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Abstract Wrist-worn wearable devices equipped with heart activity sensors
can provide valuable data that can be used for preventative health. However,
hearth activity analysis from these devices suffers from noise introduced by
motion artifacts. Methods traditionally used to remove outliers based on mo-
tion data can yield to discarding clean data, if some movement was present,
and accepting noisy data, i.e. subject was still but the sensor was misplaced.
This work shows that Self Organizing Maps (SOMs) can be used to effectively
accept or reject sections of heart data collected from unreliable devices, such
as wrist worn devices. In particular, the proposed SOM-based filter can accept
a larger amount of measurements (less false negatives) with an higher overall
quality with respect to methods solely based on statistical analysis of motion
data. We provide an empirical analysis on real world wearable data, compris-
ing heart and motion data of users. We show how topographic mapping can
help identifying and interpreting patterns in the sensor data and help relating
them to an assessment of user state. More importantly, our experimental re-
sults shows the proposed approach is able to retain almost twice the amount of
data while keeping samples with an error that is an order of magnitude lower
with respect to a filter based on accelerometric data.
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1 Introduction

Wearable sensing devices are becoming ubiquitous1, in particular when con-
sidering smart-bracelets and smart-watches and especially within the context
of fitness tracking and healthcare/well-being monitoring. These applications
typically leverage two main information types, that are heartbeat and motion
information, collected in a semi-continuous fashion throughout the day, where
the monitoring rate is mostly the result of an energy-effectiveness tradeoff (the
latter being application dependant).

Acquisition of heart-related and motion-related information is often medi-
ated by sensing devices and operating conditions characterized by low signal-
to-noise ratios [28], resulting in a collection of data that is deeply affected by
artifacts. On the side of the heart-related data, artifacts are mostly the re-
sult of displacements of the sensor on the skin of the user as a result of daily
or sport activities. When it comes to motion data, noisy measurements are
mostly inherent in the nature of the inertial sensors, which capture accelero-
metric recordings whether they are relevant to a user activity or not.

Such a condition has motivated a whole body of research [18,28,29,35]
aiming that pre-processing, adjusting and filtering data from wearable sensors,
with the purpose of recording only the relevant and trustworthy measurements,
while discarding noisy ones and artifacts. Being able to dismiss irrelevant data
is not only an application-driven requirement aimed at performing monitor-
ing and analytical procedures only on clean data. Rather, it is primarily a
system-driven requirement, aimed at containing the use of the limited storage
resources on-board the device and at preserving battery lifetime, by reduc-
ing the amount of unnecessary data transmitted by the wearable to the cloud
or the device hosting the monitoring application. Overall, the noisy nature
of sensed data together with stringent energy-saving requirements typically
leads to extremely aggressive data filtering policies which typically discard
every measurement taken under motion readings that are non-negligible [28].
As a result of this, the monitoring application is often deprived of valuable
data, especially when sensed during the execution of daily activities which are
associate to moderate-to-high motion.

Motivated by such an application scenario, in this paper, we explore the
use of Self Organizing Maps (SOMs) [21] as an effective means to inspect
wearable sensor data comprising both motion and heart-related information
and to assess its quality. Following up of the result of this first analysis, we
put forward a novel intelligent filter leveraging the topographic map trained
on the sensor measurements and using auxiliary information to label the units
of the map as being responsive to either noisy or trustworthy measurements.

1 https://www.statista.com/outlook/319/100/wearables/worldwide, accessed 20th
October 2020

https://www.statista.com/outlook/319/100/wearables/worldwide
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By this simple approach, it is possible to determine whether or not to discard
future measurements based on which unit of the map they are projected to.

Our work considers a real-world setting and associated data coming from
the continuous passive monitoring of users during their daily activities, in a
fully uncontrolled environment. In this context, we confront our simple SOM-
based filtering approach with a consolidated motion-based filter [28], showing
a consistent increase in effectiveness and performance, assessed both in terms
of an higher number of retained sample and higher quality of the preserved
data. Our analysis also shows that the SOM-based intelligent predictor is char-
acterised by a good generalization across subjects, which is a rare result when
dealing with the adaptive processing of biosignals, which are characterised
by non-negligible and (mostly) physiological inter-subject differences. Finally,
while SOMs are a widely popular and consolidated approach for exploratory
data analysis, we believe this to be the first work in which it is proposed and
highlighted their effectiveness in filtering heart-beat and accelerometric data.

The remainder of the paper is organized as follows: Section 2 provides a
definition of the problem and the background on wearable-based monitoring.
Section 3 describes the methodology used in the paper to realize the filter and
analyse the data, providing a brief introduction to SOM for the sake of paper
self-containment. Section 4 discusses our use case, providing results as concerns
visual inspection of sensor measurements and and empirical validation of the
proposed filtering approach; Section 5 concludes the paper.

2 Background and Problem Definition

2.1 Problem Definition

Wearable fitness monitors and smart-watches have become widely adopted.
Many of those wearable devices have a photoplethysmography (PPG) sensor
that can measure the users heart rate semi-continuously, 24/7.

In theory PPG devices allow the estimation of Inter Beat Intervals (IBI),
i.e. the duration of every heartbeat. IBI data can be used to estimate Heart
Rate Variability (HRV) [15,26], that is influenced by the activity of the Au-
tonomous Nervous System (ANS) [27]. In turn, HRV can be used to estimate
the users well-being and health [22,2,1], their recovery [16], and even to detect
the onset of health deterioration [23].

However, PPG sensors on wrist-worn wearable devices are heavily affected
by motion artifacts [28]. As a result of this, most fitness trackers only report
the average heart rate (HR), i.e. the number of heartbeats in one minute. This
calculation is resilient to outliers and noise, because HR is an average over one
minute of data, equivalent to applying a low pass filter. This operation filters
noise introduced by motion artifacts (that adds high frequency components to
the signal).

Since the algorithms to pre-process PPG data have been defined in medical
research, they could use clean signals captured in highly controlled environ-
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ment (i.e. measurements in hospitals from clinical-grade PPG monitors). The
algorithms used to remove outliers from IBI time series have been designed
for a setting where most of the data is precise and reliable, with only sporadic
noise. Most approaches identify outliers by using the distribution of the data,
e.g. removing IBI points that differ by more than a fixed percentage from the
average of the preceding IBI data [18]. This approach is only applicable if most
of the IBI data is reliable.

Before fitness trackers, people would have their HRV measured only when
they performed some medical exam. Wrist-worn wearable devices have in-
troduced a different paradigm to HRV analysis. Instead of few data points
collected in controlled environment, we now have access to a large amount of
noisy data.

As previously discussed, existing noise removal algorithms are difficult to
apply to this data because the assumption that most of the IBI data is reliable
does not hold in this setting. There is therefore the need to find new algorithms
that can automatically estimate when IBI from noisy PPG data should be
considered clean enough to allow HRV estimations.

2.2 Biosignal Data Filtering

Previous work we have conducted found that statistics on accelerometer data
can be used to estimate the quality of IBI data, and the error propagation
to HRV features can be estimated [28,29]. However, in practice, most of the
data collected during the day would be unusable. Outlier detection and in-
terpolation techniques have been introduced in literature to handle occasional
ectopic beats. Applying such techniques to frequent motion artifacts would
make the HRV look closer to what is expected [28] therefore apparently more
acceptable, but in practice they would also alter the original signal by adding
information that was not present in the original data, and after this process-
ing step it would not be possible to distinguish between true and arbitrarily
reconstructed information.

As previously discussed, HRV processing literature is mainly concerned
with occasional ectopic beats. Frequent outliers introduced by motion arti-
facts have been studied only recently, once the adoption of commercial grade
wrist worn wearable devices produced a large amount of data, but with much
lower quality (due to noisy sensors and uncontrolled environment) than the
traditional HRV datasets, usually composed of ECG data collected in con-
trolled environments, i.e. hospitals. Typical algorithms to detect and handle
sporadic outliers identify extraneous beats by excluding heartbeats with dura-
tion outside physiologically plausible range, i.e. less than 250 ms or more than
1800 ms. Other algorithms also assume that heartbeats should have a dura-
tion similar to preceding heartbeats, excluding heartbeats that differ from the
mean of the previous heartbeats by more than a predefined amount relative
to the standard deviation of the previous heartbeats. Once outliers have been
identified, they are dealt with in two ways: by deleting them, or by attempt-
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ing the reconstruction of the original signal. The simplest way of handling
the inconsistent RR-intervals provided in literature is to delete them [35].
In this approach, the abnormal heartbeats are simply removed from the list
of heartbeats without replacement. This approach does not introduce extra-
neous information, but reduces the overall length of the heartbeats list, with
potential implications for the HRV features extracted from the heartbeats [35].
More frequently, removed heartbeats are replaced with interpolation methods,
such as zero-degree, linear, quadratic, or cubic spline interpolation [17]. Re-
constructing the heartbeats list has the desirable property of preserving the
original overall duration, but it also introduces extraneous information, visible
in the HRV power spectrum [29]

2.3 Self Organizing Maps in Biosignal Processing

In this study, we outline a novel approach to IBI data filtering, based on Self
Organising Maps (SOM) [21], that yield to more precise results, with lower
error on HRV features, and allow to retain more datapoints. Being able to
exploit the data collected from fitness trackers for HRV analysis could allow
continuous passive monitoring of the health of the population, with a sig-
nificant positive impact on their health status, enabling preventative health
interventions to be activated on the onset of diseases instead of waiting for
serious symptoms to develop

While we are not aware on previous works as concerns the use of SOMs
to realize an intelligent filter for raw sensor data, their use on biosignal pro-
cessing is evident from the literature. In [11] it is is presented a closely related
work where SOMs are used to process Electrocardiography (ECG) features to
partition normal from anomalous beats. In this work, however SOMs operate
on engineered time domain features extracted from the ECG data rather than
on the raw biosignals. Similarly, [10] has leveraged SOM as a means to prepro-
cess and partition ECG features by telling apart normal beats from different
classes of anomalous heartbeats, focusing in particular on an interactive and
explorative approach to the data. The application of SOM on ECG data are
numerous but they typically share the common trait of feeding the map with
engineered features, e.g. a decomposition of the signal in Hermite functions
[25], rather than inputting the raw biosignals. SOMs have also been used to
provide interpretable models of the respiratory signals by considering the neu-
rons in the map as identifiers of specific internal states of the dynamical system
generating the respiratory timeseries [12]. A similar approach has been taken
by [8,24] where they have been used to identify and visualize the different
mental states from engineered features extracted from Electroencephalogra-
phy data. SOMs have also been used in stress detection tasks [14] where they
are fed with features from skin conductance and ECG data and the resulting
maps are clustered by a Gaussian Mixture Model to identify SOM units that
can be associated with relax phases or stress phases, in a fully unsupervised
way.
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3 Methodology

This study centers on analysing sensor data from two modalities, namely
hearth-beat and accelerometric information with a two-fold aim. First we tar-
get an explorative analysis of the data, aiming to characterize prototypical
sensor profiles which can be interpreted as proxies of the state and activities
performed by the user wearing the smart-bracelet. The second aim is related
to identifying which of such prototypical profiles can be associated with noisy
or erroneous measurements to drive the implementation of an intelligent data
filter. Our approach to the problem relies on topographic maps, whose use
on explorative data analysis is widely consolidated [37,19,36,20]. Their appli-
cation to smart filtering is, instead, less known but, as it will become clear
throughout our empirical analysis, no less effective.

Self-organizing Maps (SOMs) are undoubtedly the most popular family
of neural-based approaches to topographic mapping. Their founding concepts
were introduced in the seminal paper by Kohonen [21], mostly targeting a
computational model of biological processes of neural soft-competition and
self-organization in the motor-sensory cortex. SOMs have since then evolved
as an effective computational methodology for adaptive data exploration, vi-
sualization and clustering.

In our work, we leverage a standard SOM model for vectorial data, compris-
ing a single-layer of neurons organized into a grid-like lattice which associates
to each unit ui, where i ∈ C indexes the neurons, a position on the grid
I(ui) = (ri, ci), where ri and ci are row and column indexes, respectively. The
SOM takes as input a vector xj ∈ Rd which, for the purposes of this work,
is a 24-dimensional vector organized as follows (j-th index omitted to avoid
cluttering)

x = [h1, . . . , h12, a1, . . . , a12] (1)

where hl and al denote, respectively, the heart-beat and accelerometer value
for the l-th time window of the x measurement. The 24-dimensional vector
x collects the heart-beats detected by the sensor on 12 successive windows
of measurements, each lasting 10 seconds, followed by the corresponding 12
measurements collected by the accelerometer sensor on the same time windows.

Each neuron ui is associated to a prototype vector wi ∈ Rd, also referred
to as codebook, defined in data space which characterizes the preferred input
stimuli for the neuron. Whenever a sample xj is presented to the network, the
Best Matching Unit (BMU) u∗ is determined according to a similarity measure
between a sample and each weight vector which, for our purposes, leverages
the Euclidean distance

u∗ = arg min
ui∈{u1,...,uC}

‖wi − xj‖2. (2)

During map usage, the BMU is the one where the input sample is projected
to for analysis and visualization purposes, i.e. an input xj is projected on
the lattice in position I(u∗). During training, the activation of the BMU is
propagated to its neighbors on the lattice to implement a biologically inspired
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competition mechanisms. The neighbourhood can have different shapes. In our
work we use the standard radial basis function

N(u∗, ui)
t = exp

(
−‖I(u∗)− I(ui)‖2

2(σt)2

)
(3)

where σt = σ0 exp(− t
τ ) is an exponentially decaying neighborhood radius,

with σ0 being the initial radius and τ a time-constant determining the slope
of the decaying weight. The learning phase adapts the prototype vectors to
become representative of a group of input training vectors following a com-
petitive soft-update rule

wt+1
i = wt

i + νtN(u∗, ui)
t
(
wt
i − xj

)
(4)

where νt is a time decaying learning rate (typically with an exponential sched-
ule). The rationale of (4) is to move the prototype weight vectors wi of both
the winner unit and of its neighbors closer to the current input sample. By
these means nearby neurons tend to become responsive to similar stimuli,
hence realizing topographical organization of the neural lattice. In a discrete
setting, the learning rule in (4) can also be seen as the result of a stochastic
gradient descent on the loss [33]

L =
1

2M

M∑
j=1

C∑
i=1

N(u∗j , ui)‖wi − xj‖2 (5)

where u∗j is the BMU for data point xj .
The choice of founding our approach on a SOMs is based on the following

considerations

– SOMs are a simple model which allows for a straightforward interpretation
of the results and of the neuron responses.

– Our data comprises sensor measurements whose noise can be more favour-
ably managed through a flexible non-parametric neural approach, rather
than with parametric models requiring the identification of accurate noise
distributions, such as in Generative Topographic Mapping [6].

– SOMs are a consolidated model with robust and well validated implemen-
tations and provide a variety of visualization tools and methodologies to
represent and interpret the results of the trained map (e.g. the unified
distance matrix).

– SOMs can be implemented efficiently, with contained memory fingerprint
and without resorting to heavy numerical computing libraries. These as-
pects are of paramount importance as they allow to implement the in-
telligent filter to run embedded on the bracelet device, which is a key
requirement in order to save battery and communication costs.

We believe that, altogether, the characteristics listed above make SOM
an effective methodology for tasks related to quality assessment and filtering
of noisy, and potentially erroneous, sensor measurements. For our purposes,
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the analysis of the data samples from the application described in Section 2
proceeds according to the the following. First, we train the SOM with data
samples arranged as in (1) and we inspect the resulting unit prototypes to
identify and visualize the prototypical measurement patterns present in our
training data (e.g. presence of spiked accelerometer activations at specific time
slots). As an additional level of analysis we consider the availability of samples
xj and associated explanatory information yj . The term yj is a scalar providing
aggregated statistics related to xj . For the purposes of our analysis, we consider
different types of explanatory information for xj , including

– the average activation of the accellerometers across the 12 time-points in
xj ;

– the average number of hearbeats across the 12 time-points in xj ;
– a measure of heartbeat estimation error obtained by confronting the smart-

bracelet readings in xj with the aligned readings from an external device
(i.e. chest strap).

For this latter analysis, we feed the trained SOM with samples xj and assign
them to their BMU. Based on such an assignment, for a full sample batch, we
can compute aggregated statistics of the explanatory information associated
to each neuron

ŷ(ui) =

∑N
j=1 bmu(ui,xj)yj∑N
j=1 bmu(ui,xj)

where bmu(ui,xj) is an indicator function returning 1 if ui is the BMU for xj
and 0 otherwise. The ŷ(ui) term can be computed for each unit and visualized
on the lattice to provide insights, e.g., on the areas of the map characterized
by higher heartbeat estimation errors. We will show a practical application of
this analysis to our scenario in Section 4.

Sensor-sourced information has an inherent sequential nature which repre-
sents the evolution of the measurement in time. In this respect, SOM has long
since been extended to a recurrent approach to deal with input information
that is of sequential nature, such as in the Temporal Kohonen Map [9] and the
Recurrent Self-Organizing Map [38]. Similarly generative topographic maps
have found extension to deal with timeseries data analysis and visualization
[5,30]. Both neural and generative maps have been extended further to deal
with more articulated structured data types, comprising trees and directed
acyclic graphs, such as in the SOM for Structured Data [13], Recursive SOM
[39] and the GTM for Structured Data [3,4]. For the sake of our application,
we are restricted to consider information of a vectorial nature, as the sensor
measurements collected by the smart-bracelet come bundled in fixed length
vectors comprising sensor readings for 12 time samples. Nonetheless, the anal-
ysis presented in the following can be replicated for variable length sequences
of measurements, by adopting any of the temporal SOM extensions referenced
above.
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4 Results and Discussion

The section discusses the application of our SOM-based approach to quality
inspection and filtering of heartbeat and accellerometer data, using publicily
available samples collected as part of two independent experiments. The first
dataset comprises smart-bracelet data from activities of daily living. The sec-
ond dataset [34] comprises smart-bracelet data aligned with chest-strap mea-
surements. The former is used to train the SOM on real-world noisy data,
while we exploit the resulting topographic mapping for interpretation pur-
poses. The latter serves to provide a qualitative and quantitative assessment
of the performance of our SOM-based filtering procedure, leveraging chest-
strap measurements as ground-truth heartbeat information. We compare the
effectiveness of our SOM-based filtering against a standard non-adaptive fil-
tering policy.

4.1 Datasets and Experimental Setup

Our analysis considered datasets from two experiments, where participants
were equipped with a wrist-worn wearable device to collect IBI data through
the Photoplethysmogram (PPG) sensor. The wearable device is a BioBeam
(BioBeats Ltd)2, a customization of a LifeSense Band 2 with firmware modified
to collect IBI. The band is a commercial grade fitness monitor with (with CE
marking).

– The first dataset (D1) contains an extraction of IBI data collected on a
group of 273 users through wristband sensor [32]. The participants used
the BioBeam for four weeks. The data gathering protocol turns on the
IBI sensor for 2 minutes every 30 minutes. In this window of time, the
device provides also a measure of the motion as the standard deviation of
the magnitude of the axes of the accelerometer, calculated as described in
[28]. All participants provided informed, electronic consent prior to their
enrollment in the study. Data from this study, including the preregistration
protocol, are available on the Open Science Framework website [31]. This
study was approved by an Institutional Ethics Committee at the University
of Exeter (UEBS Research Ethics Committee, ethics application number:
eUEBS002252).

– The second dataset (D2) is a publicly available dataset [34], that contains
IBI and motion measurements, collected using the BioBeam device and
the protocol described above, from a group of 22 people (with no overlap
to D1), with the IBI sensor active continuously for 24 hours. In addition
D2 contains a ground truth for the IBI time series collected with an ECG
chest strap (Polar H7)3.

2 https://fccid.io/OU9LS417-F01/User-Manual/User-Manual-part-2-3373513
3 https://fccid.io/INWX0/User-Manual/H7-user-manual-1615156

https://fccid.io/OU9LS417-F01/User-Manual/User-Manual-part-2-3373513
https://fccid.io/INWX0/User-Manual/H7-user-manual-1615156
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After the preprocessing phase described in Section 4.2 the number of data
points in D1 and D2 are 312316 and 3796 respectively.

In the following subsections, we provide a multi-faceted analysis of the
datasets above. First, in Section 4.2, we give a qualitative interpretation of
the sample by visualizing prototypical behaviours and aggregated statistics of
the sensor data on the SOM topographic map. At this stage of the analysis,
we have considered different configurations of the map, using neuron grids of
hexagonal topology with different dimensions: 8x8, 16x16, 56x56, 96x96. The
models have been trained applying the online update rule, described in (4),
for 100 epochs with linear decreasing learning rate ν ∈ [0.05, 0.01] and initial
radius of the neighborhood function σ0 = 2/3 · dm, where dm refers to the
diameter of the grid, during training the radius is linearly decreased from σ0
to 0. The analysis in the following (including model training and visualization
functions) have been implemented using the kohonen R package [41] [40]. For
the sake of conciseness, we report only a sample of results corresponding to the
16x16 map, leaving the other visualizations to the appendix. All models were
trained with data from D1. The choice of a 16x16 map has been motivated
both by considerations as regards quality of the visualization and by avoiding
an excess of sparsely populated neurons, i.e. neurons which are BMU for few
samples (see the results in Appendix for the larger maps).

In Section 4.3, we shift our attention to using the SOM map as a predictor
of the quality of sensor measurement data. In particular, we assess whether
specific neurons in the map and their associated prototype (representing a
characteristic behaviour of sensed data in the measurement window) can be
used as proxy of the accuracy of the heartbeat estimated by the smart-bracelet.
To this end, we label each neuron in the map as discussed in Section 3, using
as auxiliary information the error between wristband and chest strap measure-
ments averaged on all data samples projected on the unit, and we provide a
visualization of this information on the map. Projected data samples are taken
from D2 while the map is the 16x16 SOM obtained from the previous step
and trained on D1 data only. To compute the error with respect to the ground
truth, we used the following metrics, considering a segment t = [t1, ..., tn] of
intervals between successive heartbeats (IBI):

– Average value of the IBI:

ANN(t) =
1

n

n∑
i=1

ti

– Standard deviation of the IBI [27]:

SDNN(t) =

√∑n
i=1(ti −ANN(t))2

n

– RMSSD: Root mean square of the differences between successive IBI [27]:

RMSSD(t) =

√∑n−1
j=1 d

2
j

n− 1
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where dj = ti+1 − ti.

Finally, in Section 4.4, we provide an assessment of the predictive value
of a filter built on the top of the error maps discussed above, confronting it
with a standard data filtering policy based on predefined thresholds on the
accelerometer measurements. For this purpose, we again consider the D2 data
with chest-strap as a ground truth and the 16x16 map fit on D1.

4.2 Visualization and Inspection

In order to train the SOM, data have been transformed into 24-dimensional
vectors described in (1). In particular the first 12 components hi are the num-
ber of the heartbeats detected by the sensor on successive windows of 10
seconds and the latter 12 components ai are motion-related measurements
collected on the same time windows. As anticipated, we have fitted maps of
different size, but in the following we analyse the results restricted to the
16x16 map, which is the best suited for interpretability and visualization pur-
poses (the reader is referred to the appendix for further visualizations). Fig. 1
shows the codebooks of the 16x16 SOM trained on D1 data: this visualization
allows to appreciate different activation and intensity patterns in the two sen-
sor modalities. By looking at such patterns, it is possible to straightforwardly
discern measurements that can be associated to different activities being per-
formed by the subject. For instance, the unit marked with a red A in Fig. 1
seems prototypical of measurements pertaining physical activities, given the
contemporaneous high cardiac activity and motion activation (we will see in
the following how such behaviour is not the result of noisy measurements due
to wrist-band movement). Instead, neurons in regions of the map marked as B
and C are characteristic of measurements with low accelerometer readings and
different heartbeat patterns. In particular, unit C characterizes by very low
heartbeats across all components, paired with low accelerometer value, and
can be thus interpreted as responding to measurements taken during sleep
cycles. Neurons from the B region, on the other hand, capture more peculiar
heartbeat patterns of mild arousal which is not backed-up by physical activa-
tion (as measured by accelerometers). Hence they might have an interesting
interpretation as proxies for measurements taken during an emotional state
denoted by stress or anxiety of the subject.

The detailed visualization of the prototype map can be complemented with
aggregated statistics, as discussed in Section 3. In particular, Fig. 2a and 2b
show the distribution of average heartbeat counts and motion values across the
12 time measurements computed with respect to the prototypes components of
each neuron. These heatmaps provide a snapshot view of the regions of the map
characterized by different degrees of physical and cardiac activity, where the
top-right area of the map is the region of interest characterizing measurements
with possible links with intense emotional states. Fig. 2c completes the picture
by providing an insight on the number of hits per neuron, i.e. the amount of
samples projected on each unit of the map. From this view one can note how,
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Fig. 1: Codebook map [40,41] displaying unit prototypes for the 16x16 map
trained on D1 data (row and column numbers are the neuron indexes on the
grid). For each unit (circle) we report an histogram representing the value of
the 12 heartbeat features (upper-half of the histogram in the plot, marked as
h in the legend) and 12 accelerometer features (bottom-half of the histogram
in the plot, marked as a in the legend) of its prototype vector. The numbers
by the h and a letters in the legend identify one of the 12 time windows of
sensor readings within each packet sent by the device. For instance, h1 and a1
are the heart-beat counts and associated accelerometer readings for the first
time window.

unsurprisingly, neurons characterized by low activity values tend to be highly
popular, since these are the measurements collected during sleep-time. More
interestingly, one can note how the area marked as B in Fig. 1 and associated
to intense emotions, also contains neurons with a large number of hits.
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Fig. 2: Heatmaps displaying aggregated statistics of the 16x16 SOM trained
on the D1 data.

4.3 Assessment of measurement quality

Having analysed how the SOM can identify and distinguish different and in-
teresting patterns in the data collected by the wrist-band sensors, we now turn
our attention to investigate the quality of such measurements. In particular,
we are interested in assessing whether the activity patterns are the results of
physiological activity or if, instead, they are due to noise and artifacts during
data acquisition. For instance, one common assumption in the monitoring of
daily living activities is that smart-bracelet heartbeat measurements cannot
be trusted when they are associated to moments of high accelerometer activity
(e.g. because of possible alterations in the measurements captured by the PPG
sensor introduced by the wristband movement) [35,17].

In order to do this, we have set up an experiment leveraging D2 data and
associating to each measurement in this dataset a scalar measure of discrep-
ancy between the cardiac activity, as estimated using the wristband, and the
one estimated by the chest-strap (here considered as ground truth). In par-
ticular, we have computed the Root-Mean-Square Error (RMSE) between the
wristband and chest-strap estimates of the three scores introduced in Section
4.1, that are ANN, SDNN and RMSSD. Based on this information, we have
computed the distribution of the error for each map unit, again considering
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the average error for the measurements projected in each neuron. Note that
the SOM model is the same discussed Section 4.2 and trained solely on D1
data, while D2 samples used for projection purposes only. Fig. 3 shows the
unit-specific errors for the map. Gray-shaded units are those that never won
the competition for any of the samples in D2, that is no example in D2 is
assigned to a grey unit. Fig. 3a clearly points out an area of the map with few
units are characterized by the highest errors with respect to the ANN met-
ric. The surprising insight delivered by the error heatmaps is that the units
responding to high accelerometer readings (bottom-right on the maps) are
not characterized by substantially higher estimation errors. This suggests that
such highly valuable samples (because they are related to physical activity in
the subjects) need not to be discarded a-priori (as previously suggested by
common practice).

0.1

0.2

0.3

0.4

(a) RMSE on ANN

0.05

0.1

0.15

0.2

0.25

0.3

(b) RMSE on SDNN

0.1

0.2

0.3

0.4

(c) RMSE on RMSSD

Fig. 3: Distribution of cardiac activity estimation errors on the map, computed
with respect to ANN, SDNN and RMSSD scores.

To assess whether the results found on the maps in Fig. 3 could be gener-
alized to new data, we have built a predictive nearest-neighbor-based setting.
We have split D2 data in four partitions to perform a 4-fold cross validation.
For each fold k ∈ 1, 2, 3, 4, we take 3 splits to compose the training data (TRk)
and the remaining split as validation (V Lk). Given a training partition TRk
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ANN SDNN RMSSD

S1
Mean 0.0745 0.0473 0.0691

Standard deviation 0.0014 0.0003 0.0006

S2
Mean 0.0854 0.0492 0.0722

Standard deviation 0.0186 0.0085 0.0106

Table 1: Mean and standard deviation of the validation RMSE on the 4-fold
for the three metrics and the SOM-based predictor.

we project its samples on the SOM previously trained on D1 and we label each
unit in the map with the corresponding average RMSEk, as described above.
For each training partition TRk, we estimate the accuracy of the correspond-
ing predictor by projecting the V Lk samples on the map, associating to each
V Lk example the RMSEk of the unit it was projected to. As an aggregated
performance value, we have computed the validation RMSE between the ac-
tual cardiac-estimation error (known from D2) and the one predicted by the
map labelling (for each validation set V Lk). Table 1 reports the mean and
the standard deviation of the validation error across the four folds. We have
applied the same procedure to the centroids produced by running the kmeans
algorithm with 256 clusters on D1 data, to provide reference results on the
task. Table 2 reports the corresponding validation RMSE.

We have used two different strategies to assemble the cross-validation splits.
The first strategy (S1) splits the data in four random samples, each comprising
25% of the original D2 data. The second strategy (S2) creates the cross-fold
partitions on a subject level. Each partition (of the 4-fold) contains all data
from subjects that only belong to that partition. This ensures that the vali-
dation partition at iteration k (i.e. V Lk) contains data from subject unseen
in TRk, to provide an measure of the out-of-subject generalization. Also in
S2, subjects are split in such a way that each fold again contains a number of
samples that roughly corresponds to 25% of the original D2 data.

The validation errors for both setups are reported in Table 1 and Table 2 for
SOM and kmeans predictors, respectively. These results show for both methods
an excellent generalization of the quality assessment predictions in all three
metrics and across both validation setting. When comparing the SOM-based
and kmeans-based predictors, the former shows a better performance on the
ANN score, in both the S1 and S2 settings. Overall the two methods tend to
behave similarly in this predictive setting, which is not surprising given the
tight relationships existing between the two models [7]. On the other hand,
we believe that SOM offers some additional advantages over a kmeans-based
approach, that are related with a better interpretability, which is a key factor
for our explorative analysis in Section 4.2.

4.4 Comparative assessment

Once we have determined that the quality assessment of the SOM general-
izes well to unseen data, to conclude our analysis, we consider its practical



16 D. Bacciu et al

ANN SDNN RMSSD

S1
Mean 0.0763 0.0464 0.0680

Standard deviation 0.0023 0.0011 0.0017

S2
Mean 0.0875 0.0491 0.0719

Standard deviation 0.0159 0.0089 0.0112

Table 2: Mean and standard deviation of the validation RMSE on the 4-fold
for the three metrics and the kmeans-based predictor.

application as an intelligent filter to discard noisy/unreliable measurements.
We define a rejection threshold that determines if a neuron is unreliable, and
hence all measurements mapped to it. Based on domain knowledge on IBI
data, we have determined that measurements for which the ANN RMSE ex-
ceeds a θ = 10% threshold are excessively noisy and can be filtered out. Hence,
we label all neurons as being associated to reliable/unreliable measurements
according to such threshold. By this means, we are able to assess the reliability
of a new sample by feeding it to the network and associating it with the label
of the BMU.

We have compared our method, referred to as fsom in the following, with
a filter (fa) from literature [28] which determines sample rejection based on
motion-related features. We assess fsom and fa in terms of both quantity
and quality of the retained data. In particular, we measure the proportion of
discarded samples with respect to the full data and we compute the quality of
retained measurements as the ANN RMSE between wristband and chest-strap
on the preserved samples. These performance metrics are computed as average
values on the four D2 validation splits under the S1 and S2 cross-validation
setups discussed in the previous section.

The results in Table 3 show that fsom is advantageous in both terms, being
able to retain almost twice the amount of data retained by fa while achieving
an RMSE that is an order of magnitude lower. As a final step of verification, we
have applied our fsom filter to the data retained by the fa filter. By projecting
these data on our map, one can appreciate how fa, despite having rejected
more samples, retains a significant amount of measurements that are labelled
as noisy by our method. In particular, when considering out of subjects data
in D2, 79% of the samples that were considered reliable by fa are projected
by the map on units that have an ANN percentage greater than the threshold
θ. All in all, these results confirm that the proposed intelligent filter can be
valuable for practical use, as it allows to retain more, and more accurate, data
for later usage in human state monitoring applications leveraging noisy sensor
data from wearable devices.

5 Conclusions

We have introduced what we believe to be the first application of SOMs to
quality inspection and intelligent filtering of wearable sensor data. Despite be-
ing one of the longest standing neural models, SOM still supports effective
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ANN-RMSE % of discarded samples

S1
fa

Mean 0.2570 97.3
Standard deviation 0.0146 0.9

fsom
Mean 0.0409 52.8

Standard deviation 0.0011 4.4

S2
fa

Mean 0.1848 97.3
Standard deviation 0.1101 0.6

fsom
Mean 0.0411 48.9

Standard deviation 0.0037 11.24

Table 3: Performance comparison between the SOM-based fsom and motion-
based fa filters: results are assessed in terms of percentage of discarded samples
and average RMSE on ANN for the retained data.

exploratory analysis and visual inspection of heterogeneous and noisy data,
providing valuable insights into the data patterns, especially when used in com-
bination with heatmaps of aggregated statistics associated to input samples.
In this work, we have focused on a specific case study supported by real-world
data from a personal well-being application, comprising both heartbeat and
accelerometer data. Throughout our SOM-based analysis, we have identified
various prototypical patterns that can be associated to relevant physical and
mental states of the human subjects involved in the study. More importantly,
we have put forward a predictive use of the SOM that allows assessing the reli-
ability of a sensor measurement inputted to the network. We have shown how
the resulting SOM-based filter can achieve consistent improvements with re-
spect to a widely-used motion-based filter, increasing both the quality and the
quantity of the retained data. While in the present work we have focused on
a vectorial representation of the sensor measurements, it would be interesting
to assess how recurrent extensions of the SOM can be applied to a sequential
representation of the sensory information. On a more practical side, it would
be interesting to leverage the contained complexity of the SOM to explore a
filter implementation embedded on the wearable device. Such a solution might
prove advantageous in terms of energy-efficiency, allowing the device to trans-
mit only those measurements that are marked as reliable by the on-board
filter.
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Appendix

The appendix complements the visual analysis in Section 4.2. In Figure 4, we
provide another example of a 16x16 map generated with a different random
initialization to show reproducibily of the results in Figure 1. One can clearly
appreciate the coherence of the outcomes in the two maps, which appear one
the mirror version of the other with respect to the vertical axis.

Fig. 4: Additional codebook map displaying unit prototypes for the 16x16 map
trained on D1 data with different random initialization.
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The remainder of the plots provides maps for other grid sizes explored in
our empirical analysis, i.e. 8x8, 56x56 and 96x96. While for the former we
provide both codebook plots and heatmaps, for the latter two maps we omit
codebooks because of their limited readability.

Fig. 5: Codebook map displaying unit prototypes for the 8x8 map.
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Fig. 6: Heatmaps displaying aggregated statistics of the 8x8 SOM.
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Fig. 7: Heatmaps displaying aggregated statistics of the 56x56 SOM.
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Fig. 8: Heatmaps displaying aggregated statistics of the 96x96 SOM .
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