the benefits of CL. The
authors in [3] provide an overview of CL in Wireless Sensor
Networks. They categorize CL methods into: One-shot vs
Tracking, Bayesian vs non-Bayesian and Centralized vs Dis-
tributed. Distributed and Bayesian/tracking are in general more
attractive, since the processing and computations are assigned
to each individual vehicle, which in addition exploits different
motion patterns. In [4], a distributed CL method, where each
vehicle fuses absolute position from GPS, motion sensor’s
readings and range measurements utilizing Extended Kalman
Filter (EKF), is proposed. It mainly focuses on tunnels, when
GPS may not operating due to signal blockage. In [5], a set of
detected non-cooperative features, are used as common noisy
reference points. Each vehicle performs a Bayesian Gaussian
Message Passing algorithm, improving stand-alone GPS accu-
racy in different urban conditions. In [6], authors build upon
and extend their work of [5], by introducing a distributed
feature-vehicle data association procedure. The work of [7],
presents a robust cubature Kalman Filter (KF) enhanced by
Huber M-estimation, in order to improve the performance of
the data fusion under the presence of measurement outliers,
though not considering the significant role which plays the
VANET’s size in location estimation. In [8], a Bayesian
method is proposed, based on distributed generalized message
passing and KF, which utilizes measurements from Inertial
Measurement Unit (IMU), GPS, Signals of Opportunity and
range measurements using V2V and V2I. A distributed non-
Bayesian method is presented in [12], which fuses absolute
positions, relative distances and angles of only four vehicles,
using the maximum likelihood estimator (MLE). The latter is
attractive due to its consistency and asymptotic optimality and
normality properties.

While the aforementioned CL schemes offer significant
benefits, they are mainly evaluated using trajectories generated
by simplified kinematic models and more importantly they
focus only on the pair-wise measurements, without consid-
ering the topology of a large number of CAVs that form
undirected graphs with varying topologies. Although in our



previous study in non-Bayesian Centralized and Distributed
Laplacian Localization (CLL and DLL) [9], we proved
the significance of exploiting this type of connectivity using
the graph Laplacian operator, the tracking properties were
neglected. Therefore, in this work we focus on proposing novel
cooperative tracking schemes which apart from measurements,
take also into account the underlying graph of involved ve-
hicles, by efficiently utilizing the graph Laplacian operator.
More specifically, the main contributions of this work are
summarized as follows:
• We formulate two novel graph Laplacian EKF-based

cooperative schemes for CAV localization and tracking.
• Range measurements between the vehicles, derived either

from LIDAR data or visual features, are encoded together
with the actual positions through the extended graph
Laplacian operator

• The proposed method is performed in a centralized man-
ner. A distributed low cost variant is also proposed that
takes into account only the noisy positions of a local
neighborhood

• We generated realistic random traffic trajectories using
CARLA autonomous driving simulator [10].

Extensive simulation studies verify that: i) centralized and
distributed tracking exhibit almost the same location estima-
tion performance, ii) the reduction of GPS Localization Mean
Square Error (LMSE) can reach 86% and 84%, respectively.
Both schemes significantly outperform the method of [12],
named Maximum Likelihood based Localization (MLL).
The latter is chosen since it exploits exactly the same multi-
modal data as we do, while it utilizes the, prominent in CL
literature [3], MLE for fusion.

II. CENTRALIZED AND DISTRIBUTED LOCALIZATION

This Section provides some preliminaries about our previous
work on graph based CLL and DLL for CAV localization, for
self completeness. Both methods were utilized to develop the
proposed tracking methods.

A. Centralized Laplacian Localization

At time instant t (t = 1, . . . T ), consider the set C(t) :={
C(t)1 , . . . C(t)N } consisting of all individual VANETs or clus-

ters of CAVs moving in a city. The total number of CAVs
is equal to N . Inside cluster C(t)i of Fig. 1-(a), with car-
dinality |C(t)i | = 3, vehicles exchange measurements and
communicate via V2V. The location of i-th vehicle at time

(a) Cluster (b) Neighborhood of red

Fig. 1. Connectivity topologies of CAVs
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sensors like GPS and LIDAR could provide those measure-
ments, assuming also additive white Gaussian measurement
noise [3], [5]. Hence, we define the following three measure-
ment models for each vehicle, with G(µ,Σ) as the Gaussian
distribution and µ,Σ its mean and covariance:
• Absolute position measurement:

z̃
(t)
p,i = p

(t)
i + n(t)

p , n(t)
p ∼ G(0,Σp)

Σp is a diagonal matrix equal to diag(σ2
x, σ

2
y).

• Distance measurement:
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d)

• Azimuth Angle measurement:
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az,ij = z

(t)
az,ij + n(t)az , n

(t)
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We acquire the Laplacian matrix of V2V cluster graph L(t) ∈
R|C

(t)
i |×|C

(t)
i | as L(t) = D(t) − A(t), where D(t),A(t) are

the degree and the adjacency matrices of cluster graph. The
differential coordinates per vehicle δ(t)i =

[
δ
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i δ
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i

]
∈
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, where N (t)

i

is the set of neighbouring and connected vehicles to i-th,
containing i, and with cardinality |N (t)

i |. Since L(t) is singular
and non-invertible [13], we create the extended Laplacian

matrix L̃(t) ∈ R2|C(t)i |×|C
(t)
i | as L̃(t) =

[
L(t)

I|C(t)i |

]
, where I ∈

R|C
(t)
i |×|C

(t)
i | is the identity matrix and vector b(t,x) ∈ R2|C(t)i |

as b(t,x) =

[
δ(t,x)

z̃(t,x)p

]
, where δ(t,x) ∈ R|C

(t)
i | the vector of x-

differentials. The second part of b(t,x) contains the actual GPS
positions of vehicles, known as anchor points [13]. As such,
the x-positions of vehicles of cluster, in the form of vector
x(t) ∈ R|C

(t)
i |, follow the linear system of:

L̃(t)x(t) = D(t)b(t,x), (1)

which can be solved in the least-squares sense. The same
approach is followed for estimating y-positions y(t) ∈ R|C

(t)
i |.

B. Distributed Laplacian Localization

The distributed scheme of DLL exploits the local Lapla-
cian matrix for each neighborhood. Consider the cluster of
Fig. 1-(a). Red vehicle (i = 1) is V2V connected with
yellow (i = 2) and green (i = 3) one. The star topol-
ogy of N (t)

1 (shown in Fig. 1-(b)) implies that yellow and
green are not connected, though they are. As such, the



local Laplacian matrix L̃
(t)
1 ∈ R|(N
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1 +1)|×|N (t)

1 | for the

red vehicle, is equal to: L̃(t)
1 =
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. More-

over, the local vector b(t,x)1 ∈ R|(N
(t)
1 +1)| is equal to:

b
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1 =

[
z̃
(t,x)
p,2 z̃

(t,x)
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1 z̃
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]T
, con-

sisting of neighborhood’s GPS measurements (transmitted to
i = 1) and the x-differential of i = 1. The x-location
estimation of i = 1 is reduced to solving the following linear
system, as in (1):

L̃
(t)
1 x

(t)
1 = b

(t,x)
1

(2)

The location vector x(t)
1 ∈ R|N

(t)
1 | consists of relevant x-

locations estimated by 1-th vehicle, while latter’s location
corresponds to the last element of vector. The same approach
is followed for y-location vector y(t)

1 ∈ R|N
(t)
1 | and the rest

of vehicles.

III. CENTRALIZED AND DISTRIBUTED TRACKING

In this Section, the proposed Centralized and Cooperative
EKF (CCEKF) and Distributed and Cooperative EKF
(DCEKF) for CAV localization will be derived. Both schemes
exploit the spatiotemporal properties of vehicles in the context
of EKF and perform cooperative multi-modal fusion. The
CCEKF approach is implemented in a centralized manner and
at the level of individual clusters of CAVs. The distributed or
local tracking approach of DCEKF, utilizes the star topology
and measurements of each neighborhood, since each vehicle
relies only on its own direct neighborhood to estimate its loca-
tion. The main novelty relies on the fact that the measurement
model of both approaches utilizes and fuses GPS positions,
differential coordinates and the connectivity representation of
vehicles via the linear graph Laplacian operator.

A. Centralized Tracking

Obviously, CLL is a one-shot spatial scheme, without con-
sidering any past estimations or kinematic model for vehicles.
This a serious limitation towards CAVs localization. The
prominent tracking approach of EKF can facilitate the design
of an efficient localization system. Moreover, (1) encodes in
a linear form the connectivity properties and measurement
modalities of cluster through differential coordinates. That use-
ful property is integrated to the proposed method of CCEKF.
The latter is in fact a centralized scheme, since vehicles of
cluster are required to transmit their measurements (differential
coordinates and GPS) and control inputs to a fusion center,
i.e 5G cloud, which in turn will estimate and inform them
about their locations using e.g. Time-Division Mutliple Access
(TDMA) communication protocol. According to that, vehicles
broadcast and receive the necessary information in distinct
time slots.

Clusters (example shown in Fig. 4-(b)) are created by
imposing a fixed communication range rc (much lower than
typical 200m of V2V) and maximum number of neighbors

Nmax for each vehicle, as in [5]. Thus, a reduced compu-
tational load with permissible localization accuracy can be
achieved, avoiding also extreme cases like two vehicles of
the same cluster are far (even kilometers) away from each
other. The EKF algorithm [11] implemented at the level of
individual clusters, exploits a state transition and measurement
model to track the desired state x(t)

C(t)i

, based on the previous

state x(t−1)

C(t−1)
i

and current control input u(t)

C(t)i

and measurement

z
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vectors:
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)
+ ε1, ε1 ∼ G(0,R1) (3)

z
(t)

C(t)i

= h1

(
x
(t)
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)
+ ε2, ε2 ∼ G(0,Q1) (4)

The state transition and measurement functions g1(·) and h1(·)
are in general non-linear, while R1 ∈ R3|C(t)i |×3|C

(t)
i | and

Q1 ∈ R5|C(t)i |×5|C
(t)
i | are the diagonal covariance matrices

of state and measurement noise. The IMU sensor provides
control inputs, whilst the measurement vector refers to inter-
cluster measurements (e.g. relative distances). The bicycle
kinematic model of [11], is a popular choice to simulate the
state transition function, assuming that the 3D state of i-th
vehicle consists of 2D location and heading angle θ(t)i :

x
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i = x
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θ
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(t−1)
i + ω

(t)
i ∆T ,

where ∆T is the time step and s
(t)
i and ω

(t)
i are the linear

and angular velocity, respectively. The last two quantities
constitute the control input vector. Note that in realistic condi-
tions, zero mean white Gaussian noise is added to individual
IMU measurements, with variances σ2

s and σ2
ω equal to [4]

σs = 0.1s
(t)
i and σω = 0.2◦/

√
h. As a consequence, the state

x
(t)

C(t)i

∈ R3|C(t)i | will consist of 2D location and heading angle
of vehicles of the corresponding cluster:

x
(t)

C(t)i

=
[
x(t) y(t) θ(t)

]T
, θ(t) ∈ R|C

(t)
i | (5)

Moreover, control input vector u(t)

C(t)i

∈ R2|C(t)i | will consist of
linear and angular velocities of cluster:

u
(t)

C(t)i

=
[
s(t) ω(t)

]T
, s(t),ω(t) ∈ R|C

(t)
i | (6)

The main novelty is related to treating the measurement model
of EKF according to CLL. As such, the measurement vector
z
(t)

C(t)i

∈ R5|C(t)i | will consist of differential coordinates, GPS
measurements and heading angles measurements by IMU of
cluster’s vehicles:

z
(t)

C(t)i

=
[
D(t)b(t,x) D(t)b(t,y) θ̃(t)

]T
, (7)



where θ̃(t) = θ(t) + nθ the heading angles measurement
vector of cluster, with nθ ∼ G(0, σ2

θ), σθ = σω . Apparently,
function h1(·) will no longer be non-linear, but the block
diagonal matrixHC(t)i

∈ R5|C(t)i |×3|C
(t)
i | consisting of extended

Laplacian matrix of V2V cluster graph and the identity matrix,
multiplied by the state:

h1 = HC(t)i
· x(t)

C(t)i

, HC(t)i
=

L̃(t) 0 0

0 L̃(t) 0
0 0 I|C(t)i |

 , (8)

i.e. avoiding the linearization of distance and angle model
performed by the standard EKF, which may introduces high
localization error. Moreover, in realistic urban traffic scenarios,
vehicles may enter or exit individual cluster. Therefore, the
topology of the latter is probable to change as the time evolves.
In that case, EKF should be initialized with CLL current
solution, since the state, control inputs and measurement
model are modified. Furthermore, a vehicle may not belong to
any cluster at all for a time period, limiting its own localization
ability to noisy GPS. Hence, we exploit an extra EKF, utilizing
only GPS and IMU measurements, operating for vehicles
which they do not participate in any cluster. The 3D state
of those vehicles consist of 2D location and heading angle,
the 2D control vector is constituted by linear and angular
velocity, while the 3D measurement vector consist of GPS
measurements and IMU heading measurement. At the linear
measurement model, the identity matrix I3 is multiplied by the
state, as in (8). The main steps of the proposed CCEKF are
summarized on Algorithm 1, based on EKF algorithm of [11].
Location vector and its covariance matrix ΣC(t)i

are estimated
in Lines 9-10. EKF approximates the non-linear transition
function g1, with its Jacobian matrix GC(t)i

= ∂g1

∂x
(t−1)

C(t−1)
i

, via

Taylor expansion. The corresponding steps of single EKF are
performed in Line 15.

To sum up, we have derived a centralized and cooperative
tracking approach, which encodes in a linear form the mea-
surement modalities and connectivity properties of CAVs. The
proposed CCEKF is executed in a centralized manner on the
level of clusters of CAVs. A schematic diagram representing
CCEKF approach is provided in Fig. 2.

Fig. 2. CCEKF Indicative Execution scenario

B. Distributed Tracking

A distributed localization architecture, in which the process-
ing is assigned to individual vehicles, offers benefits related
to limited communication and computing requirements. There
is no need to define an overall central node, which may

Algorithm 1: Centralized and Cooperative EKF or
CCEKF

1 Operation: Estimate locations of N vehicles for each t
for all vehicles of cluster C(t)i ∈ C(t) do

2 Vehicles transmit their ids, differential coordinates,
GPS measurements and control inputs to cloud;

3 if C(t)i not identical to C(t−1)i then
4 Intialize locations with CLL [9];
5 else

6 x
(t)

C(t)i

= g1

(
x
(t−1)

C(t−1)
i

,u
(t)

C(t)i

)
;

7 ΣC(t)i

= GC(t)i

Σ
(t−1)

C(t−1)
i

GT
C(t)i

+R1;

8 KC(t)i

=

ΣC(t)i

HT

C(t)i

(
HC(t)i

ΣC(t)i

HT

C(t)i

+Q1

)−1
;

9 x
(t)

C(t)i

= x
(t)

C(t)i

+KC(t)i

(
z
(t)

C(t)i

− h1
(
x
(t)

C(t)i

))
;

10 Σ
(t)

C(t)i

=
(
I|C(t)i |

−KC(t)i

HC(t)i

)
ΣC(t)i

;

11 end
12 Cloud informs vehicles about their locations x(t)

C(t)i

;

13 end
14 if vehicle not in clusters then
15 Perform single EKF with GPS and IMU;
16 end

be vulnerable to malfunctioning and cyber-attacks or even
cost-ineffective. Thus, increased robustness to sensing and
communication failures can be achieved. The EKF employed
for the distributed (or local) tracking relies on the same state
transition and measurement models, as in (3) and (4). Again,
we consider the non-linear transition function g2(·), known
as the bicycle kinematic model, which was described in the
previous Section but now applied for the vehicles of N (t)

i . As
such, the state vector x(t)

N (t)
i

∈ R3|N (t)
i | will now consist of

2D locations and heading angles of vehicles belonging to the
neighborhood of i:

x
(t)

N (t)
i

=
[
x
(t)
i y

(t)
i θ

(t)
i

]T
,θ

(t)
i ∈ R|N

(t)
i | (9)

At the same time, control input vector u(t)

N (t)
i

∈ R2|N (t)
i | will

consist of linear and angular velocities of neighborhood:

u
(t)

N (t)
i

=
[
s
(t)
i ω

(t)
i

]T
, s

(t)
i ,ω

(t)
i ∈ R|N

(t)
i | (10)

The key feature of proposed DCEKF relies on the fact of
integrating into the measurement model of EKF, the linear
system of (2):

z
(t)

N (t)
i

=
[
b
(t,x)
i b

(t,y)
i θ̃i

(t)
]T
, (11)

where the measurement vector z(t)
N (t)

i

∈ R3|N (t)
i |+2 will be

compromised of GPS and heading measurements transmitted



to i and differential coordinate of i. Apparently, linear function
h2(·), which couples together the star topology and measure-
ment modalities of neighborhood, will be equal to:

h2 = HN (t)
i
· x(t)

N (t)
i

, HN (t)
i

=

L̃
(t)
i 0 0

0 L̃
(t)
i 0

0 0 I|N (t)
i |


(12)

Matrix HN (t)
i
∈ R(3|N (t)

i |+2)×3|N (t)
i |. The main steps of

the proposed DCEKF tracking scheme are summarized on
Algorithm 2.

Algorithm 2: Distributed and Cooperative EKF or
DCEKF

1 Operation: Estimate location of each vehicle for each t
for each vehicle i ∈ N do

2 Connected neighbors transmit to i their ids, GPS
measurements and control inputs;

3 if N (t)
i not identical to N (t−1)

i then
4 Intialize locations with DLL [9];
5 else

6 x
(t)

N (t)
i

= g2

(
x
(t−1)

N (t−1)
i

,u
(t)

N (t)
i

)
;

7 ΣN (t)
i

= GN (t)
i

Σ
(t−1)

N (t−1)
i

GT
N (t)

i

+R2;

8 KN (t)
i

=

ΣN (t)
i

HT

N (t)
i

(
HN (t)

i

ΣN (t)
i

HT

N (t)
i

+Q2

)−1
;

9 x
(t)

N (t)
i

=

x
(t)

N (t)
i

+KN (t)
i

(
z
(t)

N (t)
i

− h2
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;

10 Σ
(t)

N (t)
i

=
(
I|N (t)

i |
−KN (t)

i

HN (t)
i

)
ΣN (t)

i

;

11 end
12 end
13 if i doesn’t have neighbors then
14 Perform single EKF with GPS and IMU;
15 end

Therefore, we derived the distributed (or local) counterpart
DCEKF (depicted in Fig. 3) based on our previous work on
DLL. The distributed tracking scheme is applied on the level
of individual neighborhoods, where each vehicle receives from
neighbors the necessary (measurement and control) informa-
tion, without any central processing involvement. Each vehicle
acts now as the fusion center, utilizing the neighborhood’s
star topology too. We take into account the cases of varying
neighborhood topologies just as the same way as in CCEKF.

IV. SIMULATIONS

In this Section, we validate the introduced approaches,
by performing computer based simulations using Python and
CARLA simulator.

Fig. 3. DCEKF Indicative Execution scenario

A. Experimental Setup

We extracted the trajectories of N = 200 vehicles from
CARLA simulator, along with the related control inputs during
their movement. We set σx = 3m, σy = 2.5m. Covariance
matrices are initialized to identity matrix. Ground truth for
a number of vehicles, and clusters formed at a certain time
instant, are depicted in Fig. 4. The simulation horizon was set

(a) Ground truth (b) Formed clusters

Fig. 4. Trajectories and generated clusters on a specific frame generated from
CARLA

to T = 500, while ∆T = 0.3s. Experiments were based on
two main parameters: size of cluster and range measurements
noise. The former dictates the connectivity representation,
while the latter the feasible estimation of differential coor-
dinates, even in occluded and highly complex environment.
Finally, we measured LMSE, Localization Error (LE) and
Average LE (ALE) at each time instant and constructed the
Cumulative Distribution Function (CDF).

B. Evaluation Study

1) Benefit of cooperation: The effect of participation in
clusters is presented in Fig. 5-(c). We set rc = 20m, Nmax =
6, σd = 1m and σaz = 4◦. Vehicle 9 is always a member
of clusters, while vehicles 191 and 24 only for 72% and 46%
of simulation horizon. Apparently, centralized and distributed
tracking exhibit similar performances. The reduction of GPS
LE of vehicle 9 with DCEKF is 72%, much greater than 57%
and 46% of 191 and 24. Superior location estimation accuracy
of vehicle 9 is clearly due to constantly being a member of
clusters. In Fig. 5-(f), we measured ALE over 1000 iterations
of GPS, CLL and CCEKF for vehicle 193 and plotted it for
the first 100 time instances. Clearly, CCEKF tracking error
is much lower than CLL, while its peaks coincide with CLL,
an effect attributed to cluster initialization using the one-shot
CL approach. Moreover, tracking error is slightly increased
when the vehicle is not a member of clusters, since during
those time instances, the traditional EKF is employed using
only individual GPS measurements.



(a) rc = 20m, Nmax = 4 (b) rc = 30m, Nmax = 8 (c) Effect of participation in clusters

(d) σd = 1m, σaz = 4◦ (e) σd = 7m, σaz = 10◦ (f) Vehicle idx: 193

Fig. 5. Results

2) Impact of cluster size: The effect of cluster size in
location accuracy is depicted in Fig. 5-(a),(b), with σd =
1m,σaz = 4◦. Evidently, tracking schemes outperform all
other methods. For example, in Fig. 5-(a) the reduction of
GPS LMSE is 78%, 76%, 64%, 60% and 50% with CCEKF,
DCEKF, CLL, DLL and MLL, respectively. In Fig. 5-(b),
with increased cluster’s size (rc = 30m and Nmax = 8), the
methods exhibit superior performance over Fig. 5-(a), since
vehicles integrate larger amount of information. CCEKF and
DCEKF achieved 86% and 84% reduction of GPS LMSE,
i.e. significantly greater than in Fig. 5-(a). Thus, increased
cluster’s size leads to increased location estimation accuracy.
Note that in all cases the CDF of distributed DCEKF almost
coincide with its centralized counterpart.

3) Impact of range noise: The impact of uncertainty in
range measurements is depicted in Fig. 5-(d),(e), with fixed
rc = 20m and Nmax = 6. For example, in Fig. 5-(d) the
reduction of GPS LMSE is 80%, 78%, 67%, 63% and 54% for
the CCEKF, DCEKF, CLL, DLL and MLL schemes respec-
tively. Once again, tracking schemes are much for efficient. In
Fig. 5-(e), with σd = 7m,σaz = 10◦, performances have been
seriously deteriorated, though tracking proves its robustness.
For example, CCKEF and DCEKF achieved 43% and 47%
reduction of GPS LMSE, while MLL actually increases it.
Moreover, the proposed distributed scheme is more effective
than CCEKF, since vehicles utilize only their own differential
coordinate, and thus limiting the impact of increased range
measurements noise.

V. CONCLUSION

In this paper, we formulated a centralized and distributed co-
operative scheme for CAV localization and tracking, based on
a novel graph Laplacian EKF algorithm. Extensive results us-
ing realistic measurements have proven the proposed schemes
efficacy and efficiency under different experimental conditions

generated in the CARLA autonomous driving simulator. It is
worth mentioning that the distributed tracking outperforms
the centralized tracking approach in the presence of range
measurement uncertainties.
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