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Abstract

We give here a proof of the convergence of the Stochastic Gradient
Descent (SGD) in a self-contained manner.

1 Introduction

The Stochastic Gradient Descent (SGD) or other algorithms derived from it are
used extensively in Deep Learning, a branch of Machine Learning; but the proof
of convergence is not always easy to find. The goal of this paper is to adapt
various proofs from the literature in a simple format. In particular no claim
of originality is made (see [1–4] for some of my recent research papers in this
area); on the contrary please cite this work if you find it useful (arxiv or DOI:
10.5281/zenodo.4638695).

This proof can be used in any domain where a self-contained presentation is
needed.

2 Recall of the general framework

Suppose (Ω, F,P) is a probability space, L : Ω×RN → R a function depending
on a random argument ω and a parameter X (second argument) to be optimized.
Denote

L(X) = Eω[L(ω,X)]. (1)

The goal of the SGD is to find a minimum of L. It operates iteratively by taking
at iteration n:

� a (deterministic) ”learning rate” ρn (schedule fixed a priori

� a random ωn ∈ Ω independent of any other previous random variables is
drawn (following the law P)

� and updating by the formula

Xn+1 = Xn − ρn∇xL(ωn, Xn). (2)
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3 Hypothesis on L and L

In order to prove the convergence we need some hypothesis that are detailed
below

1. The gradient of L is bounded:

∃B > 0 : sup
ω
‖∇XL(ω,X)‖2 ≤ B, ∀X ∈ RN . (3)

2. L is strongly convex:

∃µ > 0 : L(Y ) ≥ L(X)+〈∇L(X), Y−X〉+µ

2
‖X−Y ‖2, ∀X,Y ∈ RN . (4)

Note that for µ = 0 this is just the usual convexity, i.e. the function is
above its tangent. For general µ this tells that the function is even above
a parabola centered in any X. For regular functions this means that the
Hessian D2L of L satisfies D2L ≥ µ · IN 1.

4 A convergence result and its proof

We fill prove the following

Theorem 1. Suppose that each L(ω, ·) is differentiable (a.e. ω ∈ Ω)2 and that
L satisfies the hypothesis (3) and (4). Then

1. the function L has an unique minimum X∗;

2. For any n ≥ 0 denote

dn = E
[
‖Xn −X∗‖2

]
. (5)

Then
dn+1 ≤ (1− ρnµ)dn + ρ2nB. (6)

3. For any ε > 0 there exists a ρ > 0 such that if ρn = ρ then

lim sup
n→∞

E
[
‖Xn+1 −X∗‖2

]
≤ ε. (7)

4. Take ρn a sequence such that:

ρn → 0 and
∑
n≥1

ρn =∞. (8)

Then dn → 0, that is limn→∞Xn = X∗, where the convergence is the L2

convergence of random variables.

1Here IN is the N ×N identity matrix.
2This requirement can be largely weakened. For instance in the case of ReLU activation,

which corresponds to the positive part x 7→ x+, one can employ any suitable sub-gradient of
the x+ function and in particular take at the non-regular point x = 0 any value between 0
and 1.
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Proof. Item 1: The existence and uniqueness of the optimum is guaranteed by
the assumptions of strong convexity and smoothness of L.
Item 2: We have

E
[
‖Xn+1 −X∗‖2

]
= E

[
‖Xn −X∗ − ρn∇xL(ωn, Xn)‖2

]
= E

[
‖Xn −X∗‖2

]
+ ρ2nE

[
‖∇xL(ωn, Xn)‖2

]
− 2ρnE [〈Xn −X∗,∇xL(ωn, Xn)〉] .

(9)

First we remark that3

E [〈Xn −X∗,∇xL(ωn, Xn)〉] = E [〈Xn −X∗,∇L(Xn)〉] .

But at its turn

E [〈Xn −X∗,∇L(Xn)〉] ≥ E
[
L(Xn)− L(X∗) +

µ

2
‖Xn −X∗‖2

]
≥ µ

2
E[‖Xn −X∗‖2], (10)

the last inequality being guaranteed by the fact that X∗ is the minimum.
Putting together all relations proved so far one obtains the relation (6).
Item 3: When ρn is constant equal to ρ inequality (6) is equivalent to

dn+1 − ρ
B

µ
≤ (1− ρµ)(dn − ρ

B

µ
).

Since the function x 7→ x+ (the positive part) is increasing we obtain for ρ <
1/µ: (

dn+1 − ρ
B

µ

)
+

≤ (1− ρµ)

(
dn − ρ

B

µ

)
+

,

and by iteration, for any k ≥ 1:(
dn+k − ρ

B

µ

)
+

≤ (1− ρµ)k
(
dn − ρ

B

µ

)
+

.

Taking k →∞ we obtain lim supk

(
dk − ρBµ

)
+

= 0 hence the conclusion (7) for

ρ smaller then 1/µ and εµ/B.
Item 4: For non-constant ρn and arbitrary fixed ε we obtain from (6)

dn+1 − ε ≤ (1− ρnµ)(dn − ε) + ρn(ρnB − µε).

When n is large enough ρn(ρnB − µε) ≤ 0 and thus

dn+1 − ε ≤ (1− ρnµ)(dn − ε),

therefore
(dn+k − ε)+ ≤ (1− ρnµ) (dn − ε)+ .

3The formal justification is as follows: denote by Fn the sigma algebra generated by X1,
..., Xn, ω1, ..., ωn−1. In particular ωn is independent of Fn. Recall now that for any
random variables U measurable with respect to Fn and V independent of Fn: E[g(U, V )|Fn] =∫
g(v, U)PV (dv) and in particular E[g(U, V )] = E[E[g(U, V )|Fn]] = E[

∫
g(v, U)PV (dv)].

3



Iterating such inequalities we obtain

(dn+k − ε)+ ≤
n+k−1∏
`=n

(1− ρ`µ) (dn − ε)+ .

From the Lemma 2 we obtain limk→∞ (dk − ε)+ = 0 and since this is true for
any ε the conclusion follows.

Lemma 2. Let µ > 0 and ρn a sequence of positive real numbers such that
ρn → 0 and

∑
n≥1 ρn =∞. Then for any n ≥ 0:

lim
k→∞

n+k∏
`=n

(1− ρ`µ) = 0. (11)

Proof. Recall that for any x ∈]0, 1[ we have log(1− x) ≤ −x; then:

0 ≤
n+k∏
`=n

(1− ρ`µ) = e
∑n+k

`=n log(1−ρ`µ) ≤ e
∑n+k

`=n (−ρ`µ) k→∞−→ e−∞ = 0, (12)

which concludes the proof.

5 Concluding remarks

We make here some remarks concerning the hypothesis and the use in Neural
Networks.

First, consider the hypothesis
∑
n ρn =∞; at first it may seem strange but

this is not really so. Note that in particular it is true when ρn is a constant.
But in general, if we forget the stochastic part4, one can interpret the SGD as
following some continuous time dynamics of the type X ′(t) = −∇L(X); for the
simple quadratic function L(X) = α‖X‖2/2 the dynamics is X ′(t) = −αX(t)
with solution X(t) = e−αtX(0) needs an infinite ’time’ t to converge to the
minimum X∗ = 0N . Or here

∑
n ρn is the discrete version of the time and thus

it is not a surprise to need infinite time to obtain X∗ with infinite precision. On
the other hand if a finite precision is needed one can just take a constant time
step as indicated in the theorem5.

On the other hand, an important example that satisfies (8) is ρn = c1
c2+n

,
with c1, c2 > 0. In general giving a functional form for ρn is termed ’choosing a
decay rate’, but it may not be clear what the best decay rate is in general.
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