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 Software cost estimation has always been a serious challenge lying ahead of 

software teams that should be considered in the early phases of a software 

project. Lack of sufficient information on final requirements, as well as  

the existence of inaccurate and vague requirements, are among the main 

reasons for unreliable estimations in this area. Though several effort and cost 

estimation techniques and models have been proposed over the recent years, 

an increase in their accuracy has always been a controversial issue, and 

researchers' efforts in this area are still ongoing. This study presents a new 

model based on a hybrid of adaptive network-based fuzzy inference system 

(ANFIS) and differential evolution (DE) algorithm. This model tries to 

obtain a more accurate estimation of software development effort that is 

capable of presenting a better estimate within software projects compared to 

previous works. The proposed method outperformed other optimization algorithms 

adopted from the genetic algorithm, evolutionary algorithms, meta-heuristic 

algorithms, and neuro-fuzzy based optimization algorithms, and could 

improve the accuracy using MMRE and PRED (0.25) criteria up to 7%. 
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1. INTRODUCTION 

Software project planning and management are regarded as essential activities in software product 

development. Accurate estimation is one of the key activities in project planning to complete a project 

successfully. In software project management, estimation is required at the beginning of the process as one of 

the important phases of software development, including cost, time, and effort estimation [1]. Often cost 

estimation for software projects is the estimation of the effort required to implement these projects. 

Effort estimation is the prediction of the amount of effort in terms of time and the number of  

the team members required to develop the software product because one of the cost elements in software 

projects is the cost of training and payments to employees. Proper estimation can include the accurate 

estimation of the software costs in budgeting, planning, controlling, and finally managing the project 

effectively. Moreover, effort estimation can be helpful in determining the required resources in the future [2]. 

Software development cost estimation has always been proposed as a challenge ahead of software teams and 

companies. Accurate and reliable effort estimation is essential for resource allocation and reasonable 

planning during software design and development. Success and failure of a project depend on the project 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 :  707 - 715 

708 

planning because the time and budget constraints required for the successful completion of the project are 

estimated in this phase [3].  

Inadequate estimation of the required effort may cause delay and cost overrun, leading to project 

failure, and conversely, overestimation can be detrimental to using project resources. Therefore, it seems that  

the success of any software project seriously depends on the accuracy of its effort estimation [4]. Accurate estimation 

is helpful in contract negotiations, planning and coordinating project activities, and allocating effective 

resources to them. The notion of software cost estimation began to receive attention with the advent of  

the computer industry in 1940, and research is still ongoing in this area [5]. Over the past decade, various 

types of development processes have been established, which had different effects on software project 

planning and estimation. How to generate estimation to achieve better results has long been the focus of the 

software engineering industry [6].  

Following the achievement of higher levels of accuracy in effort estimation, the experiments have 

been continuously investigated in computational techniques using theoretical concepts [7, 8] and the combination 

of existing methods [9-11]. Considering the the difficulty of analyzing the relationship between properties 

and the complexity of effort estimation, the optimization process should be applied. Optimization can be 

applied either directly to effort estimation processes such as feature weighing in similarity-based estimation 

or indirectly using machine learning techniques like, e.g., fuzzy neural networks or artificial neural networks. 

The purpose of the present paper is to model the effort estimation required for software development 

using the hybrid of fuzzy neural network and differential evolution (DE) algorithm. The rest of the paper is 

organized as follows: Section 2 provides a concise review of the related works. The proposed model, along 

with the research process, is presented in Section 3. Section 4 explains the results obtained from this research. 

Finally, the conclusion is presented in Section 5 
 

 

2. RELATED WORKS 

In this section, research studies on software development effort estimation are reviewed by 

investigating fuzzy and neural systems-based, and machine learning-based research studies. 

 

2.1.  Machine learning methods and optimization algorithms in software development effort estimation 

This section gives an overview of studies that have used machine learning methods and optimization 

algorithms for software development effort estimation. In 2013, Khatibi et al., [12] used particle swarm 

optimization (PSO) algorithm to weigh features in the similarity-based method. This hybrid led to  

the identification of similar projects which are based on the similarity function in a similarity-based method. 

They proposed a new framework in which more accurate estimations are obtained by weighing features 

properly. As this framework can be used in the datasets with batched and non-batched features, it can be said 

that it is flexible to a large extent. In this study, three real datasets were used to assess the proposed model, 

and the results were compared with other estimation models. The results show that this model can 

significantly improve the performance of existing estimation models [12]. 

In 2015, Kumari et al., [13] used the PSO algorithm to initialize parameters of the use case point 

analysis method. They believe that meta-heuristic techniques can be used through computational methods to 

develop test effort estimation models to optimize the problem by repeatedly trying to improve a solution. 

Therefore, in this research, a search meta-heuristic algorithm was used. The results show that this accuracy 

implementation increases the precision of effort estimation.   

Hota et al., [14] studied adaptive neural networks in 2015. To this purpose, they adjusted some 

particular parameters such as momentum, learning rate, error backpropagation network (EBPN), and 

implemented this method using two datasets: China and Maxwell. The analyzed results from various surveys 

were satisfactory. 

In another research in 2016, Rijwani et al., [15] investigated the feed-forward neural network.  

They used the COCOMO dataset to test and train network in this research. Additionally, they used mean 

square error (MSE) and mean magnitude of relative error (MMRE) as performance measurement indices. 

The results obtained from this research show that the proposed model can provide better results and a more 

accurate prediction of software development efforts.   

By assessing development efforts in the initial stages through a popular machine learning method 

called random forest technique in 2016, Satapathy et al., [16] adjusted parameters in use case point analysis method. 

Using this method, the effort parameters were optimized to obtain higher accuracy. Moreover, the obtained results 

were compared with multilayer neural networks, radian-based networks, linear and nonlinear regression 

methods, and the performance of each method is obtained. 

Nassif et al., [17] investigated neural network models for software development effort estimation. 

They investigated four different types of neural networks, including radial basis function neural networks, 
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general regression neural network, cascade correlation neural networks, and multilayer perceptron networks. 

ISBSG dataset was used to test and train these four models in this research. The obtained results show that 

the four models tend to overestimate in 80% of the datasets, and the significance of the model inputs differs 

depending on the model chosen. Finally, it was found that the cascade correlation neural network 

outperforms the other three models [17].  

Benala et al., [18] used the DE algorithm to weigh features in the similarity-based method. To this 

purpose, they used five successful mutation strategies. They simulated the proposed method on the PROMISE 

repository dataset and obtained a significant improvement in prediction over-optimization of features 

weighing in other methods such as artificial neural network, genetic algorithm, PSO algorithm, and radian-

based networks. 
 

2.2.  Fuzzy and neural systems in software effort estimation 

In 2010, Vishal et al., [19] proposed an optimal fuzzy logic-based framework to predict software 

development efforts. This framework proposes transparency in the system, and with the availability of new 

data, can adapt to changing environments. The proposed traditional COCOMO cost estimation model tried to 

improve the accuracy of effort estimation using the fuzzy concept with measuring development state for 

projects and cost stimuli.  

Lopez-Martin [20] proposed a fuzzy model for effort prediction in small scale programs based on 

two independent variables. He used the recode of small programs collected by 74 programmers using personal 

software process methods. These data were used as input in a fuzzy model for development effort estimation. 

The accuracy of this fuzzy model was compared with that of a statistical regression model. The comparison 

criterion was MMREMMRE. In the verification and validation stages, it was found that MMRE value in  

the fuzzy model is lower than or equal to that of the regression model, and in comparison to ANOVA-based 

models, no significant statistical difference was observed between their instruments. This conclusion shows 

that fuzzy logic can be used for effort prediction in small programs [20]. 

In 2013, Kamal et al., [21] proposed a fuzzy-based model for software cost estimation. In this 

method, fuzzy logic was used to compress the input parameters of the COCOMO II model. Triangular fuzzy 

numbers were used to express linguistic terms in the COCOMO II model. The results from this model were 

compared with those of COCOMO II and Alaa Sheta. The proposed model revealed better results in terms of 

MMRE, PRED (n), and CSF.  

Kad et al., [22] used a soft computation-based technique to investigate uncertainty and unambiguity 

problems in 2013. This technique led to the improvement of the software development efforts estimation.  

In this vein, fuzzy logic was applied to different parameters of the COCOMO II model. The obtained results 

showed that the MMRE value and values obtained using fuzzy logic were better than that of the algorithm 

model. Results were obtained using the COCOMO dataset.  

In 2015, Agrawal et al., [23] investigated the efficiency of software development effort estimation 

using the fuzzy neural model. In this research, the fuzzy neural model with three different membership 

functions is compared with neural network models. The fuzzy neural model with triangular, Gaussian, and 

Bayesian membership function was compared with the neural network model. To this purpose, Lopez-Martin 

dataset [20] with 41 modules was used, and three different membership function models were compared with 

the existing neural network models based on five different parameters, including magnitude relative error 

(MRE), MMRE, prediction (PRED), balanced relative error (BRE), relative standard deviation (RSD) and 

root mean squared error (RMSE). Finally, the comparison showed that the neuro-fuzzy model using  

a trapezoidal membership function outperforms other models. Additionally, it was found that the neuro-fuzzy 

model using a triangular membership function gives better results for all the five parameters [23]. 

In 2016, Nanda et al., [24] used the hybrid PSO algorithm and fuzzy neural network model to 

improve results. They used NASA datasets. The parameter cost driver consists of 17 features that have been 

optimized using PSO techniques to achieve better prediction accuracy. Moreover, the optimization results 

were trained using the algorithm to get a prediction neuro-fuzzy effort. The performance of the proposed 

estimation model was assessed with some parameters of the intelligent system using MSE, MMRE, and right 

PRED criteria. The results from this research showed the lower and higher rate of MSE and MMRE and 

PRED, respectively. 

Moosavi et al., [25] proposed a novel hybrid of adaptive fuzzy inference system (ANFIS) and  

the satin bowerbird optimization (SBO) algorithm to obtain more accurate software development efforts 

estimation. The proposed hybrid model is an optimized neuro-fuzzy-based estimation model that is able to 

produce accurate estimation in software projects. In comparison to other optimization algorithms, the proposed 

optimization algorithm is inspired by the genetic algorithm using 13 standard test sequences, including multimodal 

and unimodal functions. Also, the proposed hybrid model was assessed using three datasets. The results from 

this research showed that the presented model could improve performance criteria. This paper was used as 

the base paper in this research 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 11, No. 1, February 2021 :  707 - 715 

710 

3. THE PROPOSED MODEL 

In this research, the software effort estimation model called ANFIS-DE is proposed. This model is 

presented in two sections. In the first section known as the training phase, how to obtain the optimal 

parameter for ANFIS is investigated using the DE algorithm. In the second phase known as the test phase,  

we discuss how to use the obtained optimal parameters. In fact, a set of training data is presented to  

the model for the first time, and after the parameters were extracted from the fuzzy basis system, the software 

effort estimation system is adjusted by the parameters, and the DE algorithm investigates the parameter 

vector in training samples to minimize errors. To obtain the optimal parameters, the stages to design and 

create an optimized neuro-fuzzy system can be classified as follows: 

- Receiving datasets consisting of software projects with identical features;  

- Creating a fuzzy basis system; 

- Adjusting fuzzy system parameters using modeling error with the DE algorithm; 

- Returning a fuzzy system with the best parametric values as the final result. 

In the present research, a set of software projects is used for effort prediction as a training dataset in 

the training phase. First, a Sugeno type fuzzy system is generated, and data are injected into it. Then, the fuzzy 

system parameters are set. This is the most important stage of ANFIS optimal design. The process of setting 

parameters can be described as follows: 

- Reading fuzzy basis system parameters: this includes reading input and output membership function 

parameters. After reading these parameters, they should be sequentially saved in a vector. 

- Changing the fuzzy basis system parameters using the DE algorithm: 

To this purpose, we suppose that the value of the optimal parameter is a factor of the initial 

parameters. In other words, if we suppose that pi* is the optimal value of parameter i, pi
0 is the initial value of 

parameter i, and xi is the coefficient of this state, pi*is obtained using the (1). 

 

𝑝𝑖
∗ =  𝑥𝑖𝑝𝑖

0 (1) 

 

where xi is determined using the DE algorithm. There are two opinions about xi: 

First: just resizing without changing signs. xiϵ[10-α,10α] and the optimal value of α can be less than 

or equal to 1. 

Second: Resizing and changing signs. xi ϵ [-M, +M] where M can be less than or equal to 10. 

- Entering new parameters obtained from the optimization algorithm in the fuzzy basis system 

- Classifying data and deducing the obtained results for effort estimation 

- Calculating effort using system error assessment criteria, including MMRE and PRED (0.25) 

At this stage, the best parameters obtained by DE are saved for the next stage. These parameters 

were obtained based on MMRE and PRED (0.25) criteria. In fact, DE calculates these parameters to 

minimize the value of MMRE and PRED (0.25). Generally, the main aim of all software effort estimation 

techniques is to reduce MMRE and PRED (0.25). 

The second phase, which is called the test phase, is the proposed model assessment stage. In fact, 

MMRE and PRED (0.25) values are the outputs of this stage. Like the previous stage, part of the software 

project is selected as test data and applied to the fussy basis system. The final values of MMRE and PRED 

(0.25) are calculated after the optimal parameters are inserted. In the proposed model, the optimal parameters 

help ANFIS have a more accurate estimation. At each iteration, the DE algorithm can generate various 

parameters such that the best model is used in the final model. 

 

 

4. MODEL EVALUATION 

4.1.  Evaluation criteria 

The model assessment criteria are presented in this section. As the assessment criteria play a main 

role in the proposed model, the criteria selection and determination can affect the success of the research 

because various assessment criteria are used in different papers and in most cases, the program source code is 

not available. Therefore, in this research attempts were made to use the most general assessment criteria 

utilized in a majority of papers. The estimation models' performance is investigated using several criteria, 

including RE. This is usually known as the first and main criterion and is shown in (2). Another criterion 

obtained using the previous equation is MRE that calculates the absolute error percentage compared to  

the real effort and is shown in (3). The mean of MREs is called MMRE and is shown in (4). Additionally,  

the median of MREs is called MdMRE. 

 

𝑅𝐸 =  
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
 (2) 
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 𝑀𝑅𝐸𝑖 =  
|𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
 (3) 

 

𝑀𝑀𝑅𝐸 =  
∑ 𝑀𝑅𝐸𝑖

𝑁
𝑖=1

𝑁
 (4) 

 

The other important criterion is the performance index PRED(x), showing the percentage of 

predictions that correctly detect x value and is defined in (5). 

 

𝑃𝑅𝐸𝐷(𝑥) = ∑ 𝐷𝑖
𝑁
𝑖=1 ∗  

100

𝑁
 (5) 

 

𝐷𝑖 = {
1                 𝑖𝑓 𝑀𝑀𝑅𝐸 <

𝑥

100

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
  

 

𝑤ℎ𝑒𝑛 𝑥 = 25 𝑡ℎ𝑒 𝑃𝑅𝐸𝐷 𝑚𝑒𝑡𝑟𝑖𝑐 𝑖𝑠 𝑑𝑒𝑓𝑖𝑛𝑑 𝑎𝑠 𝑃𝑅𝐸𝐷(0.25)  

 

Reducing MMRE and increasing PRED are the main goals of all software cost and effort estimation 

models. As they are among the most reliable and common criteria, they are also used in this research.  

In order to assess, Albrecht and Kemerer datasets were used for software efforts estimation because these two 

software measurement datasets have been used in the related works as well, and they are good criteria to 

measure the required method. Albrecht dataset includes developed projects using the third-generation 

language and contains five independent features; Filcount, SLOC, Quecount, Outcount, and Inpcout. 

Moreover, there are two dependent features called FP and Effort. The "Effort" feature that indicates the required 

effort is in terms of each 1000 persons per hour. Kemerer dataset includes the data gathered from 15 large 

commercial data processing projects. Each project in this dataset has seven input features, including duration, 

programming language, hardware, adjusted functional points (AdjFP), Effort, KSLOC, and RAWFP  

(raw functional points) [26]. 

 

4.2.  Experimental design 

To evaluate and assess the proposed method, first, the data should be pre-processed using various 

methods so that the existing data can be used in datasets in the best way. The first step in data pre-processing 

is standardization. One method is to convert data to a new set in which all values are between zero and one. 

This is also called normalization [27]. (6) shows normalization. 

 

𝑧𝑖 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (6) 

 

where zi shows normalized data, xi is the initial value of data. Moreover, xmin and xmax show the minimum 

and maximum data, respectively. 

Then data are divided into two datasets: training data and test data. To this purpose, 3-fold cross-

validation is used. In this classification method, the normalized datasets are randomly divided into three 

groups with approximately equal sizes. In the first stage, two groups are considered for training (e.g., s2  

and s3). The other group (e.g., s1) is then used for testing. Indeed, when datasets are divided into three 

datasets s1, s2, and s3, one of them (e.g., s1) is selected for testing, and the other two datasets (s2 and s3) are 

used for training separately. All possible states are shown in Table 1.  

 

 

Table 1. How to apply 3-fold cross-validation on the proposed method  
 S 

S1  S2 S3 S3 

 Possible sequences    

 Base Train Test Test 

Fold 1 
S1 S2 S3 S3 

S1 S3 S2 S2 

Fold 2 
S2 S1 S3 S3 

S2 S3 S1 S1 

Fold 3 
S3 S2 S1 S1 

S3 S1 S2 S2 
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The main reason for selecting k to be 3 (k=3) is to have the same conditions for making  

a comparison between the results of this study and those of the base research [25]. This continues until all 

datasets are used for testing. Then in the test phase, effort estimation is carried out. And at the last stage, 

MMRE and PRED (0.25) are calculated for each group. Finally, the mean of the three obtained accuracies is 

considered as the final result.  

 

4.2.1. Initial setting of parameters 

In this research, genfis function was used in MATLAB software, and a fuzzy basis system was 

implemented. To obtain the best possible result in this system, the default setting of parameters was changed, 

and the parameters were set with higher accuracy. Table 2 displays the values used for these variables.  

As ANFIS default training functions were not used in this research, the DE algorithm was used for setting 

parameters more accurately. The application of the DE algorithm has a significant effect on final results.  

The parametric values of the DE algorithm are shown in Table 3. The remarkable point in determining  

the values of this algorithm's parameters is that all of the values are obtained through a comprehensive trial 

and error process. 

 

 

Table 2. Parameters value 
Parameter Value 

Input MF function type Gaussian 

Output MF type Linear 

Based fuzzy system Genfis 

Learning algorithm DE 

And method prod 

Im method prod 

Or method probor 

Defuzz method wtaver 

Learning algorithm DE 

Agg method sum 

 

 

Table 3. DE parameters value  
Parameter Value 

Max. no. of generation 200 

npop 80 

Scaling factor 0.8 

Crossover rate 0.5 

 

 

4.3.  Comparing the proposed method with other models 

In order to test the proposed method, it was compared with other methods. To ensure the accuracy 

and precision of the comparison, it should be considered that the quality criterion of assessment functions and 

selected intervals are the same for all data. In this research, the results of the proposed model are compared 

with ANFIS-SBO model, which is related to the relevant work. Additionally, the comparison was made using 

the other DE algorithm, i.e., genetic algorithm. Moreover, as the basis of the work in this research was 

studying neuro-fuzzy networks, the results of the proposed model were also compared with those of ANFIS 

network that uses artificial neural networks (gradient descent). Results obtained from Albrecht dataset are 

represented in Table 4. 

 

 

Table 4. Results obtained from Albrecht dataset in comparison to other models  

Models 
Training Set Testing Set 

MMRE PRED MMRE PRED 

ANFIS-ANN 0.81 0.3 0.74 0.2 

ANFIS-DE 0.3 0.78 0.28 0.86 

ANFIS-SBO 0.5 0.47 0.51 0.42 

ANFIS-GA 0.32 0.54 0.38 0.6 

 

 

Also, the values obtained from MMRE and PRED (0.25) of the dataset are compared to other 

methods and shown in Figure 1. The results show that the proposed method produced more accurate 

estimation compared to other models and can significantly improve MMRE and PRED (0.25) values.  

The results of using the proposed model in Kemerer dataset in comparison to other popular models are shown 
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in Table 5. In Figure 2, the results obtained from MMRE and PRED (0.25) in Kemerer dataset are compared 

with other models. The proposed model revealed the best results compared to other models. 

 

 

 
 

Figure 1. PRED and MMRE criteria values plot in Albrecht dataset 

 

 

Table 5. Results obtained from Keremer dataset in comparison to other models 

Models 
Training Set Testing Set 

MMRE PRED MMRE PRED 

ANFIS-ANN 0.05 0.9 0.13 0.7 

ANFIS-DE 0.77 0.21 0.9 0.31 

ANFIS-SBO 0.07 0.89 0.08 0.9 

ANFIS-GA 0.6 0.20 0.75 0.32 

 

 

 
 

Figure 2. PRED and MMRE criteria values plot in Kemerer dataset 

 

 

4.4.  Improvement analysis 

As shown in Tables 1-5, the MMRE criterion values are less than their similar values in other 

algorithms. This holds for both datasets used and is shown in Figures 1 and 2 more clearly. Additionally, this 

holds for the value of the PRED (0.25) criterion, and as shown in Tables, the value of this criterion is  

the highest value in both datasets. This criterion values are shown in Figures 1 and 2 for greater clarity.  

In Table 6, the percentages of improvement obtained by applying the proposed method on Albrecht dataset 

are shown with MMRE and PRED (0.25). 

 

 

Table 6. The percentage of obtained improvement by applying  

the proposed method on Albrecht datasets  
Models MMRE PRED 

ANFIS-ANN 46% 48% 

ANFIS-SBO 23% 31% 

ANFIS-GA 10% 24% 
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As shown in Table 6, the highest improvement of MMRE is 46%, which is related to ANFIS basic 

method that uses artificial neural networks for training. This is while the lowest improvement percentage 

(10%) is related to the genetic algorithm (ANFIS-GA). Like MMRE, PRED (0.25) has improved as well.  

The lowest improvement percentage (24%) is related to S-GA, and the highest improvement percentage of 

PRED (0.25) (48%) has occurred for ANFIS-ANN. The improvement percentages obtained using the proposed 

method applied to Kemerer dataset are shown in Table 7 with MMRE and PRED (0.25) assessment criteria. 

 

 

Table 7. The percentage of obtained improvement by applying  

the proposed method on Kemerer datasets  
Models MMRE PRED 

ANFIS-ANN 70% 72% 

ANFIS-SBO 69% 7% 

ANFIS-GA 1% 17% 

 

 

As shown in Table 7, the proposed method can significantly improve PRED (0.25) metric compared 

to other methods. The highest MMRE improvement (70%) is related to ANFIS-ANN. Moreover, considering 

the greatest improvement, ANFIS-SBO comes second after ANFIS-SBO with a relatively similar percentage, 

i.e., 69%. This is while the lowest percentage, which is only 1%, is related to ANFIS-GA.  

In the other assessment criterion, the lowest improvement for PRED (0.25) is related to ANFIS-SBO 

model, i.e., 7%, while the greatest improvement of 72% has to do with the basic model, i.e., ANFIS-ANN.  

It is obvious that the improved percentage for PRED (0.25) is higher than MMRE, but the proposed method 

is still stronger than other models. Finally, by investigating the obtained results, it was found that the proposed 

model in both datasets revealed more accurate results compared to other models. 

 

 

5. CONCLUSION  

Presenting a reliable and accurate software effort estimation is a significant issue for software 

project teams and companies. Considering the uncertainty existing in software projects, not only should  

a method be selected to resolve this uncertainty, but also a method should be offered for accurate software 

development effort estimation. ANFIS can investigate the uncertainty of software projects by correctly 

selecting membership functions and training algorithms. This study introduced the proposed method called 

ANFIS-DE and used it for a more accurate estimation of software projects. Though ANFIS is a popular 

estimation model widely used in software efforts estimation, this model is still incapable of generating 

estimations with proper accuracy in most cases. As a solution for this problem, evolutionary algorithms, 

especially the DE algorithm, can be used as an alternative to class training algorithms in ANDIS.  

This research focused on using hybrid ANFIS-DE as a new training algorithm. The intrinsic features of DE 

made this algorithm appropriate about features weighing, weight adjustment, deviation, and ANFIS 

parameters adjustment. Additionally, this algorithm is among the evolutionary algorithms with the highest 

convergence rate. The assessment criteria to test and compare ANFIS-DE with other known algorithms, 

including GA, SBO, and neuro-fuzzy system-based ASS, were completely investigated and used. The results 

from this research showed that the proposed method has been able to obtain better performance in all of  

the assessed criteria than other algorithms in experimental functions. 
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