
On Symmetry and Quantification:
A New Approach to Verify Distributed Protocols

Aman Goel(�) and Karem Sakallah

University of Michigan, Ann Arbor MI 48105, USA
{amangoel,karem}@umich.edu

Abstract. Proving that an unbounded distributed protocol satisfies a
given safety property amounts to finding a quantified inductive invariant
that implies the property for all possible instance sizes of the protocol.
Existing methods for solving this problem can be described as search
procedures for an invariant whose quantification prefix fits a particular
template. We propose an alternative constructive approach that does not
prescribe, a priori, a specific quantifier prefix. Instead, the required prefix
is automatically inferred without any search by carefully analyzing the
structural symmetries of the protocol. The key insight underlying this ap-
proach is that symmetry and quantification are closely related concepts
that express protocol invariance under different re-arrangements of its
components. We propose symmetric incremental induction, an extension
of the finite-domain IC3/PDR algorithm, that automatically derives the
required quantified inductive invariant by exploiting the connection be-
tween symmetry and quantification. While various attempts have been
made to exploit symmetry in verification applications, to our knowledge,
this is the first demonstration of a direct link between symmetry and
quantification in the context of clause learning during incremental in-
duction. We also describe a procedure to automatically find a minimal
finite size, the cutoff, that yields a quantified invariant proving safety for
any size.

Our approach is implemented in IC3PO, a new verifier for distributed
protocols that significantly outperforms the state-of-the-art, scales orders
of magnitude faster, and robustly derives compact inductive invariants
fully automatically.

1 Introduction

Our focus in this paper is on parameterized verification, specifically proving safety
properties of distributed systems, such as protocols that are often modeled above
the code level (e.g., [49, 63]), consisting of arbitrary numbers of identical com-
ponents that are instances of a small set of different sorts. For example, a client
server protocol [1] CS (i , j) is a two-sort parameterized system with parame-
ters i ≥ 1 and j ≥ 1 denoting, respectively, the number of clients and servers.
Protocol correctness proofs are critical for establishing the correctness of actual
system implementations in established methodologies such as [42, 69]. Proving
safety properties for such systems requires the derivation of inductive invariants

http://orcid.org/0000-0003-0520-8890

2 A. Goel and K. Sakallah

that are expressed as state predicates quantified over the system parameters.
While, in general, this problem is undecidable [8], certain restricted forms have
been shown to yield to algorithmic solutions [17]. Key to these solutions is ap-
pealing to the problem’s inherent symmetry. In this paper, we exclusively focus
on protocols whose sorts represent sets of indistinguishable domain constants.
The behavior of this restricted class of protocols remains invariant under all pos-
sible permutations of the domain constants. We leave the exploration of other
features, such as totally-ordered sorts, integer arithmetic, etc., for future work.

Our proposed symmetry-based solution is best understood by briefly review-
ing earlier efforts. Initially, the pressing issue was the inevitable state explo-
sion when verifying a finite, but large, parameterized system [12, 29, 37, 60, 66,
68]. Thus, instead of verifying the “full” system, these approaches verified its
symmetry-reduced quotient, mostly using BDD-based symbolic image computa-
tion [19,20,56]. The Murϕ verifier [60] was a notable exception in that it a) gener-
ated a C++ program that enumerated the system’s symmetry-reduced reachable
states, and b) allowed for the verification of unbounded systems by taking advan-
tage of data saturation which happens when the size of the symmetry-reduced
reachable states become constant regardless of system size.

The idea that an unbounded symmetric system can, under certain data-
independence assumptions, be verified by analyzing small finite instances evolved
into the approach of verification by invisible invariants [9,10,25,65,70]. In this ap-
proach, assuming they exist, inductive invariants that are universally-quantified
over the system parameters are automatically derived by analyzing instances
of the system up to a cutoff size N0 using a combination of symbolic reach-
ability and symmetry-based abstraction. Noting that an invariant is an over-
approximation of the reachable states, the restriction to universal quantification
may fail in some cases, rendering the approach incomplete. The invisible in-
variant verifier IIV [10] employs some heuristics to derive invariants that use
combinations of universal and existential quantifiers, but as pointed out in [58],
it may still fail and is not guaranteed to be complete.

The development of SAT-based incremental induction algorithms [18,27] for
verifying the safety of finite transition systems was a major advance in the field
of model checking and has, for the most part, replaced BDD-based approaches.
These algorithms leverage the capacity and performance of modern CDCL SAT
solvers [11, 28, 55, 57] to produce clausal strengthening assertions A that, con-
joined with a specified safety property P , form an automatically-generated in-
ductive invariant Inv = A ∧ P if the property holds. The AVR hardware ver-
ifier [38–40] was adapted in [53] to produce quantifier-free inductive invariants
for small instances of unbounded protocols that are subsequently generalized
with universal quantification, in analogy with the invisible invariants approach,
to arbitrary sizes. The resulting assertions tended, in some cases, to be quite
large, and the approach was also incomplete due to the restriction to universal
quantification.

In this paper we introduce IC3PO, a novel symmetry-based verifier that
builds on these previous efforts while removing most of their limitations. Rather
than search for an invariant with a prescribed quantifier prefix, IC3PO con-

On Symmetry and Quantification 3

structively discovers the required quantified assertions by performing symmetric
incremental induction and analyzing the symmetry patterns in learned clauses
to infer the corresponding quantifier prefix. Our main contributions are:
– An extension to finite incremental induction algorithms that uses proto-

col symmetry to boost clause learning from a single clause ϕ to a set of
symmetrically-equivalent clauses, ϕ’s orbit.

– A quantifier inference procedure that expresses ϕ’s orbit by an automatically-
derived compact quantified predicate Φ. The inference procedure is based on
a simple analysis of ϕ’s syntactic structure and yields a quantified form with
both universal and existential quantifiers.

– A systematic finite convergence procedure for determining a minimal in-
stance size sufficient for deriving a quantified inductive invariant that holds
for all sizes.

We also demonstrate the effectiveness of IC3PO on a diverse set of benchmarks
and show that it significantly advances the current state-of-the-art.

The paper is structured as follows: §2 presents preliminaries. §3 formalizes
protocol symmetries. The next three sections detail our key contributions: sym-
metry boosting during incremental induction in §4, relating symmetry to quan-
tification in §5, and checking for convergence in §6. §7 describes the IC3PO
algorithm and implementation details. §8 presents our experimental evaluation.
The paper concludes with a brief survey of related work in §9, and a discussion
of future directions in §10.

2 Preliminaries

Figure 1 describes a toy consensus protocol from [6] in the TLA+ language [49].1

The protocol has three named sorts S = [node, quorum, value] introduced by the
constants declaration, and two relations R = {vote, decision}, introduced by
the variables declaration, that are defined on these sorts. Each of the sorts
is understood to represent an unbounded domain of distinct elements with the
relations serving as the protocol’s state variables. The global axiom (line 3)
defines the elements of the quorum sort to be subsets of the node sort and restricts
them further by requiring them to be pair-wise non-disjoint. We will refer to node

(resp. quorum) as an independent (resp. dependent) sort. The protocol transitions
are specified by the actions CastVote and Decide (lines 6-7) which are expressed
using the current- and next-state variables as well as the definitions didNotVote
and chosenAt (lines 4-5) which serve as auxiliary non-state variables. Lines 8-10
specify the protocol’s initial states, transition relation, and safety property.

Viewed as a parameterized system, the template of an arbitrary n-sort dis-
tributed protocol P will be expressed as P(s1, . . . , sn) where S = [s1, . . . , sn]
is an ordered list of its sorts, each of which is assumed to be an unbounded
uninterpreted set of distinct constants. As a mathematical transition system, P
is defined by a) its state variables which are expressed as k -ary relations on its

1 The description in [6] is in the Ivy [63] language and encodes set operations in
relational form with a member relation representing ∈ .

4 A. Goel and K. Sakallah

module ToyConsensus
1 constants node, quorum, value variables vote, decision

2 vote ∈ (node× value)→ boolean decision ∈ value→ boolean

3 assume ∀Q ∈ quorum : Q ⊆ node ∧ ∀Q1, Q2 ∈ quorum : Q1 ∩Q2 6= {}

4 didNotVote(n)
∆
= ∀V ∈ value : ¬vote(n, V)

5 chosenAt(q, v)
∆
= ∀N ∈ q : vote(N , v)

6 CastVote(n, v)
∆
= didNotVote(n) ∧ vote′ = [vote except ! [n, v] = true]

∧ unchanged decision

7 Decide(q, v)
∆
= chosenAt(q, v) ∧ decision′ = [decision except ! [v] = true]

∧ unchanged vote

8 Init
∆
= ∀N ∈ node, V ∈ value : ¬vote(N , V) ∧ ∀V ∈ value : ¬decision(V)

9 T
∆
= ∃N ∈ node,Q ∈ quorum,V ∈ value :CastVote(N , V) ∨Decide(Q , V)

10 P
∆
= ∀V1, V2 ∈ value : decision(V1) ∧ decision(V2)⇒ V1 = V2

Fig. 1: Toy consensus protocol in the TLA+ language

sorts, and b) its actions which capture its state transitions. We also note that
non-Boolean functions/variables can be easily accommodated by encoding them
in relational form, e.g., f (x1, x2, . . .) = y. We will use Init ,T , and P to denote,
respectively, a protocol’s initial states, its transition relation, and a safety prop-
erty that is required to hold on all reachable states. A finite instance of P will be
denoted as P(|s1|, . . . , |sn|) where each named sort is replaced by its finite size in
the instance. Similarly, Init(|s1|, . . . , |sn|), T (|s1|, . . . , |sn|) and P(|s1|, . . . , |sn|)
will, respectively, denote the application of Init , T and P to this finite instance.

The template of the protocol in Figure 1 is ToyConsensus(node, quorum, value).
Its finite instance:

ToyConsensus(3, 3, 3) : node3 , {n1, n2, n3} value3 , {v1, v2, v3} (1)

quorum3 , {q12 :{n1, n2}, q13 :{n1, n3}, q23 :{n2, n3}}

will be used as a running example in the paper. The finite sorts of this instance
are defined as sets of arbitrarily-named distinct constants. It should be noted
that the constants of the quorum3 sort are subsets of the node3 sort that sat-
isfy the non-empty intersection axiom and are named to reflect their symmetric
dependence on the node3 sort. This instance has 9 vote and 3 decision state vari-
ables, and a state of this instance corresponds to a complete Boolean assignment
to these 12 state variables.

In the sequel, we will use P̂ and T̂ as shorthand for P(|s1|, . . . , |sn|) and
T (|s1|, . . . , |sn|). Quantifier-free formulas will be denoted by lower-case Greek
letters (e.g., ϕ) and quantified formulas by upper-case Greek letters (e.g., Φ).
We use primes (e.g., ϕ′) to represent a formula after a single transition step.

3 Protocol Symmetries

The symmetry group of P̂ is G(P̂) =× s ∈ S
Sym(s), where Sym(s) is the

symmetric group, i.e., the set of |s|! permutations of the constants of the set

On Symmetry and Quantification 5

s.2 In what follows we will use G instead of G(P̂) to reduce clutter. Given a
permutation γ ∈ G and an arbitrary protocol relation ρ instantiated with specific
sort constants, the action of γ on ρ, denoted ργ , is the relation obtained from ρ by
permuting the sort constants in ρ according to γ; it is referred to as the γ-image
of ρ. Permutation γ ∈ G can also act on any formula involving the protocol
relations. In particular, the invariance of protocol behavior under permutation
of sort constants implies that the action of γ on the (finite) initial state, transition
relation, and property formulas causes a syntactic re-arrangement of their sub-
formulas while preserving their logical equivalence:

ˆInit
γ ≡ ˆInit T̂ γ ≡ T̂ P̂γ ≡ P̂ (2)

Consider next a clause ϕ which is a disjunction of literals, namely, instanti-
ated protocol relations or their negations. The orbit of ϕ under G , denoted ϕG , is
the set of its images ϕγ for all permutations γ ∈ G , i.e., ϕG = {ϕγ | γ ∈ G}. The
γ-image of a clause can be viewed as a syntactic transformation that will either
yield a new logically-distinct clause on different literals or simply re-arrange the
literals in the clause without changing its logical behavior (by the commutativity
and associativity of disjunction). We define the logical action of a permutation
γ on a clause ϕ, denoted ϕL(γ), as:

ϕL(γ) =

{
ϕγ if ϕγ 6≡ ϕ
ϕ if ϕγ ≡ ϕ

and the logical orbit of ϕ as ϕL(G) =
{
ϕL(γ)

∣∣ γ ∈ G
}

. With a slight abuse of
notation, logical orbit can also be viewed as the conjunction of the logical images:

ϕL(G) =
∧

γ ∈ G

ϕL(γ)

To illustrate these concepts, consider ToyConsensus(3, 3, 3) from (1). Its sym-
metries in cycle notation are as follows:

Sym(node3) = {(), (n1 n2), (n1 n3), (n2 n3), (n1 n2 n3), (n1 n3 n2)}
Sym(value3) = {(), (v1 v2), (v1 v3), (v2 v3), (v1 v2 v3), (v1 v3 v2)}
G = Sym(node3)× Sym(value3) (3)

The symmetry group (3) of ToyConsensus(3, 3, 3) has 36 symmetries correspond-
ing to the 6 node3 × 6 value3 permutations. The permutations on quorum3 are
implicit and based on the permutations of node3 since quorum3 is a dependent
sort. Now, consider the example clause:

ϕ1 = vote(n1, v1) ∨ vote(n1, v2) ∨ vote(n1, v3) (4)

The orbit of ϕ1 consists of 36 syntactically-permuted clauses. However, many of
these images are logically equivalent yielding the following logical orbit of just 3
logically-distinct clauses:

ϕ
L(G)
1 = [vote(n1, v1) ∨ vote(n1, v2) ∨ vote(n1, v3)] ∧

[vote(n2, v1) ∨ vote(n2, v2) ∨ vote(n2, v3)] ∧
[vote(n3, v1) ∨ vote(n3, v2) ∨ vote(n3, v3)] (5)

2 We assume familiarity with basic notions from group theory including permutation
groups, cycle notation, group action on a set, orbits, etc., which can be readily found
in standard textbooks on Abstract Algebra [33].

6 A. Goel and K. Sakallah

4 SymIC3 : Symmetric Incremental Induction

SymIC3 is an extension of the standard IC3 algorithm [18,27] that takes advan-
tage of the symmetries in a finite instance P̂ of an unbounded protocol P to boost
learning during backward reachability. Specifically, it refines the current frame,
in a single step, with all clauses in the logical orbit ϕL(G) of a newly-learned
quantifier-free clause ϕ. In other words, having determined that the backward 1-
step check Fi−1∧T̂∧[¬ϕ]′ is unsatisfiable (i.e., that states in cube ¬ϕ in frame Fi

are unreachable from the previous frame Fi−1), SymIC3 refines Fi with ϕL(G),
i.e., Fi := Fi ∧ ϕL(G), rather than with just ϕ. Thus, at each refinement step,
SymIC3 not only blocks cube ¬ϕ, but also all symmetrically-equivalent cubes
[¬ϕ]γ for all γ ∈ G . This simple change to the standard incremental induction
algorithm significantly improves performance since the extra clauses used to re-
fine Fi a) are derived without making additional backward 1-step queries, and
b) provide stronger refinement in each step of backward reachability leading to
faster convergence with fewer counterexamples-to-induction (CTIs). The proof
of correctness of symmetry boosting can be found in Appendix B.1.

5 Quantifier Inference

The key insight underlying our overall approach is that the explicit logical orbit,
in a finite protocol instance, of a learned clause ϕ can be exactly, and system-
atically, captured by a corresponding quantified predicate Φ. In retrospect, this
should not be surprising since symmetry and quantification can be seen as dif-
ferent ways of expressing invariance under permutation of the sort constants in
the clause. To motivate the connection between symmetry and quantification,
consider the following quantifier-free clause from our running example and a
proposed quantified predicate that implicitly represents its logical orbit:

ϕ2 = ¬decision(v1) ∨ decision(v2)

Φ2 = ∀X1,X2 ∈ value3 : (distinct X1 X2)→ [¬decision(X1) ∨ decision(X2)] (6)

As shown in Table 1, the logical orbit ϕ
L(G)
2 consists of 6 logically-distinct

clauses corresponding to the 6 permutations of the 3 constants of the value3
sort. Evaluating Φ2 by substituting all 3 × 3 = 9 assignments to the variable
pair (X1,X2) ∈ value3 × value3 yields 9 clauses, 3 of which (shown faded) are
trivially true since their “distinct” antecedents are false, with the remaining 6
corresponding to each of the clauses obtained through permutations of the 3

value3 constants. Similarly, we can show that the 3-clause logical orbit ϕ
L(G)
1

in (5) can be succinctly expressed by the quantified predicate:

Φ1 = ∀Y ∈ node3, ∃X ∈ value3 : vote(Y ,X) (7)

which employs universal and existential quantification. And, finally, ϕ3 and Φ3

below illustrate how a clause whose logical orbit is just itself can also be expressed
as an existentially-quantified predicate.

ϕ3 = decision(v1) ∨ decision(v2) ∨ decision(v3)

Φ3 = ∃ X ∈ value3 : decision(X) (8)

On Symmetry and Quantification 7

(X1,X2) Instantiation of Φ2 Permutation

(v1, v1) (distinct v1 v1)→ [¬decision(v1) ∨ decision(v1)] none

(v1, v2) (distinct v1 v2)→ [¬decision(v1) ∨ decision(v2)] ()

(v1, v3) (distinct v1 v3)→ [¬decision(v1) ∨ decision(v3)] (v2 v3)

(v2, v1) (distinct v2 v1)→ [¬decision(v2) ∨ decision(v1)] (v1 v2)

(v2, v2) (distinct v2 v2)→ [¬decision(v2) ∨ decision(v2)] none

(v2, v3) (distinct v2 v3)→ [¬decision(v2) ∨ decision(v3)] (v1 v2 v3)

(v3, v1) (distinct v3 v1)→ [¬decision(v3) ∨ decision(v1)] (v1 v3 v2)

(v3, v2) (distinct v3 v2)→ [¬decision(v3) ∨ decision(v2)] (v1 v3)

(v3, v3) (distinct v3 v3)→ [¬decision(v3) ∨ decision(v3)] none

Table 1: Correlation between symmetry and quantification for Φ2 from (6)

Highlighted clauses represent the logical orbit ϕ
L(G)
2

none indicates the clause has no corresponding permutation γ ∈ Sym(value3)

We will first describe basic quantifier inference for protocols with independent
sorts. This is done by analyzing the syntactic structure of each quantifier-free
clause learned during incremental induction to derive a quantified form that
expresses the clause’s logical orbit. We later discuss extensions to this approach
that consider protocols with dependent sorts, such as ToyConsensus, for which
the basic single-clause quantifier inference may be insufficient.

5.1 Basic Quantifier Inference

Given a quantifier-free clause ϕ, quantifier inference seeks to derive a compact
quantified predicate that implicitly represents, rather than explicitly enumerates,
its logical orbit. The procedure must satisfy the following conditions:

Correctness – The inferred quantified predicate Φ should be logically-equivalent
to the explicit logical orbit ϕL(G).
Compactness – The number of quantified variables in Φ for each sort s ∈ S
should be independent of the sort size |s|. Intuitively, this condition en-
sures that the size of the quantified predicate, measured as the number of
its quantifiers, remains bounded for any finite protocol instance, and more
importantly, for the unbounded protocol.

SymIC3 constructs the orbit’s quantified representation by a) inferring the re-
quired quantifiers for each sort separately, and b) stitching together the inferred
quantifiers for the different sorts to form the final result. The key to capturing the
logical orbit and deriving its compact quantified representation is a simple anal-
ysis of the structural distribution of each sort’s constants in the target clause.
Let π(ϕ, s) be a partition of the constants of sort s in ϕ based on whether
or not they appear identically in the literals of ϕ. Two constants ci and cj
are identically-present in ϕ if they occur in ϕ and swapping them results in a
logically-equivalent clause, i.e., ϕ(ci cj) ≡ ϕ. Let #(ϕ, s) be the number of con-

8 A. Goel and K. Sakallah

stants of s that appear in ϕ, and let |π(ϕ, s)| be the number of classes/cells in
π(ϕ, s). Consider the following scenarios for quantifier inference on sort s:

A. #(ϕ, s) < |s| (infer ∀)

In this case, clause ϕ contains a strict subset of constants from sort s, indicating
that the number of literals in ϕ parameterized by s constants is independent of
the sort size |s|. Increasing sort size simply makes the orbit longer by adding
more symmetrically-equivalent but logically-distinct clauses. An example of this
case is ϕ2 and Φ2 in (6). The quantified predicate representing such an orbit
requires #(ϕ, s) universally-quantified sort variables corresponding to the #(ϕ, s)
sort constants in the clause, and expresses the orbit as an implication whose
antecedent is a “distinct” constraint that ensures that the variables cannot be
instantiated with identical constants.

B. #(ϕ, s) = |s|

When all constants of a sort s appear in a clause, the above universal quantifi-
cation yields a predicate with |s| quantified variables and fails the compactness
requirement since the number of quantified variables becomes unbounded as
the sort size increases. Correct quantification in this case must be inferred by
examining the partition of the sort constants in the clause.

I. Single-cell Partition i.e., |π(ϕ, s)| = 1 (infer ∃)

When all sort constants appear identically in ϕ, π(ϕ, s) is a unit partition.
Applying any permutation γ ∈ Sym(s) to ϕ yields a logically-equivalent clause,
i.e., the logical orbit in this case is just a single clause. Increasing the size of sort
s simply yields a wider clause and suggests that such an orbit can be encoded
as a predicate with a single existentially-quantified variable that ranges over all
the sort constants. For example, the partition of the value3 sort constants in
ϕ1 from (4) is π(ϕ1, value3) = {{v1, v2, v3}} since all three constants appear
identically in ϕ1. The orbit of this clause is just itself and can be encoded as:

Φ1(value3) = ∃X ∈ value3 : vote(n1,X)

Also, since #(ϕ1, node3) < |node3|, universal quantification (as in Section 5.1.A)
correctly captures the dependence of the clause’s logical orbit on the node3 sort
to get the overall quantified predicate Φ1 in (7).

II. Multi-cell Partition i.e., |π(ϕ, s)| > 1 (infer ∀∃)

In this case, a fixed number of the constants of sort s appear differently in
ϕ with the remaining constants appearing identically, resulting in a multi-cell
partition. Specifically, assume that a number 0 < k < |s| exists that is inde-
pendent of |s| such that π(ϕ, s) has k + 1 cells in which one cell has |s| − k
identically-appearing constants and each of the remaining k cells contains one of
the differently-appearing constants. It can be shown that the logical orbit in this
case can be expressed by a quantified predicate with k universal quantifiers and

On Symmetry and Quantification 9

a single existential quantifier. For example, the partition of the value3 constants
in the clause:

ϕ4 = ¬decision(v1) ∨ decision(v2) ∨ decision(v3)

is π(ϕ4, value3) = {{v1}, {v2, v3}} since v1 appears differently from v2 and v3.
The logical orbit of this clause is:

ϕ
L(G)
4 = [¬decision(v1) ∨ decision(v2) ∨ decision(v3)] ∧

[¬decision(v2) ∨ decision(v1) ∨ decision(v3)] ∧
[¬decision(v3) ∨ decision(v2) ∨ decision(v1)] (9)

and can be compactly encoded with an outer universally-quantified variable cor-
responding to the sort constant in the singleton cell, and an inner existentially-
quantified variable corresponding to the other |value3| − 1 identically-present
sort constants. A “distinct” constraint must also be conjoined with the liter-
als involving the existentially-quantified variable to exclude the constant cor-
responding to the universally-quantified variable from the inner quantification.

ϕ
L(G)
4 can thus be shown to be logically-equivalent to:

Φ4 = ∀Y ∈ value3, ∃X ∈ value3 : ¬decision(Y) ∨ [(distinct Y X) ∧ decision(X)] (10)

Combining Quantifier Inference for Different Sorts— The complete quantified
predicate Φ representing the logical orbit of clause ϕ can be obtained by applying
the above inference procedure to each sort in ϕ separately and in any order. This
is possible since the sorts are assumed to be independent: the constants of one
sort do not permute with the constants of a different sort. This will yield a
predicate Φ that has the quantified prenex form ∀∗∃∗ < CNF expression >,
where all universals for each sort are collected together and precede all the
existential quantifiers.

It is interesting to note that this connection between symmetry and quan-
tification suggests that an orbit can be visualized as a two-dimensional object
whose height and width correspond, respectively, to the number of universally-
and existentially-quantified variables. A proof of the correctness of this quantifier
inference procedure can be found in Appendix B.2.

5.2 Quantifier Inference Beyond ∀∗∃∗

We observed that for some protocols, particularly those that have dependent
sorts such as ToyConsensus, the above inference procedure violates the com-
pactness requirement. In other words, restricting inference to a ∀∗∃∗ quantifier
prefix causes the number of quantifiers to become unbounded as sort sizes in-
crease. Recalling that the ∀∗∃∗ pattern is inferred from the symmetries of a
single clause, whose literals are the protocol’s state variables, suggests that in-
ference of more complex quantification patterns may necessitate that we exam-
ine the structural distribution of sort constants across sets of clauses. While
this is an interesting possible direction for further exploration of the connection
between symmetry and quantification, an alternative approach is to take advan-
tage of the formula structure of the protocol’s transition relation. For example,

10 A. Goel and K. Sakallah

the transition relation of ToyConsensus is specified in terms of two quantified
sub-formulas, didNoteVote and chosenAt , that can be viewed, in analogy with
a sequential hardware circuit, as internal auxiliary non-state variables that act
as “combinational” functions of the state variables. By allowing such auxiliary
variables to appear explicitly in clauses learned during incremental induction,
the quantified predicates representing the logical orbits of these clauses (accord-
ing to the basic inference procedure in Section 5.1) will implicitly incorporate
the quantifiers used in the auxiliary variable definitions and automatically have
a quantifier prefix that generalizes the basic ∀∗∃∗ template.

Revisiting ToyConsensus— When SymIC3 is run on the finite instance Toy-
Consensus(3,3,3), it terminates with the following two strengthening assertions:

A1 = ∀ N ∈ node3,V1,V2 ∈ value3 : (distinct V1 V2)→ ¬vote(N ,V1) ∨ ¬vote(N ,V2) (11)

A2 = ∀ V ∈ value3, ∃ Q ∈ quorum3. ¬decision(V) ∨ chosenAt(Q ,V) (12)

= ∀ V ∈ value3, ∃ Q ∈ quorum3. ¬decision(V) ∨ [∀ N ∈ Q : vote(N ,V)]

which, together with P̂ , serve as an inductive invariant proving that P̂ holds for
this instance. Both assertions are obtained using the basic quantifier inference
procedure in Section 5.1 that produces a ∀∗∃∗ quantifier prefix in terms of the
clause variables. Note, however, that A2 is expressed in terms of the auxiliary
variable chosenAt . Substituting the definition of chosenAt yields an assertion
with a ∀∃∀ quantifier prefix exclusively in terms of the protocol’s state variables.

6 Finite Convergence Checks

Given a safe finite instance P̂ , P(|s1|, . . . , |sn|), let Inv|s1|,...,|sn| denote the

inductive invariant derived by SymIC3 to prove that P̂ holds in P̂. What remains
is to determine the instance size |s1|, . . . , |sn| needed so that Inv|s1|,...,|sn| is also

an inductive invariant for all sizes. If the instance size is too small, P̂ may not
include all protocol behaviors and Inv|s1|,...,|sn| will not be inductive at larger
sizes. As shown in the invisible invariant approach [9, 10, 58, 65, 70], increasing
the instance size becomes necessary to include new protocol behaviors missing
in P̂, until protocol behaviors saturate. We propose an automatic way to update
the instance size and reach saturation by starting with an initial base size and
iteratively increasing the size until finite convergence is achieved.

The initial base size can be chosen to be any non-trivial instance size and
can be easily determined by a simple analysis of the protocol description. For
example, any non-trivial instance of the ToyConsensus protocol should have
|node| ≥ 3, |quorum| ≥ 3, and |value| ≥ 2.

Our finite convergence procedure can be seen as an integration of symmetry
saturation and a stripped-down form of multi-dimensional mathematical induc-
tion, and has similarities with previous works on structural induction [35, 47]
and proof convergence [25]. To determine if Inv|s1|,...,|sn| is inductive for any size,

On Symmetry and Quantification 11

the procedure performs the following checks for 1 ≤ i ≤ n:

a) Init(|s1|..|si|+ 1..|sn|)→ Inv|s1|,...,|sn|(|s1|..|si|+ 1..|sn|) (13)

b) Inv|s1|,...,|sn|(|s1|..|si|+ 1..|sn|) ∧ T (|s1|..|si|+ 1..|sn|)→ Inv ′|s1|,...,|sn|(|s1|..|si|+ 1..|sn|) (14)

where Inv|s1|,...,|sn|(|s1|..|si|+ 1..|sn|) denotes the application of Inv|s1|,...,|sn| to
an instance in which the size of sort si is increased by 1 while the sizes of the
other sorts are unchanged.3

If all of these checks pass, we can conclude that Inv|s1|,...,|sn| is not specific
to the instance size used to derive it and that we have reached cutoff, i.e., that
Inv|s1|,...,|sn| is an inductive invariant for any size. Intuitively, this suggests that
adding a new protocol component (e.g., client, server, node, proposer, acceptor)
does not add any unseen unique behavior, and hence proving safety till the
cutoff is sufficient to prove safety for any instance size. While we believe these
checks are sufficient, we still do not have a formal convergence proof. In our
implementation, we confirm convergence by performing the unbounded induction
checks a) Init → Inv|s1|,...,|sn|, and b) Inv|s1|,...,|sn| ∧T → Inv ′|s1|,...,|sn| noting that
they may lie outside the decidable fragment of first-order logic.

On the other hand, failure of these checks, say for sort si, implies that
Inv|s1|...|sn| will fail for larger sizes and cannot be inductive in the unbounded
case, and we need to repeat SymIC3 on a finite instance with an increased size for
sort si, i.e., P̂new , P(|s1|, .., |si|+ 1, .., |sn|), to include new protocol behaviors

that are missing in P̂.
Recall from (11) and (12), running SymIC3 on ToyConsensus(3, 3, 3) pro-

duces Inv3,3,3 = A1 ∧ A2 ∧ P̂ . Inv3,3,3 passes checks (13) and (14) for instances
ToyConsensus(4, 4, 3) and ToyConsensus(3, 3, 4), indicating finite convergence.4

Inv3,3,3 passes standard induction checks in the unbounded domain as well, estab-
lishing it as a proof certificate that proves the property as safe in ToyConsensus.

7 IC3PO: IC3 for Proving Protocol Properties

Given a protocol specification P, IC3PO iteratively invokes SymIC3 on finite
instances of increasing size, starting with a given initial base size. Upon termina-
tion, IC3PO either a) reaches convergence on an inductive invariant Inv|s1|,...,|sn|
that proves P for the unbounded protocol P, or b) produces a counterexample
trace Cex|s1|,...,|sn| that serves as a finite witness to its violation in both the finite
instance and the unbounded protocol. The detailed pseudo code of IC3PO is
available in Appendix A.

We also explored a number of simple enhancements to IC3PO, such as
strengthening the inferred quantified predicates whenever safely possible to do
during incremental induction by a) dropping the “distinct” antecedent, and b)
rearranging the quantifiers if the strengthened predicate is still unreachable from
the previous frame. We describe these enhancements in Appendix C. The results
presented in this paper were obtained without these enhancements.

3 Sort dependencies, if any, should be considered when increasing a sort size.
4 Since quorum is a dependent sort on node, it is increased together with the node sort.

12 A. Goel and K. Sakallah

Implementation— Our implementation of IC3PO is publicly available at https:
//github.com/aman-goel/ic3po. The implementation accepts protocol descrip-
tions in the Ivy language [63] and uses the Ivy compiler to extract a quantified,
logical formulation P in a customized VMT [22] format. We use a modified
version [5] of the pySMT [34] library to implement our prototype, and use the
Z3 [24] solver for all SMT queries. We use the SMT-LIB [14] theory of free sorts
and function symbols with datatypes and quantifiers (UFDT), which allows for-
mulating SMT queries for both, the finite and the unbounded domains. For a
safe protocol, the inductive proof is printed in the Ivy format as an independently
check-able proof certificate, which can be further validated with the Ivy verifier.

8 Evaluation

We evaluated IC3PO on a total of 29 distributed protocols including 4 problems
from [53], 13 from [46], and 12 from [2]. This evaluation set includes fairly com-
plex models of consensus algorithms as well as protocols such as two-phase com-
mit, chord ring, hybrid reliable broadcast, etc. Several studies [16,32,42,46,53,63]
have indicated the challenges involved in verifying these protocols.

All 29 protocols are safe based on manual verification. Even though finding
counterexample traces is equally important, we limit our evaluation to safe pro-
tocols where the property holds, since inferring inductive invariants is the main
bottleneck of existing techniques for verifying distributed protocols [30,31,63].

We compared IC3PO against the following 3 verifiers that implement state-
of-the-art IC3-style techniques for automatic verification of distributed protocols:
– I4 [53] performs finite-domain IC3 (without accounting for symmetry) using

the AVR model checker [39], followed by iteratively generalizing and checking
the inductive invariant produced by AVR using Ivy.

– UPDR is the implementation of the PDR∀/UPDR algorithm [44] for verify-
ing distributed protocols, from the mypyvy [4] framework.

– fol-ic3 [46] is a recent technique implemented in mypyvy that extends IC3
with the ability to infer inductive invariants with quantifier alternations.

All experiments were performed on an Intel (R) Xeon CPU (X5670). For each
run, we used a timeout of 1 hour and a memory limit of 32 GB. All tools were
executed in their respective default configurations. We used Z3 [24] version 4.8.9,
Yices 2 [26] version 2.6.2, and CVC4 [13] version 1.7.

8.1 Results

Table 2 summarizes the experimental results. Apart from the number of prob-
lems solved, we compared the tools on 3 metrics: run time in seconds, proof
size measured by the number of assertions in the inductive invariant for the un-
bounded protocol, and the total number of SMT queries made. Each tool uses
SMT queries differently (e.g., I4 uses QF UF for finite, UF for unbounded). Com-
paring the number of SMT queries still helps in understanding the run time
behavior.

https://github.com/aman-goel/ic3po
https://github.com/aman-goel/ic3po

On Symmetry and Quantification 13

Human IC3PO I4 UPDR fol-ic3
Protocol (#29) Inv info Time Inv SMT Time Inv SMT Time Inv SMT Time Inv SMT

tla-consensus 1 0 1 17 4 1 7 0 1 38 1 1 29
tla-tcommit 3 1 2 31 unknown 71 1 3 214 2 3 162
i4-lock-server 2 1 2 37 2 2 35 1 2 133 1 2 66
ex-quorum-leader-election 3 3 5 129 32 14 15429 11 3 1007 24 8 1078
pyv-toy-consensus-forall 4 3 4 105 unknown 5949 10 3 590 11 5 587
tla-simple 8 6 3 285 4 3 1319 timeout timeout
ex-lockserv-automaton 2 7 12 594 3 15 1731 21 9 3855 10 12 1181
tla-simpleregular 9 8 4 346 unknown 14787 timeout 57 9 314
pyv-sharded-kv 5 10 8 590 4 15 2101 6 7 784 22 10 522
pyv-lockserv 9 11 12 702 3 15 1606 14 9 3108 8 11 1044
tla-twophase 12 14 10 984 unknown 10505 67 14 12031 9 12 1635
i4-learning-switch 8 14 9 589 22 11 26345 timeout timeout
ex-simple-decentralized-lock 5 19 15 2219 14 22 5561 4 2 677 4 8 291
i4-two-phase-commit 11 27 11 2541 4 16 4045 16 9 2799 8 9 1083
pyv-consensus-wo-decide 5 50 9 1886 1144 42 41137 100 4 8563 168 26 5692
pyv-consensus-forall 7 99 10 3445 1006 44 156838 490 6 24947 2461 27 16182
pyv-learning-switch 8 127 13 3388 387 49 51021 278 11 3210 timeout
i4-chord-ring-maintenance 18 229 12 6418 timeout timeout timeout
pyv-sharded-kv-no-lost-keys 2 Æ 3 2 57 unknown 1232 unknown 73 3 2 51
ex-naive-consensus 4 Æ 6 4 239 unknown 15141 unknown 1325 73 18 414

pyv-client-server-ae 2 Æ , 2 2 49 unknown 1483 unknown 132 877 15 700

ex-simple-election 3 Æ , 7 4 268 unknown 2747 unknown 1147 32 10 222

pyv-toy-consensus-epr 4 Æ , 9 4 370 unknown 5944 unknown 473 70 14 217

ex-toy-consensus 3 Æ , 10 3 209 unknown 2797 unknown 348 21 8 124

pyv-client-server-db-ae 5 Æ , 17 6 868 unknown 81509 unknown 422 timeout

pyv-hybrid-reliable-broadcast 8 Æ , 587 4 1474 unknown 34764 unknown 713 1360 23 3387

pyv-firewall 2 Æ � 2 3 131 unknown 344 unknown 130 7 8 116

ex-majorityset-leader-election 5 Æ � 72 7 1552 error unknown 2350 timeout

pyv-consensus-epr 7 Æ , � 1300 9 29601 unknown 177189 unknown 7559 1468 30 3355
No. of problems solved (out of 29) 29 13 14 23
Uniquely solved 3 0 0 0
For 10 cases solved by all:

∑
Time 232 2221 667 2711∑
Inv 85 186 52 114∑
SMT 12160 228490 45911 27168

Table 2: Comparison of IC3PO against other state-of-the-art verifiers
Time: run time (seconds), Inv: # assertions in inductive proof, SMT: # SMT queries,
Column “info” provides information on the strengthening assertions (i.e., A) in
IC3PO’s inductive proof: Æ indicates A has quantifier alternations, , means A has
definitions, and � means A adds quantifier-alternation cycles

IC3PO solved all 29 problems, while 10 protocols were solved by all the
tools. The 5 rows at the bottom of Table 2 provide a summary of the comparison.
Overall, compared to the other tools IC3PO is faster, requires fewer SMT queries,
and produces shorter inductive proofs even for problems requiring inductive
invariants with quantifier alternations (marked with Æ in Table 2).

We did a more extensive comparison between the two finite-domain incre-
mental induction verifiers IC3PO and I4 (Appendix D), performed a statistical
analysis using multiple runs with different solver seeds to account for the effect
of randomness in SMT solving (Appendix E), compared the inductive proofs
produced by IC3PO against human-written invariants (Appendix F), and per-
formed a preliminary exploration of distributed protocols with totally-ordered
domains and ring topologies (Appendix G).

14 A. Goel and K. Sakallah

8.2 Discussion

Comparing IC3PO and I4 clearly reveals the benefits of symmetric incremental
induction. For example, I4 requires 7814 SMT queries to eliminate 443 CTIs
when solving ToyConsensus(3,3,3), compared to 192 SMT calls and 13 CTIs
for IC3PO. Even though both techniques perform finite incremental induction,
symmetry-aware clause boosting in IC3PO leads to a factorial reduction in the
number of SMT queries and yields compact inductive proofs.

Comparing IC3PO and UPDR reveals the benefits of finite-domain reasoning
methods compared to direct unbounded verification. Even in cases where existen-
tial quantifier inference isn’t necessary, symmetry-aware finite-domain reasoning
gives IC3PO an edge both in terms of run time and the number of SMT queries.

Comparing IC3PO and fol-ic3, the only two verifiers that can infer invari-
ants with a combination of universal and existential quantifiers, highlights the
advantage of IC3PO’s approach over the separators-based technique [46] used
in fol-ic3. The significant performance edge that IC3PO has over fol-ic3 is due
to the fact that a) reasoning in IC3PO is primarily in a (small) finite domain
compared to fol-ic3’s unbounded reasoning, and b) unlike fol-ic3 which enumer-
atively searches for specific quantifier patterns, IC3PO finds the required invari-
ants without search by automatically inferring their patterns from the symmetry
of the protocol.

Overall, the evaluation confirms the main hypothesis of this paper, that it
is possible to use the relationship between symmetry and quantification to scale
the verification of distributed protocols beyond the current state-of-the-art.

9 Related Work

Introduced by Lamport, TLA+ is a widely-used language for the specification
and verification of distributed protocols [15,59]. The accompanying TLC model
checker can perform automatic verification on a finite instance of a TLA+ spec-
ification, and can also be configured to employ symmetry to improve scalability.
However, TLC is primarily intended as a debugging tool for small finite instances
and not as a tool for inferring inductive invariants.

Several manual or semi-automatic verification techniques (e.g., using inter-
active theorem proving or compositional verification) have been proposed for
deriving system-level proofs [21, 36, 42, 43, 62, 69]. These techniques generally
require a deep understanding of the protocol being verified and significant man-
ual effort to guide proof development. The Ivy [63] system improves on these
techniques by graphically displaying CTIs and interactively asking the user to
provide strengthening assertions that can eliminate them.

Verification of parameterized systems using SMT solvers is further explored
in MCMT [67], Cubicle [23], and paraVerifier [52]. Abdulla et al. [7] proposed
view abstraction to compute the reachable set for finite instances using forward
reachability until cutoff is reached. Our technique builds on these works with the
capability to automatically infer the required quantified inductive invariant using
the latest advancements in model checking, by combining symmetry-aware clause

On Symmetry and Quantification 15

learning and quantifier inference in finite-domain incremental induction. The
use of derived/ghost variables has been recognized as important in [48, 58, 61].
IC3PO utilizes protocol structure, namely auxiliary definitions in the protocol
specification, to automatically infer inductive invariants with complex quantifier
alternations.

Several recent approaches (e.g., UPDR [45], QUIC3 [41], Phase-UPDR [32],
fol-ic3 [46]) extend IC3/PDR to automatically infer quantified inductive invari-
ants.

Unlike IC3PO, these techniques rely heavily on unbounded SMT solving.
Our work is closest in spirit to FORHULL-N [25] and I4 [53, 54]. Similar

to IC3PO, these techniques perform incremental induction over small finite in-
stances of a parameterized system and employ a generalization procedure that
transforms finite-domain proofs to quantified inductive invariants that hold for
all parameter values. Dooley and Somenzi proposed FORHULL-N to verify pa-
rameterized reactive systems by running bit-level IC3 and generalizing the learnt
clauses into candidate universally-quantified proofs through a process of proof
saturation and convex hull computation. These candidate proofs involve modular
linear arithmetic constraints as antecedents in a way such that they approximate
the protocol behavior beyond the current finite instance, and their correctness is
validated by checking them until the cutoff is reached. I4 uses an ad hoc general-
ization procedure to obtain universally-quantified proofs from the finite-domain
inductive invariants generated by the AVR model checker [39].

10 Conclusions and Future Work

IC3PO is, to our knowledge, the first verification system that uses the synergis-
tic relationship between symmetry and quantification to automatically infer the
quantified inductive invariants required to prove the safety of symmetric proto-
cols. Recognizing that symmetry and quantification are alternative ways of cap-
turing invariance, IC3PO extends the incremental induction algorithm to learn
clause orbits, and encodes these orbits with corresponding logically-equivalent
and compact quantified predicates. IC3PO employs a systematic procedure to
check for finite convergence, and outputs quantified inductive invariants, with
both universal and existential quantifiers, that hold for all protocol parameters.
Our evaluation demonstrates that IC3PO significantly is a significant improve-
ment over the current state-of-the-art.

Future work includes exploring methods to utilize the regularity in totally-
ordered domains during reachability analysis, investigating techniques to counter
undecidability in practical distributed systems verification, and exploring en-
hancements to further improve the scalability to complex distributed protocols
and their implementations. As a long-term goal, we aim towards automati-
cally inferring inductive invariants for complicated distributed protocols, such
as Paxos [50,51], by building further on this initial work.

16 A. Goel and K. Sakallah

Data Availability Statement and Acknowledgments

The software and data sets generated and analyzed during the current study,
including all experimental data, evaluation scripts, and IC3PO source code are
available at https://github.com/aman-goel/nfm2021exp. We thank the develop-
ers of pySMT [34], Z3 [24], and Ivy [63] for making their tools openly available.
We thank the authors of the I4 project [53] for their help in shaping some of the
ideas presented in this paper.

References

1. Client server protocol in ivy. http://microsoft.github.io/ivy/examples/client
server example.html

2. A collection of distributed protocol verification problems. https://github.com/
aman-goel/ivybench

3. The ivy language and verifier. http://microsoft.github.io/ivy
4. mypyvy (github). https://github.com/wilcoxjay/mypyvy
5. pySMT: A library for SMT formulae manipulation and solving. https://

github.com/aman-goel/pysmt
6. Toy consensus protocol. https://github.com/microsoft/ivy/blob/master/

examples/ivy/toy consensus.ivy
7. Abdulla, P., Haziza, F., Hoĺık, L.: Parameterized verification through view ab-

straction. International Journal on Software Tools for Technology Transfer 18(5),
495–516 (2016)

8. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

9. Arons, T., Pnueli, A., Ruah, S., Xu, Y., Zuck, L.: Parameterized verification with
automatically computed inductive assertions? In: Berry, G., Comon, H., Finkel,
A. (eds.) Computer Aided Verification. pp. 221–234. Springer Berlin Heidelberg,
Berlin, Heidelberg (2001)

10. Balaban, I., Fang, Y., Pnueli, A., Zuck, L.D.: Iiv: An invisible invariant verifier. In:
International Conference on Computer Aided Verification. pp. 408–412. Springer
(2005)

11. Balyo, T., Froleyks, N., Heule, M.J., Iser, M., Järvisalo, M., Suda, M.: Proceedings
of sat competition 2020: Solver and benchmark descriptions (2020)

12. Barner, S., Grumberg, O.: Combining symmetry reduction and under-
approximation for symbolic model checking. In: International Conference on Com-
puter Aided Verification. pp. 93–106. Springer (2002)

13. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proceed-
ings of the 23rd International Conference on Computer Aided Verification (CAV
’11). Lecture Notes in Computer Science, vol. 6806, pp. 171–177. Springer (Jul
2011), http://www.cs.stanford.edu/∼barrett/pubs/BCD+11.pdf, snowbird, Utah

14. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

15. Beers, R.: Pre-RTL formal verification: an intel experience. In: Proceedings of the
45th annual Design Automation Conference. pp. 806–811 (2008)

16. Berkovits, I., Lazic, M., Losa, G., Padon, O., Shoham, S.: Verification of
threshold-based distributed algorithms by decomposition to decidable logics. CoRR
abs/1905.07805 (2019), http://arxiv.org/abs/1905.07805

https://github.com/aman-goel/nfm2021exp
http://microsoft.github.io/ivy/examples/client_server_example.html
http://microsoft.github.io/ivy/examples/client_server_example.html
https://github.com/aman-goel/ivybench
https://github.com/aman-goel/ivybench
http://microsoft.github.io/ivy
https://github.com/wilcoxjay/mypyvy
https://github.com/aman-goel/pysmt
https://github.com/aman-goel/pysmt
https://github.com/microsoft/ivy/blob/master/examples/ivy/toy_consensus.ivy
https://github.com/microsoft/ivy/blob/master/examples/ivy/toy_consensus.ivy
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
www.SMT-LIB.org
http://arxiv.org/abs/1905.07805

On Symmetry and Quantification 17

17. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith,
H., Widder, J.: Decidability of parameterized verification. Synthe-
sis Lectures on Distributed Computing Theory 6(1), 1–170 (2015).
https://doi.org/10.2200/S00658ED1V01Y201508DCT013

18. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Proceedings of
the 12th international conference on Verification, model checking, and abstract
interpretation. pp. 70–87. VMCAI’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=1946284.1946291

19. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model
Checking: 1020 States and Beyond. In: Proceedings. Fifth Annual IEEE Symposium
on Logic in Computer Science. pp. 428–439 (1990)

20. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model
checking: 1020 States and Beyond. Information and Computation 98(2), 142–170
(1992)

21. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties with
the tla+ proof system. In: International Joint Conference on Automated Reasoning.
pp. 142–148. Springer (2010)

22. Cimatti, A., Roveri, M., Griggio, A., Irfan, A.: Verification Modulo Theories. http:
//www.vmt-lib.org (2011)

23. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: A parallel smt-
based model checker for parameterized systems. In: International Conference on
Computer Aided Verification. pp. 718–724. Springer (2012)

24. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems, pp. 337–340. Springer (2008)

25. Dooley, M., Somenzi, F.: Proving parameterized systems safe by generalizing
clausal proofs of small instances. In: International Conference on Computer Aided
Verification. pp. 292–309. Springer (2016)

26. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification.
pp. 737–744. Springer International Publishing, Cham (2014)

27. Een, N., Mishchenko, A., Brayton, R.: Efficient Implementation of Property Di-
rected Reachability. In: Formal Methods in Computer Aided Design (FMCAD’11).
pp. 125 – 134 (Oct 2011)

28. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: International conference on
theory and applications of satisfiability testing. pp. 502–518. Springer (2003)

29. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal methods in
system design 9(1-2), 105–131 (1996)

30. Feldman, Y.M.Y., Sagiv, M., Shoham, S., Wilcox, J.R.: Learning the boundary
of inductive invariants. CoRR abs/2008.09909 (2020), https://arxiv.org/abs/
2008.09909

31. Feldman, Y.M., Immerman, N., Sagiv, M., Shoham, S.: Complexity and informa-
tion in invariant inference. Proceedings of the ACM on Programming Languages
4(POPL), 1–29 (2019)

32. Feldman, Y.M., Wilcox, J.R., Shoham, S., Sagiv, M.: Inferring inductive invariants
from phase structures. In: International Conference on Computer Aided Verifica-
tion. pp. 405–425. Springer (2019)

33. Fraleigh, J.B.: A First Course in Abstract Algebra. Addison Wesley Longman,
Reading, Massachusetts, 6th edn. (2000)

34. Gario, M., Micheli, A.: Pysmt: a solver-agnostic library for fast prototyping of
smt-based algorithms. In: SMT workshop. vol. 2015 (2015)

35. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM (JACM) 39(3), 675–735 (1992)

https://doi.org/10.2200/S00658ED1V01Y201508DCT013
http://dl.acm.org/citation.cfm?id=1946284.1946291
http://www.vmt-lib.org
http://www.vmt-lib.org
https://arxiv.org/abs/2008.09909
https://arxiv.org/abs/2008.09909

18 A. Goel and K. Sakallah

36. v. Gleissenthall, K., Kıcı, R.G., Bakst, A., Stefan, D., Jhala, R.: Pretend synchrony:
synchronous verification of asynchronous distributed programs. Proceedings of the
ACM on Programming Languages 3(POPL), 1–30 (2019)

37. Godefroid, P.: Exploiting symmetry when model-checking software. In: Formal
Methods for Protocol Engineering and Distributed Systems, pp. 257–275. Springer
(1999)

38. Goel, A., Sakallah, K.: Model checking of verilog rtl using ic3 with syntax-guided
abstraction. In: NASA Formal Methods Symposium. pp. 166–185. Springer (2019)

39. Goel, A., Sakallah, K.: Avr: Abstractly verifying reachability. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 413–422. Springer (2020)

40. Goel, A., Sakallah, K.A.: Empirical Evaluation of IC3-Based Model Checking Tech-
niques on Verilog RTL Designs. In: Proc. of the Design, Automation and Test in
Europe Conference (DATE). pp. 618–621. Florence, Italy (March 2019)

41. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. In: International
Symposium on Automated Technology for Verification and Analysis. pp. 248–266.
Springer (2018)

42. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: Ironfleet: proving practical distributed systems correct. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles. pp. 1–17. ACM
(2015)

43. Hoenicke, J., Majumdar, R., Podelski, A.: Thread modularity at many levels: a
pearl in compositional verification. ACM SIGPLAN Notices 52(1), 473–485 (2017)

44. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. J. ACM 64(1)
(Mar 2017). https://doi.org/10.1145/3022187, https://doi.org/10.1145/3022187

45. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. Journal of the
ACM (JACM) 64(1), 1–33 (2017)

46. Koenig, J.R., Padon, O., Immerman, N., Aiken, A.: First-order quan-
tified separators. In: Proceedings of the 41st ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. p. 703–717.
PLDI 2020, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3385412.3386018, https://doi.org/10.1145/
3385412.3386018

47. Kurshan, R.P., McMillan, K.: A structural induction theorem for processes. In:
Proceedings of the eighth annual ACM Symposium on Principles of distributed
computing. pp. 239–247 (1989)

48. Lamport, L.: Proving the correctness of multiprocess programs. IEEE transactions
on software engineering (2), 125–143 (1977)

49. Lamport, L.: Specifying systems: the TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

50. Lamport, L.: The part-time parliament. In: Concurrency: the Works of Leslie Lam-
port, pp. 277–317 (2019)

51. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
52. Li, Y., Pang, J., Lv, Y., Fan, D., Cao, S., Duan, K.: Paraverifier: An automatic

framework for proving parameterized cache coherence protocols. In: International
Symposium on Automated Technology for Verification and Analysis. pp. 207–213.
Springer (2015)

53. Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: I4: In-
cremental inference of inductive invariants for verification of distributed protocols.

https://doi.org/10.1145/3022187
https://doi.org/10.1145/3022187
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1145/3385412.3386018

On Symmetry and Quantification 19

In: Proceedings of the 27th Symposium on Operating Systems Principles. ACM
(2019)

54. Ma, H., Goel, A., Jeannin, J.B., Kapritsos, M., Kasikci, B., Sakallah, K.A.: Towards
automatic inference of inductive invariants. In: Proceedings of the Workshop on
Hot Topics in Operating Systems. pp. 30–36. ACM (2019)

55. Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

56. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell,
MA, USA (1993)

57. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an Efficient SAT Solver. In: DAC. pp. 530–535 (2001)

58. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized sys-
tems. In: International Workshop on Verification, Model Checking, and Abstract
Interpretation. pp. 299–313. Springer (2007)

59. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Communications of the ACM
58(4), 66–73 (2015)

60. Norris IP, C., Dill, D.L.: Better verification through symmetry. Formal Methods
in System Design 9(1), 41–75 (Aug 1996). https://doi.org/10.1007/BF00625968,
https://doi.org/10.1007/BF00625968

61. Owicki, S., Gries, D.: Verifying properties of parallel programs: An axiomatic ap-
proach. Communications of the ACM 19(5), 279–285 (1976)

62. Owre, S., Rushby, J.M., Shankar, N.: Pvs: A prototype verification system. In:
International Conference on Automated Deduction. pp. 748–752. Springer (1992)

63. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety verifica-
tion by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 614–630. PLDI
’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2908080.2908118,
http://doi.acm.org/10.1145/2908080.2908118

64. Piskac, R., de Moura, L., Bjørner, N.: Deciding effectively propositional logic us-
ing dpll and substitution sets. Journal of Automated Reasoning 44(4), 401–424
(Apr 2010). https://doi.org/10.1007/s10817-009-9161-6, https://doi.org/10.1007/
s10817-009-9161-6

65. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible in-
variants. In: International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems. pp. 82–97. Springer (2001)

66. Pong, F., Dubois, M.: A new approach for the verification of cache coherence
protocols. IEEE Transactions on Parallel and Distributed Systems 6(8), 773–787
(1995)

67. Ranise, S., Ghilardi, S.: Backward reachability of array-based systems by smt solv-
ing: Termination and invariant synthesis. Logical Methods in Computer Science 6
(2010)

68. Sistla, A.P., Gyuris, V., Emerson, E.A.: Smc: a symmetry-based model checker
for verification of safety and liveness properties. ACM Transactions on Software
Engineering and Methodology (TOSEM) 9(2), 133–166 (2000)

69. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D.,
Anderson, T.: Verdi: A framework for implementing and formally verifying dis-
tributed systems. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 357–368. PLDI ’15,
ACM, New York, NY, USA (2015). https://doi.org/10.1145/2737924.2737958,
http://doi.acm.org/10.1145/2737924.2737958

https://doi.org/10.1007/BF00625968
https://doi.org/10.1007/BF00625968
https://doi.org/10.1145/2908080.2908118
http://doi.acm.org/10.1145/2908080.2908118
https://doi.org/10.1007/s10817-009-9161-6
https://doi.org/10.1007/s10817-009-9161-6
https://doi.org/10.1007/s10817-009-9161-6
https://doi.org/10.1145/2737924.2737958
http://doi.acm.org/10.1145/2737924.2737958

20 A. Goel and K. Sakallah

70. Zuck, L., Pnueli, A.: Model checking and abstraction to the aid of parameterized
systems (a survey). Computer Languages, Systems & Structures 30(3-4), 139–169
(2004)

On Symmetry and Quantification 21

Appendices

We include additional/supplementary material in the appendices, as follows:

Appendix A: IC3PO Pseudo Code (detailed)
– Presents the detailed pseudo code of IC3PO and SymIC3

Appendix B: Proof of Correctness
– Provides a correctness proof for symmetry-aware clause boosting during

incremental induction (Section 4), and a correctness proof for quantifier
inference (Section 5)

Appendix C: Simple Enhancements to the SymIC3 Algorithm
– Describes simple enhancements to SymIC3 learning as briefly mentioned

in Section 7

Appendix D: Effect of Symmetry Learning in Incremental Induction
– Evaluates the effect of symmetry-aware learning in finite-domain incre-

mental induction with a detailed comparison between IC3PO and I4

Appendix E: Statistical Analysis with Multiple SMT Solver Seeds
– Provides a statistical analysis of the experiments from Section 8 through

multiple runs for each tool with different solver seeds

Appendix F: Comparison against Human-Written Invariants
– Compares IC3PO’s automatically-generated quantified inductive invari-

ants against human-written invariant proofs on several metrics

Appendix G: Ordered Domains, Ring Topology, and Special Variables
– Describes an extension to IC3PO that allows handling totally-ordered

domains, as well as further details relating to ring topology and special
variables, along with a preliminary evaluation

Appendix H: Finite Instance Sizes used in the Experiments
– Lists down the instance sizes for IC3PO and I4 for each protocol in the

evaluation (Section 8)

22 A. Goel and K. Sakallah

Appendix A IC3PO Pseudo Code (detailed)

This section presents the detailed pseudo code of IC3PO and SymIC3 .

1 procedure IC3PO(P, σ0) - - P , [S ,R, Init ,T ,P], and σ0 is the initial base size

2 reuse ← {}
3 σ ← σ0
4 Inv ,Cex ← SymIC3 (P̂, reuse) - - run symmetric incremental induction on P̂ , P(σ)

5 if Cex is not empty then - - counterexample found

6 return Violated, Cex - - property is violated

7 else - - property proved for the finite protocol instance P̂
8 for each si ∈ S do

9 if not IsInductiveInvariantFinite(Inv , P(σ+[si])) then

10 reuse ← { Φ | Φ ∈ Inv and Init → Φ and Init ∧ T → Φ′ in P(σ+[si]) }
11 σ ← σ+[si] - - failed convergence checks for sort si, increase instance size

12 go to Line 4 - - re-run SymIC3 with the increased size

13 if not IsInductiveInvariantUnbounded(Inv , P) then

14 < never occurred > - - unbounded check failed

15 return Error, Increase σ0

16 return Safe, Inv - - property is proved safe with proof certificate Inv

Algorithm 1: IC3 for Proving Protocol Properties

Algorithm 1 presents the detailed pseudo code of IC3PO. Let σ : S → N be a
function that maps each sort si ∈ S to a sort size |si|. Given a protocol specifica-
tion P and an initial base size σ0, IC3PO invokes SymIC3 on the finite protocol
instance P̂ , P(σ), where σ is initialized to σ0 (lines 2-4). Upon termination,
SymIC3 either a) produces a quantified inductive invariant Inv that proves the
property for P̂, or b) a counterexample trace Cex that serves as a finite witness
to its violation in both P̂ and the unbounded protocol P (lines 4-6). If the prop-
erty holds for P̂, IC3PO performs finite convergence checks (Section 6) to check
whether or not the invariant extends beyond P̂ (lines 8-12), by checking whether
or not Inv is an inductive invariant for the larger finite instance P̂i , P(σ+[si])
for each si ∈ S , where σ+[si] , [σ except ! [si] = σ(si) + 1]. If all finite
checks pass, Inv is checked whether an inductive invariant in the unbounded
domain (lines 13-15) using the standard induction checks– a) Init → Inv , and b)
Inv ∧T → Inv ′ in the unbounded domain. If all these checks pass, IC3PO emits
the unbounded invariant Inv , that holds for the unbounded P and is a proof
certificate for the safety property (line 16). Otherwise, it re-starts SymIC3 on
a finite instance with an increased size σ+[si] (lines 11-12), while seeding in all
the strengthening assertions in Inv that are safe to learn in the first frame for
the new SymIC3 iteration (line 10).

Algorithm 2 describes the symmetric incremental induction algorithm. The
procedure first checks whether the property can be trivially violated (lines 19-
22), and if not, starts recursively deriving and blocking counterexamples-to-
induction (CTI) from the topmost frame (lines 24-35). Given a solver model m,

On Symmetry and Quantification 23

17 procedure SymIC3 (P̂, reuse) - - P̂ , [S ,R, ˆInit , T̂ , P̂]

- - reuse is a set of seed assertions that are safe to learn in the frame F1

18 F ← ∅, Cex ← ∅ - - P̂, F , Cex are global data structures

19 if SAT ? [ˆInit ∧ ¬P̂]: model m then - - initial states check

20 state ← StateAsCube(m) - - get a single state from model m, in cube form

21 Cex .extend(state) - - property is trivially violated

22 return ∅, Cex - - return the counterexample

23 F .extend(ˆInit) - - setup the initial frame

24 while > do

25 N ← F .size()− 1

26 if SAT ? [FN ∧ T̂ ∧ ¬P̂ ′]: model m then

- - check the topmost frame for counterexample-to-induction (CTI)

27 state ← StateAsCube(m) - - found a CTI

28 if SymRecBlockCube(state, N) then - - try recursively blocking the CTI

29 return ∅, Cex - - failed to block CTI, return the counterexample

30 else - - no CTI in the topmost frame

31 F .extend(P̂) - - add a new frame

32 if N = 0 then - - add reusable seed assertions to the frame F1

33 F [1].add(reuse)

34 if ForwardPropagate() then - - propagate inductive assertions forward

35 return Fconverged , ∅
- - frames converged, return Fconverged as the inductive invariant

36 procedure SymRecBlockCube(cti , i) - - cti can reach ¬P̂ in F .size()− i steps

37 Cex .extend(cti) - - add the CTI to the counterexample

38 if i = 0 then - - check if reached the initial states

39 return > - - reached initial states, property is violated

40 if SAT ? [Fi−1 ∧ T̂ ∧ cti ′]: model m then

- - check if cti is reachable from previous frame

41 state ← StateAsCube(m)

- - state is the new CTI reachable to ¬P̂ in (F .size()− i) + 1 steps

42 return SymRecBlockCube(state, i − 1) - - try blocking the new CTI

43 else - - cti is unreachable from the previous frame

44 uc′ ← MinimalUnsatCore(Fi−1 ∧ T̂ , cti ′) - - get MUS from UNSAT query

45 ϕ ← ¬uc - - negate uc to get the quantifier-free clause

46 Φ ← SymBoost∀∃(ϕ) - - symmetry-aware clause boosting with quantifier inference

47 Φ ← AntecedentReduction(Φ, i) - - antecedent reduction (optional), Appendix C.1

48 Φ ← EprReduction(Φ, i) - - EPR reduction (optional), Appendix C.2

49 Learn(Φ, Fi) - - learn Φ in frame i

50 return ⊥
51

Algorithm 2: Symmetric Incremental Induction

a state cube is derived as a single state represented as a cube, i.e., a conjunction
of literals assigning each state variable with a value based on its assignment in
m (lines 20, 27, 41). Lines 32-33 add the seed assertions in the given reuse set
to the first frame F1. SymIC3 differs from the standard IC3 algorithm majorly

24 A. Goel and K. Sakallah

52 procedure SymBoost∀∃(ϕ) - - ϕ is the quantifier-free clause

53 V∀ ← {}, V∃ ← {} - - a set of universally/existential quantified variables

54 body ← ϕ - - starting with ϕ, body is recursively generated

- - V∀, V∃ and body are global data structures

55 for each sort s that appears in clause ϕ do

56 π(ϕ, s) ← PartitionDistribution(ϕ, s)

- - create a partition on constants in s based on their occurrence in ϕ

57 if #(ϕ, s) < |s| then
58 (V∀,V∃, body) ← Infer∀(ϕ, π(ϕ, s)) - - infer ∀ for sort s, refer §5.1.A

59 else if |π(ϕ, s)| = 1 then - - partition π(ϕ, s) contains a single cell

60 (V∀,V∃, body) ← Infer∃(ϕ, π(ϕ, s)) - - infer ∃ for sort s, refer §5.1.B.I

61 else if all but a few scenario then - - partition π(ϕ, s) contains multiple cells

62 (V∀,V∃, body) ← Infer∀∃(ϕ, π(ϕ, s)) - - infer ∀∃ for sort s, refer §5.1.B.II

63 else

64 < never occurred >

- - infer ∀ by default (may not be compact, though correct for the current instance)

65 (V∀,V∃, body) ← Infer∀(ϕ, π(ϕ, s))

66 Φ ← ∀V∀. ∃V∃. body - - stitch quantifiers for different sorts as ∀... ∃... < body >

67 return Φ - - Φ is the quantified predicate to learn in a SymIC3 frame

Algorithm 3: Symmetry-aware Clause Boosting with Quantifier Inference

in symmetry-aware quantified learning (line 46) and simple enhancements (lines
47-48).

The core of the SymIC3 algorithm is the SymBoost∀∃ algorithm, presented
in Algorithm 3. SymBoost∀∃ is a simple and extendable procedure to perform
symmetry-aware clause boosting and quantifier inference, as explained in detail
in Sections 4 and 5. Starting from a given quantifier-free clause ϕ, the algorithm
constructs a symmetrically-boosted quantified predicate Φ (line 67) by iteratively
inferring quantifiers for each sort s (lines 55-65), and stitching them together
(line 66). The algorithm maintains a set of universal and existential variables
(line 53) and a body (line 54), that are iteratively modified based on the quantifier
inference for each sort. For each sort s, the algorithm first generates π(ϕ, s)
(line 56) based on how constants in sort s appear in the literals of ϕ (whether
identically or not). The next step is to infer quantifiers using #(ϕ, s) and π(ϕ, s)
(lines 57-65): a) infer universal quantifiers when #(ϕ, s) < |s|, b) otherwise if all
constants of s appear in ϕ identically, infer existential quantifier, c) otherwise if
all but a few scenario, infer ∀∃ based on the partitioning of constants in π(ϕ, s),
and d) otherwise, infer ∀ by default (this case has not occurred). Changing the
iteration order in line 55 doesn’t result in any difference, and is ensured during
the recursive building of the body . At the end, a single quantified predicate Φ
is derived by stitching together the quantified variables in V∀ and V∃ with the
body as ∀... ∃... < body > (line 66).

On Symmetry and Quantification 25

Appendix B Proof of Correctness

Appendix B.1 Correctness Proof for Symmetric Incremental
Induction

This section provides a correctness proof for symmetry-aware clause boosting
during incremental induction (Section 4).

Like the invariance of ˆInit , T̂ , and P̂ under any permutation γ ∈ G (re-
fer (2)), the logical orbit of a clause ϕ is also invariant under such permutations,
i.e., [

ϕL(G)
]γ
↔ ϕL(G)

Lemma 1. For any SymIC3 frame Fi , F γ
i ≡ Fi for any γ ∈ G.

Proof. Recall that ˆInit
γ
≡ ˆInit and P̂γ ≡ P̂ . The condition F γ

i ≡ Fi is trivially

true for i = 0 since F0 = ˆInit . When i > 0, the condition is true during frame
initialization since each frame is initialized to P̂ . When blocking a cube ¬ϕ in
Fi , incremental induction with symmetry boosting refines Fi with the complete
logical orbit ϕL(G) of ϕ. Since

[
ϕL(G)

]γ ≡ ϕL(G), the logical invariance of Fi

under γ, continues to be preserved in all backward reachability updates. ut

The following theorem establishes the correctness of symmetry-aware clause
boosting in incremental induction.

Theorem 1. If a quantifier-free cube ¬ϕ is unreachable from frame Fi−1, i.e.,
Fi−1 ∧ T̂ ∧¬[ϕ]′ is unsatisfiable, then Fi−1 ∧ T̂ ∧¬[ϕL(G)]′ is also unsatisfiable.

Proof. Let Q , Fi−1 ∧ T̂ ∧ ¬[ϕ]′ and assume that Q is unsatisfiable. Consider
any permutation γ ∈ G and the corresponding permuted formula Qγ , F γ

i−1 ∧
T̂ γ∧¬ [ϕγ]

′
. Since permuting the sort constants simply re-arranges the protocol’s

state variables in a formula without affecting its satisfiability, Q and Qγ must
be equisatisfiable, and hence Qγ is unsatisfiable.

Noting that T̂ and Fi−1 are invariant under γ ∈ G (from (2) and Lemma 1),
we obtain Qγ = Fi−1 ∧ T̂ ∧ ¬ [ϕγ]

′
proving that if cube ¬ϕ is unreachable from

frame Fi−1, then its image under any γ ∈ G is also unreachable. Therefore,
Fi−1 ∧ T̂ ∧ ¬[ϕL(G)]′ is unsatisfiable. ut

Appendix B.2 Correctness Proof for Quantifier Inference

This section provides a correctness proof sketch for quantifier inference (Sec-
tion 5).

Theorem 2. Given a finite instance P̂, let ϕ be such that 0 < #(ϕ, s) < |s|
for some sort s ∈ S. Let Φ(s) be the quantified predicate obtained by applying
SymIC3’s quantifier inference for s. Φ(s) is logically equivalent to ϕL(Sym(s)).

26 A. Goel and K. Sakallah

Proof. Let γ be any permutation in Sym(s), and let n , #(ϕ, s). Let ϕ̂ be
the clause obtained by replacing in ϕ each constant ci ∈ s by a corresponding
variable Vi of sort s.

Let A , [(V1 = c1) ∧ · · · ∧ (Vn = cn)]→ ϕ̂. By the transitivity of equality,

A ≡ ϕ. Let B ,
∧

γ ∈ Sym(s)

Aγ . Since A ≡ ϕ, therefore, B ≡ ϕL(Sym(s)), and can

be re-written as:

B =
∧

γ ∈ Sym(s)

(
[(V1 = c1) ∧ · · · ∧ (Vn = cn)]→ ϕ̂

)γ
(15)

=
∧

γ ∈ Sym(s)

[(V1 = c1) ∧ · · · ∧ (Vn = cn)]γ → ϕ̂ (16)

= ∀ V1 . . .Vn . (distinct V1 . . .Vn)→ ϕ̂ (17)

= Φ(s) (18)

(15) & (16) are equal since ϕ̂ does not contain any constant of sort s, and hence
[ϕ̂]

γ ≡ ϕ̂. (16) & (17) are equal since the antecedents in (16) cover all possible
assignments of variables (V1, . . . ,Vn) to n distinct constants of sort s. There

are total
(|s|
n

)
× n! possible assignments of the variables in (17) to n distinct

constants of sort s, one each corresponding to the
(|s|
n

)
× n! permutations in

Sym(s) that yield a logically-distinct antecedent in (16). (17) & (18) are equal
since given #(ϕ, s) < |s|.
Since B ≡ ϕL(Sym(s)), therefore Φ(s) ≡ ϕL(Sym(s)). ut

Theorem 3. Given a finite instance P̂, let ϕ be such that all constants of a
sort s ∈ S appear identically in the literals of ϕ. Let Φ(s) be the quantified pred-
icate obtained by applying SymIC3’s quantifier inference for s. Φ(s) is logically
equivalent to ϕL(Sym(s)).

Proof. Let γ be any permutation in Sym(s). Since given all constants in sort
s appear identically in the literals of ϕ, therefore π(ϕ, s) consists of a single
cell, and any permutation γ ∈ Sym(s) does not result in a new logically-distinct
clause, i.e., ϕγ ≡ ϕ. As a result, ϕL(Sym(s)) ≡ ϕ.
Without loss of generality, ϕ can be written as:

ϕ = ϕothers ∨
∨

ci ∈ s

ϕs(ci) (19)

where ϕothers is the disjunction of literals in ϕ that do not contain any constant
of sort s, and ϕs(ci) is the disjunction of literals in ϕ that contain a constant
ci ∈ s. Note that ϕothers can be ⊥.

Let ϕ̂s be the clause obtained by replacing in ϕs(ci) each constant ci ∈ s by
a variable V of sort s. Note that since all constants of sort s appear identically
in the literals of ϕ, therefore ϕ̂s is the same for each ci ∈ s. The clause ϕ can

On Symmetry and Quantification 27

therefore be re-written as:

ϕ = ϕothers ∨
∨

ci ∈ s

(V = ci)→ ϕ̂s (20)

= ϕothers ∨ ∃ V . ϕ̂s (21)

= Φ(s) (22)

(19) & (20) are equal due to the transitivity of equality. (20) & (21) are equal
since expanding the existential quantifier as a disjunction over all possible as-
signments of the variable V gives the expression in (20). (21) & (22) are equal
since #(ϕ, s) = |s| and |π(ϕ, s) = 1|, and hence SymIC3 infers Φ(s) as (21).
Since ϕ ≡ ϕL(Sym(s)), therefore Φ(s) ≡ ϕL(Sym(s)). ut

28 A. Goel and K. Sakallah

Appendix C Simple Enhancements to the
IC3PO Algorithm

This section describes simple enhancements to SymIC3 learning as mentioned
in Section 7.

Appendix C.1 Antecedent Reduction

Antecedent reduction strengthens a quantified predicate Φ by dropping the an-
tecedent (distinct . . .) and checking the unsatisfiability of the query [Fi−1 ∧
T̂ ∧ ¬Φ′]. For example, Φ2 from (6) can possibly be strengthened by dropping

(distinct X1 X2) from the antecedent to get Φnew , if the query [Fi−1∧T̂∧¬Φ′new]
is unsatisfiable, where

Φnew = ∀X1,X2 ∈ value. ¬decision(X1) ∨ decision(X2)

If instead, the query is satisfiable, the original predicate Φ2 should be learnt.

Appendix C.2 EPR Reduction

With the quantifier inference employed by SymBoost∀∃ (Algorithm 3), SymIC3 can
produce predicates with alternating quantifiers, which can result in quantifier-
alternation cycles. For example, our running example already includes a quan-
tifier alternation from quorum −→ node (Figure 1, line 3). Consider an example
predicate:

Φ = ∀Y ∈ node, ∃Z ∈ quorum. member(Y ,Z)

The quantified predicate Φ adds the arc node −→ quorum, generating a quantifier-
alternation cycle:

quorum −→ node −→ quorum

Even though there are no undecidability concerns while reasoning over the
finite instance P̂ (since the sort domains are finite), it is desirable to avoid
quantifier-alternation cycles and derive the invariant in the EPR fragment [64]
of FOL. Restricting to the EPR fragment allows robustly checking the inductive
invariant over the unbounded protocol P. Note that IC3PO performs invariant
construction as well as finite convergence checks both in a finite domain (as
detailed in Section 7).

We can additionally strengthen the learning to be within the EPR frag-
ment, by pushing out existential quantifiers and avoid generation of quantifier-
alternation cycle. For example, the EPR-reduced version Φepr of Φ is

Φepr = ∃Z ∈ quorum, ∀Y ∈ node. member(Y ,Z)

If we consider both Φ and its negation ¬Φ (as needed during induction checks),
EPR-reduction basically flips the quantifier-alternation arcs. For example, the
quantifier-alternation graph with the EPR-reduced predicate Φepr (instead of Φ)
is:

quorum −→ node←− quorum

On Symmetry and Quantification 29

¬Φepr adds the arc node←− quorum.
Logically, pushing out the existential quantifier results in a reduced/stricter

formula, with Φepr → Φ, but Φ 6→ Φepr (hence we call it EPR “reduction”).
Intuitively, this difference is analogous to the difference in the statements:

Likes∀∃ := Everyone likes someone Likes∃∀ := Someone is liked by everyone

where Likes∃∀ → Likes∀∃, but Likes∀∃ 6→ Likes∃∀.
We can add EPR reduction in the incremental induction procedure with

SymIC3 , that enables learning the EPR-reduced form Φepr instead of Φ only
when it is safe, i.e., only when ¬Φepr is still unreachable from the previous
incremental induction frame Fi−1. We do so by checking the unsatisfiability of
the finite domain (and hence decidable) query [Fi−1 ∧ T̂ ∧¬Φ′epr]. If the query
is unsatisfiable, we learn the strengthened EPR-reduced predicate Φepr . Else,
the original form, i.e., Φ, is learnt.

Note- Both simple enhancements presented in this section were left disabled in
IC3PO for all experiments in this paper to focus the evaluation on the main
paper contents. Initial investigation with these enhancements shows significant
benefits in performance and robustness, with hardly any overhead.

30 A. Goel and K. Sakallah

Appendix D Effect of Symmetry Learning in Incremental
Induction

This section evaluates the effect of symmetry-aware clause boosting in finite-
domain incremental induction with a detailed comparison between IC3PO and
I4.

Table 3 compares the effect of symmetry-aware learning in incremental in-
duction for the problems solved by both IC3PO and I4. The table compares
the number of SMT solver calls made and counterexamples-to-induction (CTI)
encountered during the incremental induction procedure, as well as the number
of assertions in the final (quantified) inductive invariant. SymIC3 ’s symmetry
boosting helps IC3PO to make orders of magnitude fewer SMT solver calls com-
pared to I4 and solve the problem after discovering many fewer CTIs.

Overall, Table 3 justifies the runtime speedups observed in Table 2, and
confirms the benefits of symmetry-aware learning.

IC3PO I4

Protocol (#13) #SMT #CTI #Inv #SMT #CTI #Inv

tla-consensus 13 0 1 7 0 1
i4-lock-server 31 1 2 35 2 2
ex-quorum-leader-election 117 7 5 15429 847 14
tla-simple 273 23 3 1319 41 3
ex-lockserv-automaton 568 51 12 1731 156 15
pyv-sharded-kv 572 25 8 2101 170 15
pyv-lockserv 676 58 12 1606 142 15
i4-learning-switch 567 32 9 26345 1310 11
ex-simple-decentralized-lock 2155 87 15 5561 490 22
i4-two-phase-commit 2131 68 11 4045 288 16
pyv-consensus-wo-decide 1866 141 9 41137 2451 42
pyv-consensus-forall 3423 247 10 156838 10316 44
pyv-learning-switch 3352 112 13 51021 3639 49∑

#SMT 15744 (19.5x better) 307175∑
#CTI 852 (23.3x better) 19852∑
#Inv 110 (2.3x better) 249

Table 3: Comparison of different incremental induction metrics between IC3PO and
I4 for the problems solved by both

#SMT: number of solver queries, #CTI: number of counterexamples-to-induction
#Inv: number of assertions in the final (quantified) inductive invariant

On Symmetry and Quantification 31

Appendix E Statistical Analysis with Multiple SMT
Solver Seeds

This section provides a statistical analysis of the experiments from Section 8
through multiple runs for each tool with different solver seeds.

Different tools perform best with different SMT solvers (e.g., I4 uses a com-
bination of Yices 2 [26] and Z3 [24], fol-ic3 uses Z3 and CVC4 [13], while UPDR
and IC3PO use Z3).5 For the results presented in Table 2, a fixed SMT solver
seed (i.e., seed = 1) was used for all tools. To get an idea of the effect of random-
ness in SMT solving, we performed 10 runs with different solver seeds for each
tool on all protocols, and compared the runtime mean and standard deviation.

IC3PO I4 UPDR fol-ic3

Protocol (#29) # Time σ # Time σ # Time σ # Time σ

tla-consensus 3 0 0 3 5 0 3 0 0 3 1 0
tla-tcommit 3 1 0 7 3 1 0 3 2 0
i4-lock-server 3 1 0 3 2 0 3 1 0 3 1 0
ex-quorum-leader-election 3 3 0 3 32 0 3 10 1 3 21 3
pyv-toy-consensus-forall 3 3 1 7 3 6 1 3 11 1
tla-simple 3 34 93 3 5 0 7 2 3 0
ex-lockserv-automaton 3 9 3 3 3 0 3 21 1 3 11 0
tla-simpleregular 3 8 4 7 7 3 79 22
pyv-sharded-kv 3 8 1 3 4 0 3 6 0 3 22 0
pyv-lockserv 3 11 4 3 3 0 3 15 2 3 8 0
tla-twophase 3 15 3 7 3 99 12 3 16 8
i4-learning-switch 3 20 8 3 22 0 7 7

ex-simple-decentralized-lock 3 20 0 3 14 0 3 4 0 3 4 0
i4-two-phase-commit 3 79 167 3 4 0 3 19 3 3 9 0
pyv-consensus-wo-decide 3 40 9 3 1226 37 3 107 16 3 82 45
pyv-consensus-forall 3 135 72 3 1042 36 3 398 86 3 2277 553
pyv-learning-switch 3 161 66 3 387 17 3 209 56 1 311 0
i4-chord-ring-maintenance 8 1289 1191 7 7 7

pyv-sharded-kv-no-lost-keys 3 2 0 7 7 3 5 1
ex-naive-consensus 3 5 1 7 7 3 80 17
pyv-client-server-ae 3 1 0 7 7 3 630 130
ex-simple-election 3 172 522 7 7 3 38 8
pyv-toy-consensus-epr 3 14 8 7 7 3 47 12
ex-toy-consensus 3 11 5 7 7 3 22 4
pyv-client-server-db-ae 3 32 30 7 7 7

pyv-hybrid-reliable-broadcast 6 157 211 7 7 6 2264 740
pyv-firewall 3 2 0 7 7 3 6 1
ex-majorityset-leader-election 3 63 47 7 7 7

pyv-consensus-epr 2 1968 943 7 7 5 768 404

No. of problems solved (out of 29) 29 13 14 25
Uniquely solved 3 0 0 0

For 11 cases solved by all:
∑

Time 470 2727 795 2752

Table 4: Statistical comparison of IC3PO against other state-of-the-art verifiers
#: number of runs where successfully solved (out of 10) (3 means 10, 7 means 0),

Time: runtime mean (in seconds), σ: runtime standard deviation (in seconds)

5 We used Yices 2 version 2.6.2, Z3 version 4.8.9 and CVC4 version 1.7.

32 A. Goel and K. Sakallah

Appendix F Comparison against Human-Written
Invariants

Figure 2 compares IC3PO’s automatically-generated inductive invariants against
the human-written proofs on several metrics. Our evaluation shows IC3PO pro-
duces compact proofs of sizes comparable to the manually-written inductive
invariants, even shorter than the human proofs on several occasions. As a side
benefit, IC3PO’s inductive invariants are pretty-printed in the Ivy format [3],
and thus, can also be independently checked/validated through Ivy.

0 5 10 15 20
IC3PO

0

5

10

15

20

H
um

an

assertions

0 10 20 30 40
IC3PO

0

10

20

30

40

H
um

an

literals

0 10 20 30 40
IC3PO

0

10

20

30

40

H
um

an

forall

0 2 4 6 8
IC3PO

0

2

4

6

8

H
um

an

exists

Fig. 2: Comparison of IC3PO’s inductive invariant against human-written proof
IC3PO is on x-axis, human-written on y-axis

On Symmetry and Quantification 33

Appendix G Ordered Domains, Ring Topology and
Special Variables

This section describes an extension to IC3PO that allows handling totally-
ordered domains, as well as further details relating to ring topology and special
variables (along with a preliminary evaluation).

Human IC3PO I4 UPDR fol-ic3

Protocol (#13) Inv Time Inv SMT Time Inv SMT Time Inv SMT Time Inv SMT

ex-distributed-lock-abstract < 12 15 11 946 timeout timeout timeout
ex-decentralized-lock < 4 25 5 654 288 32 104616 timeout timeout
ex-distributed-lock-maxheld < 6 58 10 1866 422 73 100749 timeout 3210 48 4557
pyv-ticket < 14 65 8 1896 error 228 13 15936 98 26 3177
i4-database-chain-replication < 9 98 6 1382 20 10 6111 timeout 1222 16 5455
ex-decentralized-lock-abstract < 6 126 18 5069 error timeout timeout
i4-distributed-lock < 7 155 10 3472 3280 102 410364 timeout 1191 64 4875
ex-ring-not-dead � < 2 10 2 161 unknown 3327 unknown 28 6 3 100
ex-ring � < 3 11 3 269 6 9 678 9 2 662 7 3 248
ex-ring-id-not-dead-limited � < 2 24 2 250 unknown 29083 unknown 31 7 3 81
pyv-ring-id-not-dead � < 2 37 2 275 unknown 182325 unknown 31 8 3 86
pyv-ring-id � < 4 73 4 869 420 11 225789 99 3 4107 28 9 594
i4-leader-election-in-ring � < 6 323 5 2907 749 25 359776 114 3 4229 59 17 1378

No. of problems solved (out of 13) 13 7 4 10
Uniquely solved 2 0 0 0

For 3 cases solved by all:
∑

Time 407 1176 224 95∑
Inv 12 45 8 29∑
SMT 4045 586243 8998 2220

Table 5: Comparison of IC3PO against other state-of-the-art verifiers
Time: runtime in seconds, Inv: # assertions in the inductive invariant,

SMT: # SMT solver queries made, � indicates protocol has a ring topology, <
indicates protocol has a totally-ordered domain

Ordered domains like epoch, time, etc. are not symmetric, which makes such
domains unsuitable to directly apply a symmetry argument. Specifically, restrict-
ing an unbounded ordered domain to a finite size results in introducing boundary
cases with a “max” element, complicating finite-domain behavior.

Even in the presence of ordered domains, symmetry-aware learning can still
be applied to all the un-ordered domains while leaving the ordered domains
as unbounded. As an initial exploration, we devised a hybrid procedure in
IC3PO where ordered domains are handled in an unbounded fashion, in the
same manner as in UPDR, while all other domains are handled in the SymIC3 -
style symmetry-aware and finite manner. We use UPDR’s diagram-based abstrac-
tion to infer quantifiers for the ordered domain, while using SymBoost∀∃ (Algo-
rithm 3) for the un-ordered domains.6

For the protocols that involve a ring topology, a ring domain, generally
composed of identical components arranged in a ring topology, retains domain
symmetry since the position of each individual component in the ring is left
uninitialized and can be arbitrarily permuted. Hence, SymIC3 can be directly

6 We refer the reader to [44] for a complete description of incremental induction with
diagram-based abstraction.

34 A. Goel and K. Sakallah

applied. The same is true for protocols that have special components, like a spe-
cial start node that initially holds the lock in a distributed lock. Non-Boolean
functions and variables are modeled in relational form with equality predicates.
For example, permuting the predicate (start node = n1) with the permutation
(n1 n2) gives the permuted predicate (start node = n2). IC3PO exploits the
symmetry in the sort domains, not symmetries over the protocol symbols (i.e.,
relations, functions and variables), and hence is unaffected by the presence of
special protocol symbols.

Table 5 summarizes the experimental results for 13 protocols with totally-
ordered domains, collected again from [2, 46, 53]. IC3PO solves all 13 problems
and shows the advantages of symmetry-aware learning even when applied only
to a subset of protocol’s domains. We believe additional exploration is needed
for these cases, where the non-symmetric regularity in totally-ordered domains
can be further utilized to improve learning during incremental induction.

On Symmetry and Quantification 35

Appendix H Finite Instance Sizes used in Experiments

Table 6 lists down the initial base instance sizes used for IC3PO runs in the
evaluation (Section 8) for each protocol. The table also includes the final cutoff
instance sizes reached, where the corresponding Inv generalizes/saturates to be
an inductive proof for any size. Note again that IC3PO updates the instance
sizes automatically, as described in Section 6.

Protocol Finite instance sizes used for IC3PO

tla-consensus value = 2
tla-tcommit resource-manager = 2
i4-lock-server client = 2, server = 1
ex-quorum-leader-election E node = 2 7→ 3, nset = 2
pyv-toy-consensus-forall E node = 2 7→ 3, quorum = 1 7→ 3, value = 2
tla-simple � E node = 2, pcstate = 3, value = 2 7→ 3
ex-lockserv-automaton node = 2
tla-simpleregular � E node = 2, pcstate = 4, value = 2 7→ 3
pyv-sharded-kv key = 2, node = 2, value = 2
pyv-lockserv node = 2
tla-twophase resource-manager = 2
i4-learning-switch node = 2 7→ 3, packet = 1
ex-simple-decentralized-lock node = 2 7→ 4
i4-two-phase-commit node = 4
pyv-consensus-wo-decide E node = 2 7→ 3, quorum = 1 7→ 3
pyv-consensus-forall E node = 2 7→ 3, quorum = 1 7→ 3, value = 2
pyv-learning-switch E node = 2 7→ 4
i4-chord-ring-maintenance � E node = 3 7→ 5
pyv-sharded-kv-no-lost-keys E key = 2, node = 2, value = 2
ex-naive-consensus E node = 3, quorum = 3, value = 3
pyv-client-server-ae E node = 2, request = 2 7→ 3, response = 2
ex-simple-election E acceptor = 2 7→ 3, proposer = 2, quorum = 1 7→ 3
pyv-toy-consensus-epr E node = 2 7→ 3, quorum = 1 7→ 3, value = 2
ex-toy-consensus E node = 2 7→ 3, quorum = 1 7→ 3, value = 2
pyv-client-server-db-ae E db-request-id = 2 7→ 3, node = 2, request = 2 7→ 3, response = 2
pyv-hybrid-reliable-broadcast E node = 2 7→ 3, quorum-a = 2 7→ 3, quorum-b = 2
pyv-firewall E node = 2 7→ 3
ex-majorityset-leader-election E node = 2 7→ 3, nodeset = 2 7→ 3
pyv-consensus-epr E node = 2 7→ 3, quorum = 1 7→ 3, value = 2

ex-distributed-lock-abstract < epoch =∞, node = 2
ex-decentralized-lock < node = 2, time =∞
ex-distributed-lock-maxheld < epoch =∞, node = 2
pyv-ticket < thread = 2 7→ 3, ticket =∞
i4-database-chain-replication E < key = 1, node = 2, operation = 2 7→ 3, transaction =∞
ex-decentralized-lock-abstract < node = 2 7→ 4, time =∞
i4-distributed-lock < epoch =∞, node = 2
ex-ring-not-dead � E < node = 3
ex-ring � < node = 3
ex-ring-id-not-dead-limited � E < id = 3, node = 3
pyv-ring-id-not-dead � E < id =∞, node = 3
pyv-ring-id � < id =∞, node = 3
i4-leader-election-in-ring � < id =∞, node = 3

Table 6: Finite instance sizes used for IC3PO
s = x denotes sort s has both initial base size and final cutoff size x
s = x 7→ y denotes sort s has initial size x and final cutoff size y (incrementally
increased by IC3PO automatically)
s =∞ denote the totally-ordered sort s is left unbounded
� indicates protocol has a ring topology, < indicates protocol has an ordered domain
E indicates the protocol description has ∃

36 A. Goel and K. Sakallah

Table 7 lists down the instance sizes used for I4 runs in the evaluation (Sec-
tion 8) for each protocol.

Protocol Finite instance sizes used for I4

tla-consensus value = 2
tla-tcommit resource-manager = 2
i4-lock-server client = 2, server = 1
ex-quorum-leader-election E node = 3, nset = 3
pyv-toy-consensus-forall E node = 3, quorum = 3, value = 2
tla-simple � E node = 3, pcstate = 3, value = 3
ex-lockserv-automaton node = 2
tla-simpleregular � E node = 3, pcstate = 4, value = 3
pyv-sharded-kv key = 2, node = 2, value = 2
pyv-lockserv node = 2
tla-twophase resource-manager = 3
i4-learning-switch node = 3, packet = 2
ex-simple-decentralized-lock node = 4
i4-two-phase-commit node = 5
pyv-consensus-wo-decide E node = 3, quorum = 3
pyv-consensus-forall E node = 3, quorum = 3, value = 2
pyv-learning-switch E node = 4
i4-chord-ring-maintenance � E node = 4
pyv-sharded-kv-no-lost-keys E key = 3, node = 3, value = 3
ex-naive-consensus E node = 3, quorum = 3, value = 3
pyv-client-server-ae E node = 3, request = 3, response = 3
ex-simple-election E acceptor = 3, proposer = 2, quorum = 3
pyv-toy-consensus-epr E node = 3, quorum = 3, value = 2
ex-toy-consensus E node = 3, quorum = 3, value = 2
pyv-client-server-db-ae E db-request-id = 3, node = 3, request = 3, response = 3
pyv-hybrid-reliable-broadcast E node = 3, quorum-a = 3, quorum-b = 3
pyv-firewall E node = 3
ex-majorityset-leader-election E node = 3, nodeset = 3
pyv-consensus-epr E node = 3, quorum = 3, value = 2

ex-distributed-lock-abstract < epoch = 4, node = 2
ex-decentralized-lock < node = 2, time = 4
ex-distributed-lock-maxheld < epoch = 4, node = 2
pyv-ticket < thread = 3, ticket = 5
i4-database-chain-replication E < key = 1, node = 2, operation = 3, transaction = 3
ex-decentralized-lock-abstract < node = 4, time = 4
i4-distributed-lock < epoch = 4, node = 2
ex-ring-not-dead � E < node = 3
ex-ring � < node = 3
ex-ring-id-not-dead-limited � E < id = 3, node = 3
pyv-ring-id-not-dead � E < id = 4, node = 3
pyv-ring-id � < id = 4, node = 3
i4-leader-election-in-ring � < id = 4, node = 3

Table 7: Finite instance sizes used for I4
� indicates protocol has a ring topology, < indicates protocol has an ordered domain

E indicates the protocol description has ∃

	On Symmetry and Quantification: A New Approach to Verify Distributed Protocols

