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Abstract 
Scientific imaging (e.g., satellites looking at ocean color, medical imaging) can produce vast 
quantities of data that need to be processed on time frames similar to data collection. While 
satellite imaging has many advantages, the satellite’s sensors cannot penetrate the ocean’s 
surface more than a few meters. To that effect, underwater imaging systems have been 
developed in the last 40+ years that can image organisms in-situ in hundreds of meters of 
water. Underwater imaging systems include those designed for benthic studies (e.g., corals) as 
well as instruments that document the pelagic realm (e.g., plankton and fish). As an example, 
we use the In-situ Ichthyoplankton Imaging System (ISIIS) which collects upwards of 14 million 
images per hour of deployment; in highly productive waters this number can increase up to ten-
fold. A typical cruise consisting of 70 hours of ISIIS deployment can yield upwards of 1 billion 
images of plankton and particles. This big data problem can only be solved by using a high 
throughput processing pipeline that can be scaled down or up depending on the available 
resources. Thus, we designed a modular Python-based pipeline that can be deployed on local 
high-performance computing (HPC) infrastructure such as a University’s HPC, as well as on 
cloud providers. The code provided with this documentation was optimized for Oregon State 
University’s Center for Genomic Research and Biocomputing (CGRB) as well as for the National 
Science Foundation’s Extreme Science and Engineering Discovery Environment (XSEDE), but 
can easily be adapted to the user’s needs. This code and documentation enable 1) the training 
of a sparse Convolutional Neural Network (sCNN), and 2) applying the sCNN in a processing 
pipeline to classify all remaining images in an automated fashion. Standard size measurements 
of the plankton and particles on the segmented images are also taken as part of the pipeline. 
The pipeline is optimized for speed and can classify upwards of 30 million images per hour on 
XSEDE Comet GPU compute nodes. End-to-end processing of 1 hour worth of raw imagery 
data (ca. 14 million images) using XSEDE CPU and GPU nodes takes ca. 2.4 hours, including 
data upload, segmentation, classification, and obtaining standard length measurements. This 
enables us to process a typical cruise of ten 7h transects in about a week. A training library of 
images as well as a video test dataset are supplied with the code. While the pipeline was built 
for ISIIS images, imagery from other underwater systems and other areas of science can be 
used with the pipeline.  
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Complete file list 

General files 
plankline.py: This is the main pipeline script that deals with managing the starting of all other 
scripts in the pipeline. 
classList.sh: Takes the symbolic link for the training dataset and creates the classList file that is 
referenced by isiis_scnn during inference and training. This script’s location is the 
SCNN/Data/plankton folder. 
xsede_train_scnn.sh: Sets up and streamlines training on XSEDE Comet. 
cgrb_train_scnn.sh: Sets up and streamlines training on the CGRB HPC. 
pull_images.py: This tool can be used to extract images from certain classes based on the 
classification output files (.csv). This can be helpful when building a new training dataset or for 
validation. 

Example files 
classList: ClassList file created by classList.sh 
cgrb.ini: Configuration file for CGRB 
xsede.ini: Configuration file for XSEDE Comet 
Example training library: Can be found in example_training_library folder 
Example video files for testing: Can be found in example_videos folder 

Segmentation files 
isiis_seg_ff: This is the segmentation x86 binary file. 
segmentation.py: Facilitates the segmentation part of the pipeline. This script uses Python’s 
multiprocessing module to create several instances of the seg_ff script and the measurement 
script. It also moves all of the newly created files. 
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measure_parallel.py: Provides functionality for measuring the specimen on the image by using 
skiimage functions. Is used as part of seg_and_compress.py but can also be used as 
standalone for measuring segments. 
xsede_segmentation.sh: This script allocates the CPU resources on XSEDE, sets up the 
environment for segmentation, and calls the segmentation.py script with the appropriate path. 
cgrb_segmentation.sh: This script sets up the environment for segmentation on a local HPC 
(i.e., the CGRB) and calls the segmentation.py script. 
local_segmentation.sh: Sets up the segmentation script to be run locally, i.e, on a personal 
workstation where no submission is needed.  

Classification files 
isiis_scnn: This is the compiled binary that does the classification. We have compiled versions 
for ppc64le and x86 that are available in their corresponding directories in the repository. 
classification.py: This is analogous to segmentation.py but for running multiple instances of 
isiis_scnn on different GPUs. This uses a multiprocessing module and a queue to manage the 
availability of GPU resources. 
split_xsede_classification.sh: This rsyncs the files from the CGRB to XSEDE Comet then splits 
the files in equal portions and runs xsede_classification.sh on each of the groups of tared 
images. This is a necessary step for us due to 48 hour time limitations on XSEDE Comet. 
xsede_classification.sh: This script is run by sbatch to check out the GPU resources that are 
used for the rest of the pipeline on XSEDE Comet. Transfers the tared images to the machine 
scratch space, sets up the environment variables, and then runs classification.py. 
cgrb_classification.sh: This script sets up the environment on the CGRB, transfers the tared 
images to the machine scratch space, and then runs classification.py. 
local_classification.sh: Sets up the environment to run isiis_scnn binary on a local workstation. 

Introduction 
The ISIIS high-resolution imaging system was designed to image large volumes of water (175 
L/s) to accurately quantify rare meso-zooplankton such as larval fishes and gelatinous 
zooplankton in situ (Cowen & Guigand 2008), but it also images smaller plankters including 
protists and common metazooplankton such as copepods (Fig. 1). High-frequency line-scan 
cameras enable ISIIS to be towed at 2.5 knots, building a continuous high resolution image as 
ISIIS is towed. Environmental sensors (e.g., oxygen, temperature) record the conditions the 
organisms are living in. ISIIS is capable of simultaneous, quantitative sampling of the very fine-
scale distributions and sizes of individual plankters ranging from larval fishes, gelatinous and 
other mesozooplankton, down to their associated prey communities, while doing so over long 
distances (>100km). 
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Training the sCNN 
A core part of the pipeline is the sparse Convolutional Neural Network (sCNN) as detailed in 
Luo et al. (2018). Training this sCNN is a crucial step and requires a training library of images to 
be in place (Fig. 1). The goal is to train the sCNN until the error rate associated with the epochs 
reaches a plateau. The weights of that epoch can then be used in the pipeline to identify all 
images in an automated fashion. The training library should be located in a directory where 
subfolders are named according to the taxa or classes found in the overall imagery. An equally 
distributed training library usually works best (i.e., approximately the same sample size of 
training images per class). The reality in oceanography is that sample sizes are often heavily 
skewed due to some taxa being very abundant but many being quite rare (e.g., larval fish). 
When rare taxa are of high interest, data augmentation can help to increase the sample size of 
rare classes (Luo et al. 2018). 
 

 

Figure 1. Plankton imaged 
with the In-situ 
Ichthyoplankton Imaging 
System (ISIIS) in the Straits 
of Florida. ISIIS images show 
representative phyto-, zoo-, 
and ichthyoplankton taxa 
making up the training library 
for the study region 
(reproduced from Schmid et 
al. 2020). 
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isiis_scnn parameters 
start: starting epoch number - The starting epoch for training 
stop: stopping epoch number - The final epoch to train to 
bs: batch size - Indicates how many images are looked at before weights are updated 
cD: cuda device - Specifies the cuda device to run the isiis_scnn on 
unl: image directory - Directory containing the images to be segmented 
ilr: Initial learning rate – Changes how quickly or slowly the neural network adjusts to training 
data 
lrd: Learning rate decay - Adjusts how the learning rate changes between epochs. 
vsp: Validation percentage - Percentage of the training library data that you want to use as 
validation dataset.  

Argument notes 
If the start epoch equals stop epoch no training will occur; this is used exclusively for 
classification in the pipeline. The setting can be changed in classification.py. 
 
vsp reserves a portion of the training set for testing purposes. Initially a 20% validation set can 
be used for training. After fine-tuning, the CNN can be re-trained without the validation data (i.e., 
validation_percent = 0) to leverage the maximum available data. 
 
During each epoch a new learning rate is calculated, using the formula: learning_rate = 
initial_learning_rate * exp(-learning_rate_decay * epoch). 

Compilation 
Dynamically compiled versions of isiis_scnn for ppc64le and x86 architectures are supplied. To 
run the isiis_scnn binaries all the necessary libraries have to be added to the 
LD_LIBRARY_PATH environment variable. This project makes use of autotools to simplify the 
process of setting up the necessary dependencies, refer to the pipeline setup guide for details. 

General training setup 
An interactive session on a GPU machine has to be initiated. At the local HPC infrastructure of 
Oregon State University, the Center for Genomic Research and Biocomputing (CGRB), this can 
be done using SGE. To start, a qrsh link to a GPU machine such as ibm-power3 has to be 
established. Please reference this guide for more information on SGE.  
 
$ qrsh -q ibm-cgrb@ibm-power3 
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The directory for the isiis_scnn instance has to be created. This directory is going to be referred 
to as SCNN and needs to be moved to the fast SSD storage (i.e., scratch space) on the 
machine in use, on the CGRB HPC this is mounted at /data. 
 
$ mv SCNN/data/ 
 
There are two main directories, the weights directory and the data/plankton directory. The 
weights directory contains all of the weight files resulting from each epoch of training. Old 
weights should be removed before starting to train. 
 
$ rm -f SCNN/weights/* 
 
The data/plankton directory contains information about the training dataset. This is done through 
the train symbolic link (it is advised to remove the old symbolic links beforehand). Use the 
supplied example training library to test this step and training. While a test symbolic link has to 
be set up too, the sCNN pulls images for out of bag testing from the training folder, thus the test 
folder can remain empty. 
 
$ ln –s /data/<training_dataset_dir>/  train 
 
The train link has to point to a directory that has subdirectories named for the classes of images 
in the training library. For example, the <train_dataset_dir>/crustacean_zoea_crab/ should 
contain all of the crustacean zoea crab images. It is important that the training dataset is also in 
the SSD storage of the machine used for training.  
 
Next, the classlist file has to be created. This is done by running the classList.sh script in the 
data/plankton directory. 
 
$ bash classList.sh 
 
It should be verified that the classlist contains the correct number of classes (and not a number 
from previous training). Both of the following commands should return the same number. If they 
do not, this indicates that directories under “train” have spaces in them; no spaces are allowed.  
 
$ wc -l classList  
$ ls train/ | wc -l 
 
This process is done in an automated fashion through the cgrb_train_scnn.sh and 
xsede_train_scnn.sh scripts that are detailed below. 
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Training locally 
Before starting the training process, it should be verified that no other processes use that GPU. 
The nvidia-smi command can be used to check running processes. 
 
The GPU ID of the idle GPU that is to be used should be noted down, as it has to be given as 
the cuda device parameter in the training command. 
 
To start training, the start epoch has to be set to 0 and the stop epoch has to be set to any 
positive integer. Choose a lower number for the stop epoch, such as 10 or 20, when running a 
first test. The amount of epochs needed to get to the error percentage plateau depends among 
other things on the number of classes in the training library. When training with over 150 training 
classes a stop epoch of 350-400 can be needed; the error rate should be monitored in order to 
detect the error rate plateau. If start epoch = stop epoch then no training is initiated and only 
classification will occur. 
 
$ ./isiis_scnn -start 0 -stop <stop_epoch> -bs <batch_size> -cD <cuda_device>   > 
scnn_train.log 
 
As training is underway, progress and error percentage can be viewed in the log file. 
 
$ cat -tail scnn_train.log 
 
A script has been created to do this in a more automated fashion at a local HPC. The script is 
called cgrb_train_scnn.sh and can be found in the scripts directory. At the CGRB HPC it can be 
run on the ibm-power3 machine using SGE by running the following command: 
 
$ SGE_Batch -q ibm-cgrb@ibm-power3 -c ‘bash cgrb_train_scnn.sh -c <SCNN_dir> -t 
<train_dir> -e <stop_epoch> -b <batch_size> -d <gpu_device>’ -r <log_dir> 
 
NOTE: Since this machine uses the ppc64le architecture, the SCNN directory also needs to 
contain the isiis_scnn binary for ppc64le. 
 
The script can be modified for a different infrastructure by changing the scratch variable and 
setting up the proper LD_LIBRARY_PATH for the isiis_scnn binary, as detailed in the isiis_scnn 
compilation section. 

Training on the XSEDE HPC infrastructure 
Examples given here are for training isiis_scnn on XSEDE (xsede.org) Comet GPU nodes. Note 
that XSEDE computational resources are obtained through grant proposals. 
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Job submission on XSEDE is facilitated by the script xsede_train_scnn.sh. The script allocates 
a full 4 GPU node to the training task. Even though training the scnn only uses a single GPU, it 
is necessary to allocate the whole node, since the user needs exclusive access to the SSD 
storage of the machine. 
 
The sbatch command executes a bash script that contains special configurations marked by 
lines starting with #SBATCH. These lines are configurations for how the job should be started 
on XSEDE, i.e., the resources to be requested, output file, and the wall time for the process. 
More information and examples of these configurations can be found here. This is essentially 
the same as the SGE mechanism that is used in other places such as the CGRB, it allows users 
to queue jobs so that they can be run once the resources become available. Here is an example 
submission: 
 
$ sbatch xsede_train_scnn.sh -c <scnn_dir> -t <train_dir> -e <stop_epoch> -b <batch_size> -d 
<gpu_device> 
 
NOTE: Similar to the local HPC, this script requires that the SCNN directory contains a 
isiis_scnn binary that works on the infrastructure. In the case of XSEDE this is the x86 binary 
and for CGRB this is the ppc64le binary. 
 
In order to check the error rate when training on XSEDE, the log file that was specified in the 
sbatch options at the top of xsede_train_scnn.sh can be accessed. 
 
The script can be modified for a different infrastructure by changing the scratch variable and 
setting up the proper LD_LIBRARY_PATH for the scnn binary; see details in the compilation 
section. 

Interpreting the training log files 
The most important measurements to interpret the log files are the ‘Mistake’ variable, indicating 
the percentage of wrong classifications per epoch, as well as the negative log likelihood variable 
associated with the epoch (Table 1). 
 
Table 1. Variable names and explanations used in the sCNN log files. 
Variable Explanation 
Mistakes Percentage of wrongly classified images 
NLL Negative log likelihood (smaller is better) 
MegaMultiplyAdds/sample Number of unit operations per pixel, in 

millions 
Time Seconds elapsed for the current step 
GigaMultiplyAdds/s Number of multiply add operations per 

second, in billions 
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Rate Number of images processed per second 
 

Processing pipeline 
The image processing pipeline uses the weights of an epoch that were generated during sCNN 
training to classify previously unclassified images. It does this by assigning each image n 
probabilities, where n is the number of classes in the training library. Each probability reflects 
the likelihood of an image pertaining to a certain class (probabilities for an image sum up to 1). 
In order to get there, the pipeline first destacks the AVIs generated during the deployments of 
ISIIS at sea. Single TIFFs are then flatfielded (i.e., removal of line scan camera artifacts, 
background), and a k-harmonic means clustering algorithm detects single regions of interest 
(ROI; i.e., a single plankton or particle specimen), which are then saved as jpegs. Jpegs are 
then classified by the sCNN (Luo et al. 2018). The pipeline also calculates area and perimeter of 
the objects in the ROIs, as well as major-, and minor axes lengths, based on the Python scikit-
image package. Measurements are in pixels and need to be multiplied by the pixel size of the 
user’s instrument. These measurements can be used for further analyses such as calculating 
the equivalent spherical diameter which is often used for carbon conversions. 

Overview 
The pipeline automates the process of running segmentation and classification processes for a 
batch of videos (often a harddrive pertaining to a transect on which an instrument was 
deployed). Inside the scripts, groups of video files will be referred to as a drive. To start 
processing the pipeline expects a directory containing the video files that need to be classified 
(i.e., /raw). The pipeline will create the remaining directory structure. Use the supplied example 
video files to test the pipeline. 
 
raw/ 
segmentation/ 
measurements/ 
classification/ 
 
These directories are taken as constants; thus, it is important that their names are not changed. 
When the plankline.py script is run it asks the user to input configurations for the pipeline, 
through the use of config files (.ini) which are stored for future use. Based on the configurations, 
segmentation and classification can either take place on a local HPC infrastructure (i.e., CGRB 
in the examples given) or the remote NSF XSEDE HPC infrastructure.  
 
Due to asynchronous job submissions, the plankline.py script has to be run multiple times; 
however, the script stores its progress and will pick up where it left off. Because of this, the 
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plankline.py script will create IN_PROGRESS files so that classification is not started until after 
segmentation finishes. 

Configuration files 
Configuration files determine how the pipeline is run. The files can be created during runtime of 
the plankline.py or they can be submitted on the command line with the -c option. 
 
$ python3 plankline.py -c xsede.ini 
  
The configuration files contain information such as the architecture that the pipeline is run on, 
the number of processes that are concurrently running segmentation, and the number of 
classification instances per GPU. The files also contain specifics for the XSEDE HPC, like 
remote host, remote user, and remote storage path. Example config files can be found under 
the names xsede.ini and cgrb.ini. 

Local HPC vs XSEDE HPC 
While running the pipeline locally or running the pipeline remotely does not change the 
classification or segmentation mechanism, some steps differ, such as setting up the data in the 
correct places. 
 
For the XSEDE HPC ssh-keys need to be set up so that passwordless login can be done in the 
script. This is necessary so that data being segmented or classified can be transferred to 
XSEDE Comet using scripts without prompting for passwords. It should only take small 
modifications to make the pipeline work on any HPC infrastructure by replacing the job 
submission mechanism in the XSEDE script with the job submission mechanism specific to the 
infrastructure the pipeline needs to run on), and pointing to the proper libraries. 

Pipeline Setup 
In order to set up the pipeline, some configurations have to be made. First, an instance of 
python3 with all of the necessary modules has to be installed. Next, the shared library files need 
to be installed. Lastly, FFprobe and FFmpeg need to be installed. FFmpeg and FFprobe split 
the raw videos into frames used for segmentation. Static builds for these programs can be found 
here. To check if they have already been installed, the following commands can be run. 
Reference the FFmpeg and FFprobe documentation for additional usage information. 
 
In order to streamline this process, this pipeline makes use of autoconf. 
 
$ autoconf 
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Autoconf will generate a configuration file that is used to check the setup of the current 
machine and help to assure that the pipeline will not fail later down the line. 
 
$ ./configure 
 
If ./configure ran properly then it created a makefile. 

Running the pipeline 
The plankline.py script and any config files have to be copied to the directory containing the raw 
.avi files. The pipeline can be run via plankline.py, with or without a config file. 
 
$ python3 plankline.py -c xsede.ini 
  
$ python3 plankline.py 
 
If no configuration file is specified the pipeline will prompt for any necessary configuration 
variables. The pipeline then starts running segmentation, and once completed moves to 
classification. 
 
Note: If prompted, all necessary python modules have to be downloaded. Even though they are 
not all required in the plankline.py script directly, they will be required in other scripts that are 
called by plankline.py. If python is in a different location, the python location has to be updated 
in the scripts. 

Pipeline details 

Segmentation 
A description of scripts used during segmentation can be found here. 
 
The main difference between running segmentation on XSEDE Comet vs the CGRB HPC is the 
use of the cgrb_segmentation.sh script vs the use of the xsede_segmentation.sh script (Fig. 2). 
Whichever HPC infrastructure is used, only the setup script needs to be changed, and 
segmentation.py can be used irrespective of the segmentation location. The segmentation.py 
script takes the raw AVI files and turns them into a series of jpeg images containing objects 
needing to be identified. This is done using two main tools. ffmpeg transforms the video into 
individual frames, and then applies flat fielding to remove line scan artifacts. isiis_seg_ff is a 
binary that takes the individual frames that have been output from ffmpeg and segments the 
images into a series of jpegs containing objects to be classified. isiis_seg_ff is only available as 
a binary file and can only run on x86 architecture. 
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Figure 2. Scripts called during segmentation on a local HPC such as the CGRB and a remote 
HPC such as XSEDE Comet. 

Classification 
A description of the files used during classification can be found here. 
 
Similar to segmentation, the classification.py script is used independent of the infrastructure 
used (Fig. 3). On XSEDE Comet it is necessary to split the classification jobs up into multiple 
processes in order to conform to the 48 hour processing time limit. The script 
split_xsede_classification.sh takes care of this. classification.py uses a queue and 
multiprocessing pool to manage the availability of GPUs and makes sure there is always an 
instance of the isiis_scnn running on them. plankline.py sets up the environment necessary to 
run the scnn. The binary that has been pre-built for ppc64le and x86 and performs classification 
on the images resulting from the segmentation part of the pipeline. 
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To perform classification, the isiis_scnn binary is run with the start epoch equal to the stop 
epoch, where the epoch number corresponds to the number of the weights file found in the 
SCNN/weights directory. 

 
Figure 3. Scripts called during classification on a local HPC such as the CGRB and a remote 
HPC such as XSEDE Comet. 

Machine scratch space 
All of the files that are written during processing should be going into the fast machine scratch 
space (also referred to as SSD storage before). Using scratch space will greatly reduce 
processing times. The machine scratch space is usually only accessible on a jobs host 
machine. This means that it will usually be inaccessible through the submit host and needs to 
be specified in the job’s bash script. On XSEDE Comet the machine scratch space for a job with 
jobid $SLURM_JOBID for the user $USER can be found at /scratch/$USER/$SLURM_JOBID/ 
once on the machine. 
 
$ cd /scratch/$USER/$SLURM_JOBID/ 
 
At the CGRB the machine scratch space can be found at /data once on the machine 
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$ cd /data 
 

Fast file transferring machines 
There might be special hosts for transferring files on the user’s infrastructure, especially for 
large quantities. Using the submit host for transferring files can slow down job submissions for 
other users. On XSEDE Comet the file transfer host is: 
$ ssh <xsede_username>@oasis-dm-interactive.sdsc.edu  
 
At the CGRB the file transfer host is: 
$ ssh -p <cgrb_port> <cgrb_username>@files.cgrb.oregonstate.edu 

XSEDE Comet notes 

Adjusting slurm batch scripts for different GPUs 
Slurm batch scripts are a common way of interacting with HPC infrastructure and are also used 
at XSEDE Comet. They are essentially bash scripts with special headers that contain 
information about the resources being requested and details on how jobs must be run. More 
information about the system can be found here: https://slurm.schedmd.com/sbatch.html 
 
Here are some notes to remember when writing SBATCH commands for different GPU 
resources. Nvidia K80s requires 6 tasks per GPU when allocating whereas Nvidia P100s 
require 7 tasks per GPU. The correct values need to be set in the --ntasks-per-node sbatch 
option. 

Example 1: 4 k80 GPUs 
The number of tasks per node input is based on the number of tasks per GPU multiplied by the 
number of GPUs. In the case of the k80 GPU there are 6 tasks per GPU, and 4 GPUs, thus --
ntasks-per-node=(4 GPUs * 6 tasks = 24). The following code block needs to be at the top of 
the bash script. 
 
#SBATCH -A osu119 
#SBATCH --partition=gpu 
#SBATCH -gres=gpu:k80:4 
#SBATCH --ntasks-per-node=24 
#SBATCH --nodes=1 
#SBATCH -t 23:30:00 
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Example 2: 4 p100 GPUs 
In the case of the p100 GPU there are 7 tasks per GPU, and 4 GPUs, thus --ntasks-per-
node=(4 GPUs * 7 tasks = 28). The following code block needs to be at the top of the bash 
script. 
 
#SBATCH -A osu119 
#SBATCH --partition=gpu 
#SBATCH -gres=gpu:p100:4 
#SBATCH --ntasks-per-node=28 
#SBATCH --nodes=1 
#SBATCH -t 23:30:00 

Example 3: Interactive session on K80s 
Interactive sessions set up all the same resources as the sbatch, however, instead of executing 
a script and closing, such a session opens a shell on the machine that the user is then able to 
use until the allotted time runs out. In this case, all 4 GPUs were allocated on a node for 2 hours 
and a bash shell was opened for the user to run commands on. 
 
$ srun --gres=gpu:K80:4 --ntasks-per-node=24  -t 2:00:00 -A osu119 --pty --wait 0 /bin/bash 

Checking job progress on XSEDE Comet (SLURM) 
An important part of running the pipeline is checking the progress of submitted jobs and looking 
out for any potential errors. Job progress on XSEDE Comet can be checked using the squeue 
(slurm queue) command and the USER environment variable (Fig. 4). This will provide 
information about the jobs that are under a user and their status. 
 

 
Figure 4. Example output of a job progress check on XSEDE Comet. 
 
JOBID: This number can be used with scancel (Example: “scancel 36712856”, NOTE: Only the 
user that submitted the job can cancel it) 
PARTITION: The type of resources that was requested (GPU, CPU) 
NAME:  The name of the job that was started 
USER: The account username of the user that submitted the job 
NODELIST: This is the host machine that the job is running on. Connect to this machine via 
SSH (Example: “ssh comet-31-15). 
ST: The status of the process. Here is a list of all the possible statuses (Fig. 5). 
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Figure 5. Status codes on XSEDE Comet. 
 

Common issues and errors 

isiis_seg_ff segmentation fault 
If the output directory (-o) for the segmented images is too long then seg_ff will throw a 
segmentation fault. For example, this output path: 
“/scratch/dapranod/36712856/129/segmentation” would not work, while this one:  
“/scratch/dapranod/36712856/129/s” would. 
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Image extraction tool 
This tool lets the user extract classified images based on criteria such as minimum classification 
percentage assigned and classified taxon. The main application of the tool is to extract images 
and then compare the computer-generated classifications with the expert visual identifications of 
the images for confusion matrices. 

What it does 
The tool uses command line options in order to find the images that were classified as being a 
certain taxon by looking through the output csv files from classification and then pulling these 
images from their corresponding tar file. 

Command line options 
These can be accessed on the command line by typing “python3 pull_images.py -h” 

Usage 
$ python3 pull_images.py [-h] -t TAXON [TAXON ...] (-p PROBABILITY_TAXON | -b) (-d 
INPUT_DRIVE | -c INPUT_CSV) -o OUTPUT -r RAW_TARS [-m MIN_IMAGES]                                                                                                                               

Arguments                                                                                                                              
   
-h, --help 
 
Show the usage message then exit 
 
-t TAXON [TAXON ...], --taxon TAXON [TAXON …] 
 
The taxa that the script should search for in the csv files. This should be given as a list of taxa 
separated by a space. Full taxon names can be written out, or multiple taxa can be searched by 
using a more generic string. E.g, writing “fish” will find all taxa with “fish” in the name. It is more 
efficient to search for multiple taxa at a time since untarring the image folders is what takes 
most of the time. 
 
-p PROBABILITY_TAXON, --probability_taxon PROBABILITY_TAXON 
 
Extracts all images for a taxon over the threshold probability (value between 0 and 1). Note: If 
the search string for taxa is ‘fish’ and a threshold of 0.2 is set, an image that was classified as 
fish_a with 0.22 probability and fish_b with 0.21 probability would be extracted in searches for 
both taxa. This option is useful when building new training sets as it can return images that were 
subjected to false negative classification (i.e., second highest probability). 
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-b, --best_taxon 
 
Extracts the image only if the search for taxon pertains to the highest probability given to the 
image (i.e., an image will only be extracted once and only if the taxon search string coincides 
with the highest probability given). 
 
Even though the --probability option will usually extract more images than the --best_taxon 
option, it takes less time to run. This is because the --probability option does fewer comparisons 
on the probabilities. The --probability option will slow down as more taxa are added. 
 
See timing example for more info. 
 
-d INPUT_DRIVE, --input_drive INPUT_DRIVE 
 
The directory containing the csv files. 
 
-c INPUT_CSV, --input_csv INPUT_CSV 
 
The csv file that should be searched for taxa and images. Either the --input_csv option or the --
input_drive option can be used. Both options will yield the same output file structure, --
input_drive will work on all csv files in a folder. 
 
-o OUTPUT, --output OUTPUT 
 
The output directory where folders and images should be copied to. This folder must be empty. 
 
-r RAW_TARS, --raw_tars RAW_TARS 
 
The directory of all of the tared images that correspond to the input csv files. 
 
-m MIN_IMAGES, --min_images MIN_IMAGES 
 
The minimum number of images needed to untar a folder, this defaults to 0. The user might 
want to decide to ignore tared folders that only contain one image of interest due to the time it 
takes to untar. 
 
-dc, --different_columns 
 
If the colums (taxon names) are different in some csv files, this option will prevent the program 
from terminating. 
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-s, --strict_subclasses 
 
Using this flag will make the script match the input class names exactly and will no longer match 
any class that contains the substring.  

Data input 
The input csv files must all have the same structure, i.e. they must all have the same taxon in 
each column of the csv files, unless the --different_columns option is used. 
 
The tar file directory that is used as input must have the same datetime stamp as the csvs, this 
is usually guaranteed if the tar and csv files from pipeline output are used. The program uses 
regex to get the numeric date string from the csv file names and then uses this to find the 
correct tar file with that same numeric datetime in the tar directory. 
 
Example: 
“20180706170805.476-library_bigcam.csv” - file for the classification information 
“20180706170805.476.tar.gz” - file containing the images. 

Example usage 
To find all images belonging to protists and fish from the csvs in the folder “excsvs”, with the 
corresponding tars at the “extars” location, use: 
 
$ python3 pull_images.py -p .2 -d excsvs/ -o exoutMulti3/ -r extars/ -t protist fish 
Finding the sub_taxon: 
0. protist_acantharia 
1. protist_dark_center 
2. protist_fuzzy_olive 
3. protist_noctiluca 
4. protist_noctiluca_long_flagella 
5. protist_other 
6. protist_radiolaria 
… 
10. fish_ ... 

Timing examples 

Single taxon example 
When using the -p, --probability option with a threshold of .2, it took 1 minute 58 seconds vs the 
4 minutes 17 seconds it took with the -b, --best_taxon option. 
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-p, --probability option 
$ time python3 pull_images.py -p .2 -d excsvs/ -o exoutMulti5/ -r extars/ -t protist_fuzzy_olive 
Input Drive: excsvs/ 
Number of Input CSVs: 4 
Raw tar Directory: extars/ 
Output Directory: exoutMulti5/ 
Minimum images needed to unzip: 0 
----- Finding chosen taxon with probabilities above 0.2 ----- 
 
Finding the sub_taxon: 
0. protist_fuzzy_olive 
Finding images from excsvs/20180706190732.329-library_bigcam.csv 
Found 1 images in excsvs/20180706190732.329-library_bigcam.csv 
Unzipping extars/20180706190732.329.tar.gz into exoutMulti5/ 
Building file structure 
Finding images from excsvs/20180706170805.476-library_bigcam.csv 
Found 220 images in excsvs/20180706170805.476-library_bigcam.csv 
Unzipping extars/20180706170805.476.tar.gz into exoutMulti5/ 
Building file structure 
Finding images from excsvs/20180706200311.924-library_bigcam.csv 
Found 146 images in excsvs/20180706200311.924-library_bigcam.csv 
Unzipping extars/20180706200311.924.tar.gz into exoutMulti5/ 
Building file structure 
Finding images from excsvs/20180706191023.549-library_bigcam.csv 
Found 0 images in excsvs/20180706191023.549-library_bigcam.csv 
----- Done ----- 
113.078u 0.560s 1:58.51 95.8%   0+0k 0+46976io 0pf+0w 

-b, --best_taxon option 
$ time python3 pull_images.py -b -d excsvs/ -o exoutMulti5/ -r extars/ -t protist_fuzzy_olive 
Input Drive: excsvs/ 
Number of Input CSVs: 4 
Raw tar Directory: extars/ 
Output Directory: exoutMulti5/ 
Minimum images needed to unzip: 0 
----- Finding chosen taxon where they are the top probability ----- 
 
Finding the sub_taxon: 
0. protist_fuzzy_olive 
Finding images from excsvs/20180706190732.329-library_bigcam.csv 
Found 1 images in excsvs/20180706190732.329-library_bigcam.csv 
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Unzipping extars/20180706190732.329.tar.gz into exoutMulti5/ 
Building file structure 
Finding images from excsvs/20180706170805.476-library_bigcam.csv 
Found 140 images in excsvs/20180706170805.476-library_bigcam.csv 
Unzipping extars/20180706170805.476.tar.gz into exoutMulti5/ 
Building file structure 
Finding images from excsvs/20180706200311.924-library_bigcam.csv 
Found 83 images in excsvs/20180706200311.924-library_bigcam.csv 
Unzipping extars/20180706200311.924.tar.gz into exoutMulti5/ 
Building file structure 
Finding images from excsvs/20180706191023.549-library_bigcam.csv 
Found 0 images in excsvs/20180706191023.549-library_bigcam.csv 
----- Done ----- 
252.585u 0.799s 4:17.27 98.4%   0+0k 0+28672io 0pf+0w 
 

Multiple taxa example 
When using the -p, --probability option with a threshold of .2, it took 4 minute 56 seconds vs the 
6 minutes 55 seconds it took with the -b, --best_taxon option. 
 

-p, --probability option 
$ time python3 pull_images.py -p .2 -d excsvs/ -o exoutMulti3/ -r extars/ -t protist fish 
Input Drive: excsvs/ 
Number of Input CSVs: 4 
Raw tar Directory: extars/ 
Output Directory: exoutMulti3/ 
Minimum images needed to unzip: 0 
----- Finding chosen taxon with probabilities above 0.2 ----- 
 
Finding the sub_taxon: 
0. protist_acantharia 
1. protist_dark_center 
2. protist_fuzzy_olive 
3. protist_noctiluca 
4. protist_noctiluca_long_flagella 
5. protist_other 
6. protist_radiolarian 
7. fish_bregmacerotidae 
8. fish_carangidae 
9. fish_ceratioidei_or_tetraodontidae 
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10. fish_echeneidae 
11. fish_engraulidae 
12. fish_gobiidae 
13. fish_gonostomatidae 
14. fish_labroidei 
15. fish_leptocephali 
16. fish_microdesmidae 
17. fish_myctophidae 
18. fish_ophidiidae 
19. fish_phosichthyidae 
20. fish_pleuronectiformes 
21. fish_scombridae 
22. fish_serranidae 
23. fish_stocky 
24. fish_trichiuridae 
25. fish_unknown 
26. fish_xyrichtys 
Finding images from excsvs/20180706190732.329-library_bigcam.csv 
Found 6032 images in excsvs/20180706190732.329-library_bigcam.csv 
Unzipping extars/20180706190732.329.tar.gz into exoutMulti3/ 
Building file structure 
Finding images from excsvs/20180706170805.476-library_bigcam.csv 
Found 5434 images in excsvs/20180706170805.476-library_bigcam.csv 
Unzipping extars/20180706170805.476.tar.gz into exoutMulti3/ 
Building file structure 
Finding images from excsvs/20180706200311.924-library_bigcam.csv 
Found 3927 images in excsvs/20180706200311.924-library_bigcam.csv 
Unzipping extars/20180706200311.924.tar.gz into exoutMulti3/ 
Building file structure 
Finding images from excsvs/20180706191023.549-library_bigcam.csv 
----- Done ----- 
244.793u 4.439s 4:56.20 84.1%   0+0k 1661568+2903040io 0pf+0w 

-b, --best_taxon option 
$ time python3 pull_images.py -b -d excsvs/ -o exoutMulti4/ -r extars/ -t protist fish 
input Drive: excsvs/ 
Number of Input CSVs: 4 
Raw tar Directory: extars/ 
Output Directory: exoutMulti4/ 
Minimum images needed to unzip: 0 
----- Finding chosen taxon where they are the top probability ----- 
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Finding the sub_taxon: 
0. protist_acantharia 
1. protist_dark_center 
2. protist_fuzzy_olive 
3. protist_noctiluca 
4. protist_noctiluca_long_flagella 
5. protist_other 
6. protist_radiolarian 
7. fish_bregmacerotidae 
8. fish_carangidae 
9. fish_ceratioidei_or_tetraodontidae 
10. fish_echeneidae 
11. fish_engraulidae 
12. fish_gobiidae 
13. fish_gonostomatidae 
14. fish_labroidei 
15. fish_leptocephali 
16. fish_microdesmidae 
17. fish_myctophidae 
18. fish_ophidiidae 
19. fish_phosichthyidae 
20. fish_pleuronectiformes 
21. fish_scombridae 
22. fish_serranidae 
23. fish_stocky 
24. fish_trichiuridae 
25. fish_unknown 
26. fish_xyrichtys 
Finding images from excsvs/20180706190732.329-library_bigcam.csv 
Found 3809 images in excsvs/20180706190732.329-library_bigcam.csv 
Unzipping extars/20180706190732.329.tar.gz into exoutMulti4/ 
Building file structure 
Finding images from excsvs/20180706170805.476-library_bigcam.csv 
Found 3819 images in excsvs/20180706170805.476-library_bigcam.csv 
Unzipping extars/20180706170805.476.tar.gz into exoutMulti4/ 
Building file structure 
Finding images from excsvs/20180706200311.924-library_bigcam.csv 
Found 2799 images in excsvs/20180706200311.924-library_bigcam.csv 
Unzipping extars/20180706200311.924.tar.gz into exoutMulti4/ 
Building file structure 
Finding images from excsvs/20180706191023.549-library_bigcam.csv 
Found 4354 images in excsvs/20180706191023.549-library_bigcam.csv 
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Unzipping extars/20180706191023.549.tar.gz into exoutMulti4/ 
Building file structure 
----- Done ----- 
391.612u 3.329s 6:55.67 95.0%   0+0k 0+1891968io 0pf+0w 
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Disclaimer and License 
This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. This program is distributed 
under the GNU GPL v 2.0 or later license. Any User wishing to make commercial use of the 
Software must contact the authors or Oregon State University directly to arrange an appropriate 
license. Commercial use includes (1) use of the software for commercial purposes, including 
integrating or incorporating all or part of the source code into a product for sale or license by, or 
on behalf of, User to third parties, or (2) distribution of the binary or source code to third parties 
for use with a commercial product sold or licensed by, or on behalf of, User. 


