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Abstract

We give here a proof of the convergence of the Stochastic Gradient
Descent (SGD) in a self-contained manner.

1 Introduction

The Stochastic Gradient Descent (SGD) or other algorithms derived from it are
used extensively in Deep Learning, a branch of Machine Learning; but the proof
of convergence is not always easy to find. The goal of this paper is to adapt
various proofs from the literature in a simple format. In particular no claim
of originality is made (see [114] for some of my recent research papers in this
area); on the contrary please cite this work if you find it useful (arxiv or DOI:
10.5281/zenodo.4638695).

This proof can be used in any domain where a self-contained presentation is
needed.

2 Recall of the general framework

Suppose (2, F,P) is a probability space, L : Q@ x RN — R a function depending
on a random argument w and a parameter X (second argument) to be optimized.

Denote
L(X) = Eu[L(w, X)]. (1)

The goal of the SGD is to find a minimum of £. It operates iteratively by taking
at iteration n:

e a (deterministic) ”learning rate” p, (schedule fixed a priori

e a random w, € ) independent of any other previous random variables is
drawn (following the law P)

e and updating by the formula

Xnt1=Xn — puVaL(wn, Xp). (2)



3 Hypothesis on L and £

In order to prove the convergence we need some hypothesis that are detailed
below

1. The gradient of L is bounded:

3B >0: sup||VxL(w,X)|? < B, VX € R, (3)

2. L is strongly convex:
Jp>0: L(Y) > L(X)+<VL(X),Y—X)+%||X—YH2, VX, Y € RY. (4)

Note that for g = 0 this is just the usual convexity, i.e. the function is
above its tangent. For general y this tells that the function is even above
a parabola centered in any X. For regular functions this means that the
Hessian DL of £ satisfies D2L > - I[1]

4 A convergence result and its proof

We fill prove the following

Theorem 1. Suppose that each L(w,-) is differentiable (a.e. w € QE and that
L satisfies the hypothesis and . Then

1. the function £ has an unique minimum X, ;
2. For any n > 0 denote
dn :E[HXTL_X*HQ} : (5)

Then
dnt1 < (1= pop)dn + PELB' (6)

3. For any € > 0 there exists a p > 0 such that if p, = p then

limsupE [|| X 41 — X.|?] < (7)

n—o0

4. Take py, a sequence such that:

pn — 0 and an:oo. (8)

n>1

Then d,, — 0, that is lim, oo X, = X., where the convergence is the L?
convergence of random variables.

1Here Iy is the N x N identity matrix.

2This requirement can be largely weakened. For instance in the case of ReLU activation,
which corresponds to the positive part  +— =4, one can employ any suitable sub-gradient of
the x4 function and in particular take at the non-regular point x = 0 any value between 0
and 1.



Proof. Ttem [1} The existence and uniqueness of the optimum is guaranteed by
the assumptions of strong convexity and smoothness of L.
Ttem [2} We have

E [||Xn+1 - X*||2] =E [”Xn - Xi— pnvxL(Wm Xn)||2]
=E [HXn - X*H2] =+ piE “|vxL(wnaXn)H2] —2p,E (X, — X, Vo L(wn, Xn))]

(9)
First we remark thatf]
E[(X, — X, VoL(wn, X,))] = E[(X,, — X, VL(X,))].
But at its turn
E (X — X, VE(Xa))] 2 B [£(Xa) - £(X.) + 51X, - X, 7]
> CE[|X, - X. |2, (10)

the last inequality being guaranteed by the fact that X, is the minimum.
Putting together all relations proved so far one obtains the relation (@
Item [3f When p,, is constant equal to p inequality @ is equivalent to

B B
dnt1 — p— < (1= pp)(dn — p—).
ey ( ) M)

Since the function = — z; (the positive part) is increasing we obtain for p <

1/p:
B B
dn Y S 1- dn_ - )
( +1 pu)+ ( pu)( pu)+

and by iteration, for any k > 1:

B B
(dn+k - p> < (1—pp)* <dn - p) -
Iy Ty

Taking k — oo we obtain lim sup,, (dk — p%) = 0 hence the conclusion for
+

p smaller then 1/ and eu/B.
Item 4; For non-constant p,, and arbitrary fixed ¢ we obtain from @

dn+1 —€ S (1 - pnﬂ)(dn - 6) + pn(pnB - MG).

When n is large enough p,,(p, B — pe) < 0 and thus

dnt1—€ < (1= ppp)(dn —¢€),

therefore
(dntr — €)+ < (1= pap) (dn — €)+ .

3The formal justification is as follows: denote by F,, the sigma algebra generated by X7,
veey Xn, W1, .., Wn—1. In particular wy is independent of F,. Recall now that for any
random variables U measurable with respect to F,, and V independent of F,,: E[g(U,V)|Fr] =
J g(v,U)Py (dv) and in particular E[g(U, V)] = E[E[g(U, V)|Fn]] = E[ g(v, U) Py (dv)].




Iterating such inequalities we obtain

(o =)y <[] (= pe) (do — ).,

From the Lemma [2| we obtain limy_, o (d — e)+ = 0 and since this is true for
any € the conclusion follows. O

Lemma 2. Let p > 0 and p, a sequence of positive real numbers such that
pn — 0 and Zn21 pn = 00. Then for any n > 0:

n+k
lim (1= pep) =0. (11)

k—o0
l=n

Proof. Recall that for any z €]0, 1] we have log(1 — x) < —x; then:

n+k
0< H(1 — pep) = e os(l=pen) < XP(—pem) K232 00 _ (12)
l=n
which concludes the proof. O

5 Concluding remarks

We make here some remarks concerning the hypothesis and the use in Neural
Networks.

First, consider the hypothesis >, p, = oo; at first it may seem strange but
this is not really so. Note that in particular it is true when p,, is a constant.
But in general, if we forget the stochastic partﬂ one can interpret the SGD as
following some continuous time dynamics of the type X'(t) = —VL(X); for the
simple quadratic function £(X) = a|X||?/2 the dynamics is X'(t) = —aX (t)
with solution X (¢) = e~ **X(0) needs an infinite 'time’ ¢ to converge to the
minimum X, = 0y. Or here )" p, is the discrete version of the time and thus
it is not a surprise to need infinite time to obtain X, with infinite precision. On
the other hand if a finite precision is needed one can just take a constant time
step as indicated in the theore

On the other hand, an important example that satisfies is pp = c;in’
with ¢1,co > 0. In general giving a functional form for p,, is termed ’choosing a
decay rate’, but it may not be clear what the best decay rate is in general.
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