

FAIR for Research Software Principles Discussion Document
for Community Input

This public document is for community consultation on work carried out by the FAIR4RS
Working Group and subgroup activities from July 2020 to February 2021.
We recommend you become a member of the FAIR4RS Working Group before
collaborating on this document.

This document examines and discusses a) the output of FAIR4RS Subgroup 1: A fresh
look at FAIR for Research Software, b) the output of FAIR4RS Subgroup 4: Review of new
research related to FAIR Software, c) the position paper "Towards FAIR Principles for
Research software", d) "5 recommendations for FAIR software", e) the output report from
FAIR4RS Subgroup 2: FAIR work in other contexts, and e) the definitions of research
software produced by FAIR4RS Subgroup 3.

How to contribute
This document will remain open for collaborators to respond to the questions posed or add
comments from 24 Feb 2021 until 10 Mar 2021.

Please add your name to the list of collaborators.

If adding new information, please make sure to cite your sources in the References
section at the end of the document.

As an online global and diverse community, we expect professional behaviour.
Your contributions are valued by the community. We ask that you help others feel equally
valued and welcomed by treating others with the respect and professionalism with which
you would like to be treated. Please adhere to the RDA Code of Conduct.

Commented [1]: Thanks for your input! We are
reviewing the comments from this consultation period.
Please contact the Group https://www.rd-
alliance.org/groups/fair-research-software-fair4rs-wg if
you have extra comments. There will be new
opportunities to collaborate.

Collaborators
Full name Your role, organisation, location,

discipline, and ORCID (if you haven’t
previously provided this info as part of
other FAIR4RS WG activities)

Marcos Roberto Tovani-Palone Researcher, University of São Paulo, Brazil,
ORCID 0000-0003-1149-2437

Tom Honeyman Software Program Manager, Australian
Research Data Commons, Sydney, 0000-
0001-9448-4023

Joanna Leng EPSRC funded RSE Fellow, University of
Leeds, UK, https://orcid.org/0000-0001-
9790-162X

Manodeep Sinha Senior Research Software Scientist,
Swinburne University of Technology/ASTRO
3D Centre of Excellence, Hawthorn, VIC
3122. https://orcid.org/0000-0002-4845-
1228

Sharif Islam Data Architect, Distributed System for
Scientific Collections (DiSSCo). The
Netherlands, https://orcid.org/0000-0001-
8050-0299

Axel Loewe Assistant Professor, Karlsruhe Institute of
Technology (KIT), https://orcid.org/0000-
0002-2487-4744

Merc Fox Director, CODATA at UA, University of
Arizona, STS, http://orcid.org/0000-0002-
0726-7301

Udayanto Dwi Atmojo Postdoctoral Research Fellow, Aalto
University, Finland, https://orcid.org/0000-
0002-6865-0806

Tom Pollard Technical Director, PhysioNet.
https://orcid.org/0000-0002-5676-7898

James McNally Director, NACDA Program on Aging, ICPSR
University of Michigan Orcid ID
https://orcid.org/0000-0002-6807-4538

Malin Sandström Community Engagement Officer, Working
Group project manager, INCF
ORCID ID: 0000-0002-8464-2494

Ben van Werkhoven Senior Research Engineer, Netherlands
eScience Center, Amsterdam, the
Netherlands https://orcid.org/0000-0002-
7508-3272

Ilian Todorov Computational Chemistry Lead, UKRI
Science and Technology Facilities Council,

https://orcid.org/0000-0001-7275-1784

Patricia Herterich Research Data Specialist, Digital Curation
Centre, University of Edinburgh, UK
http://orcid.org/0000-0002-4542-9906

Hugh Shanahan Professor of Open Science, Department of
Computer Science, Royal Holloway,
University of London, UK
https://orcid.org/0000-0003-1374-6015

Mathieu Servillat Research Engineer, LUTH - Observatoire de
Paris, France
https://orcid.org/0000-0001-5443-4128

Elena Ranguelova Technology Lead, Netherlands eScience
Center, https://orcid.org/0000-0002-9834-
1756

Catherine Jones Energy Data Centre Lead, UKRI Science and
Technology Facilities Council,
orcid.org/0000-0002-5112-835X

Daniele Tartarini Research Software Engineer. Department of
Computer Science and Insigneo institute of
in silico medicine. University of Sheffield,
UK
orcid.org/0000-0002-8913-0156

Invitation

Hello all,

After our recent FAIR4RS Townhall, we're pleased to inform you that the first combined
output of the FAIR4RS working group is now available. This review document discusses the
results of the FAIR4RS subgroups, as well as the paper "Towards FAIR Principles for
Research Software (Lamprecht et al. 2020), the 5 recommendations for FAIR software
website, and identifies key questions related to defining FAIR for research software. It is
now available via Google Docs for community input.

Your feedback on the questions posed in this report will be used to inform the scope,
requirements, and priorities for future outputs of the working group, including its final
report. Comments on the discussion presented in the report are also welcomed.

We plan to use this public document as the main engagement activity in a two-week period.
It will remain open for collaborators to edit from 24 Feb 2021 until 10 Mar 2021.

If you are not available for these two weeks, do not hesitate to get in touch with us, we will
continue offering opportunities to provide feedback for future activities/outputs of the
group. The next stage of the community process will be the drafting of a revised definition
of the FAIR principles for research software, and we will post more details on how to get
involved via the FAIR4RS mailing list (RDA FAIR4RS WG posts).

If you require more information, please comment to this post.

Thank you again for your contribution and support,
FAIR4RS WG Steering Committee

Report
February 23, 2021

---DRAFT---

Table of Contents

Collaborators

Introduction

Comparison
Crosscutting
Findable
Findable options
Accessible
Accessibility options
Interoperable
Interoperable options
Reusable
Reusable options
Figures
References

Appendix: Analysis of software guidelines

Introduction

This document is the result of the four subgroups of the FAIR for Research
Software working group, which is working under the Research Data Alliance,
the Research Software Alliance, and FORCE11. These subgroups
independently examined the FAIR principles in relation to software.

FAIR4RS-subgroup1 started with the original FAIR principles (Wilkinson et al.
2016) and worked to

1. Determine what part of the original FAIR principles apply as is to
research software;

2. Determine what part of the original FAIR principles doesn't apply at all
to research software; and

3. Determine what part of the original FAIR principles applies to research
software, but with a different definition or different details, starting

Deleted: Subgroup one

Commented [3]: right the convention used below is
FAIR4RS-subgroup1

Commented [4]: wonder whether this (and following
bullet) should be "which parts"?

Commented [5]: +1

Commented [6]: +1

Commented [7]: Would be tempted to put this in quotes
or change font to make it clearer that is the point of the
determination or change the words slightly perhaps
"apply unchanged"?

Commented [8]: +1

Commented [9]: certain? Or something else to avoid
different twice within 4 words?

Commented [10]: Could remove the "a" and the second
different to read "but with different definitions or details"
which would (to me) have the same meaning

with the original FAIR principles themselves, and not relying on work
done by others to apply them to research software, such as by
Lamprecht et al. (2020).

This led to a document (Katz et al. 2021) that includes:
● a discussion of the differences between software and data,
● an initial straightforward translation that was collected from the

FAIR4RS-subgroup1 participants;
● a discussion about the nuances of the currently defined rules in the

context of research software;
● a proposed set of principles adapted to the FAIR research software

case;
● a comparison of those proposed principles with the FAIR data

principles;
● a set of gaps in our current infrastructure and existing practices that

make implementing the proposed principles difficult; and
● a discussion of where the proposed principles fall short of a larger

world of fully-open, high-quality, sustainable software developed and
maintained by recognized and rewarded people in the context of full-
reproducible research.

We refer to these proposed principles as FAIR4RS-subgroup1.

FAIR4RS-subgroup2 looked at the work of subgroup1 and provided feedback
and comments related to other digital objects that subgroup1 did not
consider, such as training materials and workflows, to understand how
general the subgroup1 work was. We refer to this work as FAIR4RS-
subgroup2.

FAIR4RS-subgroup3 examined the complexity of defining research software,
by gathering definitions of research software and related terms in the
literature, and by compiling examples and discussing whether they exemplify
research software This was then followed by two workshops with the
intention of clarifying the scope of the FAIR principles by identifying for
which software artifacts the FAIR principles should be applied. The concept
of exclusive and inclusive definitions regarding the usage of the term
“Research” were further discussed, as well as further discussion around a
small number of examples of research software. This discussion and the
preceding compilation work were synthesised as a report portraying a
complex landscape of software uses and software examples in research.
Furthermore, an analysis of existing definitions resulted in a better
understanding of the complexity of types of software and types of roles
software has during the research process. The subgroup identified an
important controversy in academia, which is by itself a step forward for the
FAIR software roadmap.

Commented [11]: This phrase is confusing - are both the ... [1]
Commented [12]: I agree, the meaning isn't clear to me ... [2]
Commented [13]: I think ... [3]

Deleted: sSubgroup one1

Deleted: ,

Commented [14]: principles as I think the authors don't ... [4]
Commented [15]: or if rules, which ones do you mean ... [5]
Commented [16]: +1 for principles

Deleted: ,

Commented [17]: +1

Deleted: potential… new ... [6]
Deleted: for

Deleted: ,

Deleted: ,

Commented [19]: Not sure what current systems refers ... [7]
Commented [20]: I think "current infrastructure and ... [8]

Deleted: systems

Deleted: ,

Commented [21]: This sentence is a bit long and ... [9]
Commented [22]: +1

Commented [23]: Not sure this is clear - does it mean ... [10]
Commented [24]: The introduction said the groups ... [11]
Deleted: Subgroup two

Deleted:

Deleted: one

Deleted: one…did not consider, such as training ... [12]
Commented [25]: See comment above about whether ... [13]
Commented [26]: The text around mapping one name ... [14]

Deleted: Subgroup three…is …xamineding ... [15]

Commented [27]: Past tense was used for the other ... [16]
Commented [28]: because subgroup 3 didn't finish yet. ... [17]

Deleted: .…This was then followed by two ... [18]
Deleted: by

Deleted: discussinged …The concept of exclusive ... [19]
Commented [29]: I suggest breaking this sentence into ... [20]
Commented [30]: I would suggest: FAIR4RS-subgroup3 ... [21]
Deleted: resulted in

Commented [31]: "in" might work better

Commented [32]: a future opportunity to be considered ... [22]
Commented [33]: @barkermd@outlook.com what do ... [23]
Commented [34]: It would be nice to know what the ... [24]

FAIR4RS-subgroup4 started with the rewritten FAIR principles for research
software (Lamprecht et al. 2020) and worked to:
● identify other work (FAIR4RS WG, 2020) that helped to inform the

application of FAIR principles to research software, and examples of
software that helped to understand the characteristics of FAIR
software;

● discuss and agree how the spirit of the FAIR foundational principles
could be interpreted and applied to research software;

● determine which of the rewritten FAIR principles in Lamprecht et al.
2020 applied as written, applied if rewritten, or did not make sense to
apply to research software; and

● suggest where further discussion is needed to rewrite, add or delete
FAIR guiding principles for research software.

This was undertaken using a survey that sought feedback and reflection on
the rewritten FAIR principles in Lamprecht et al. 2020. A reading list of other
work was compiled which identified potential blindspots, including a lack of
attention to relevant work from domains outside of life sciences and physical
sciences. The responses to the survey were synthesised to produce a
reinterpretation of the FAIR foundational principles for software, as well as
identifying common themes and specific criticisms of the Lamprecht et al.
2020 proposed guiding principles for research software. We refer to this
work as FAIR4RS-subgroup4.

We additionally consider two other documents/groups that have worked in
this space. First, the principles proposed by Lamprecht et al. 2020 in
“Towards FAIR principles for research software” which we refer to in the
remainder of the report as Lamprecht, and second, the recommendations in
"5 recommendations for FAIR software," which we refer to as 5RECS.

Then, we compare the different recommendations, ask specific questions,
and discuss possible options. We also show two figures that attempt to
explain the different aspects of FAIR for Research Software. This
document’s main goal and this community consultation period is to get
community feedback on these options and the figures. After this
comparison, discussion of options, figures, and references, a detailed table
of the recommendations appears as an appendix.

Comparison

Overall, these different recommendations have a number of similarities, as
well as some differences.

Deleted: Subgroup four
Formatted ... [25]

Deleted: Identify

Commented [35]: I'm not sure this is the right tense, can ... [26]

Deleted: Discuss

Commented [36]: Will it be clear to everyone what ... [27]
Commented [37]: you are right. We need to be ... [28]
Commented [38]: the FAIR principles is very the ... [29]

Deleted: Determine

Deleted: guiding

Commented [40]: If this point is referring to the "rewritten ... [30]
Commented [41]: rewritten in reference to Lamprecht ... [31]

Deleted: Suggest

Commented [42]: now I am confused to whether this is ... [32]
Commented [43]: i think is the lamprech paper so will be ... [33]
Commented [44]: ...modify to improve the FAIR guiding ... [34]
Commented [45]: What is "this" referring to? The ... [35]
Commented [46]: distributed under which audience? ... [36]
Deleted: which
Formatted ... [37]
Formatted ... [38]
Commented [47]: I kind of like better the original wording ... [39]

Deleted: In the remainder of this document

Commented [48]: +1

Deleted: and

Deleted: then

Commented [49]: which questions and how were they ... [40]

Deleted: specific

Commented [50]: specific options for what? I would be ... [41]

Deleted: might be helpful in understanding

Commented [51]: "the main goal of.." sounds better

Deleted: The main goal of this document

Commented [52]: I think that is very valuable. I would ... [42]
Commented [53]: Which? The 5RECS?

Commented [54]: After having read the next chapter, I ... [43]
Commented [55]: +1

Commented [56]: +1

Commented [57]: How many different FAIR4RS sets are ... [44]
Commented [58]: I think the information from the ... [45]
Commented [59]: the recommendations ... [46]
Commented [60]: I think this sentence would benefit ... [47]
Commented [61]: +1

Crosscutting

The comparison of the work analysed in this report included five crosscutting
concerns that require resolution to define a set of FAIR guiding principles for
research software.

1. General vs specific principles: Most of the questions raised, to
some extent, relate to the desired balance of the principles between
very general statements and more actionable instructions. General
guidance is less tied to specific infrastructure and is thus more long-
lasting but is also more difficult to act on without details.

○ How do we balance between principles that are very general and
specific, actionable instructions?

2. Long-term access to software: All of the recommendations agree
that long-term access to the metadata describing the software is
important. Archiving of software source code to ensure that software
produced from research work is not lost, is seen as crucial in the wider
context of research (European Commission, 2020). The definitions of
the foundational principles in the various recommendations imply that
long-term access to the software itself is also useful to improve its
FAIR-ness. However, there are no recommendations for explicitly
including this in the guiding principles.

○ Should long-term access to software be considered as a factor
for FAIR, and should it be written into the guiding principles?

○ Should long-term access be reserved to source code?
3. Defining research software: We may consider two definitions,

inclusive and exclusive. Inclusive represents the far end of a spectrum
which will include all software that was used, produced, or analyzed in
research. An exclusive definition will only consider a small subset of
software artifacts that are equivalent in their discovery as reviewed
publications (e.g software published on JOSS).

○ Where should the line between the inclusive and exclusive
definition be when it comes to applying FAIR principles to
software? Is it realistic or productive to require “all software” in
research to be FAIR?

4. Defining software: There is also an overall question about different
types of objects and instances to which the FAIR principles for
research software should apply. This is, in part, because research
objects are related, as discussed in the next point, but also because
software is a fuzzy concept that could be applied to source code in a
variety of languages, executables, scripts, workflows, or even input
files that control how a system operates. Here we propose to define

Commented [62]: general statements vs actionable
instructions is not the same as 'general vs specific
principles'. I feel/think that the goal of this document is
to arrive at 'general principles' that are somewhat last
lasting. Anyone can then, later, and at their own pace
and for their own community, create actionable
instructions.

Commented [63]: +1

Deleted: confusing

Commented [64]: SHould there be more clarity on what
long-term means here, e.g. more than five years?

Deleted: As seen in

Deleted: , archivingarchival of software source
code to ensure that software producedin from
research work is not lost is seen as crucial in
the wider context of research

Commented [65]: Could be re-phrased as -
"Archiving of software source code to ensure that
software in research is not lost is seen as crucial in the
wider context of research (European Commission,
2020)".

Commented [66]: Does this mean access to the source
code or access to a running version? If we don't care,
we could leave it this general.

Commented [67]: Good point. I think that access to an
executable in the long-term has no value, because the
environment will be probably lost (for example having
access to the Apollo11 executable will be meaningless
today). Long-term access to the code is a way to
access the knowledge (algorithms, instructions, etc.)
and with good documentation there is the possibility
(with some modifications) to recompile and re-run the
software.

Commented [68]: i agree to specify access to software
code

Commented [69]: While I agree that past executables
are lost, there have been great improvements in the ... [48]
Commented [70]: I believe access to software and
source code are two independent recommendations. ... [49]
Commented [71]: not reserved but prioritized

Commented [72]: To me this terminology is unclear.

Commented [73]: I see the importance and added value
of having a definition of research software. A question ... [50]
Commented [74]: I agree that it would be better to use
FAIR software in research, even if it is not research ... [51]
Commented [75]: There is an overall classification (well
stack) for research software outlined ... [52]
Commented [76]: This is a very good example that we
used in the subroup3 discussions about Research ... [53]
Commented [77]: How is this really different from 3.?

Commented [78]: I guess it's the research aspect, but
then doesn't it make more sense the other way around? ... [54]

software itself as "A set of instructions1 that performs some action,
either as source code (machine- and human-readable) or executable."
This definition includes scripts and workflows, but does not include
input files, documentation, data, infrastructures, or services.

○ Is this definition of software, used to define the set of objects to
which the FAIR principles for research software should apply,
reasonable in this context?

5. FAIRness of related research objects: A major difference in the
way that the recommendations approach the definition of FAIR guiding
principles for research software is how each considers related objects
including software dependencies, references to required data objects,
and documentation. This includes concepts such as whether FAIR is
recursive, i.e. a digital research object is only “fully FAIR” if the
objects it builds on are also FAIR.

○ Should the FAIR guiding principles for software include
recommendations that related digital research objects which are
required to understand or execute the software, such as
software and data dependencies, are also FAIR?

Findable

Regarding "Findable," all recommendations agree that this is a good
principle. All agree that for software to be findable, it should be identifiable,
that software should be defined with metadata associated with the software,
that an identifier should be part of this metadata, and that this metadata
should be available and searchable through some type of a resource.

However, there are also some differences.

One is related to granularity. FAIR4RS-subgroup1 discusses ten levels of
granularity at which software can be identified, FAIR4RS-subgroup4 and
Lamprecht work at the level of software versions and software packages,
and 5RECS only discusses packages. FAIR4RS-subgroup2 considers versions
at the level of snapshots and releases.

Additionally, FAIR4RS-subgroup4 brings in the idea of identifiers being
compatible with best practices in software engineering such as respecting
semantic versioning and automated generation of artefacts, i.e. applying the
FAIR principles should not hinder the ability to use automated builds and
continuous integration systems which may generate metadata and

1 The instructions should be capable of general expression (Turing complete), but many
instances of software will be limited to performing specific actions.

Deleted: that

Deleted: be defined

Commented [79]: source code, computational
workflows, scripts etc describe actions at varying
degrees of abstraction. All (and more really, including
executables) require an execution environment to
perform these actions.

Commented [80]: A Dockerfile is a set of instructions
that captures the environment needed to run a software
component. I think it could be considered part of the
software definition outlined above.

Commented [81]: I think this is clear

Commented [82]: which recommendations?

Commented [83]: This is quite a complicated sentence. I
would be tempted to turn it round and start with
"Consideration of related objects......is a major
difference from...."

Commented [84]: Related to Tom's point above, where
would the operating system, device drivers etc fall
under the "related research objects"?

Commented [85]: +1. Related research objects and
dependencies need a place in FAIR4RS. But this can
be as messy as dependency hell. Maybe we leave this
up to the specific community to come up with their
version of dependency and relationships? FAIR4S only ... [55]
Commented [86]: I think if we recommend dependencies
to be FAIR it will be too difficult to accomplish.

Commented [87]: I think it might be good to aim for
FAIRness "where practical"

Commented [88]: participants?

Commented [89]: Indeed, "persons" is better than
"things" here.

Commented [90]: saying the principle is "good" feels a
little weak. it might be nice for the start of this section to ... [56]
Commented [91]: suggest: critical to achieving software
sustainability

Commented [92]: +1, not only sustainability, but also
reusability.

Commented [93]: I actually think this should come as
part of the introduction. A few sentences why you went ... [57]
Commented [94]: alternative term : "recognized",
"accepted"

Commented [95]: All the references

Commented [96]: described not defined perhaps?

Commented [97]: or is software being defined some
other concept?

Commented [98]: registry? repository?

Deleted: while

Commented [99]: Might not be obvious how they could
hinder this ability

identifiers, while none of the other recommendations get to this level of
detail.

FAIR4RS-subgroup4 also goes into more detail about the metadata that
should be associated with the software, and the challenges of defining “rich”
metadata, compared to the other recommendations.

Finally, while the original FAIR principles discuss where metadata are stored
very generally ("F4. (Meta)data are registered or indexed in a searchable
resource"), and Lamprecht basically agrees with this, 5RECS suggests "a
community repository", FAIR4RS-subgroup1 brings up that there is a gap in
practices between various registries and repositories, including Software
Heritage. FAIR4RS-subgroup4 again goes into more detail about different
types of registries and what can be considered to be a registry.

Findable options

1. Should the FAIR principles for research software discuss the levels of
granularity identifiers should be assigned?

a. If so, how many and which levels should be discussed?
2. Are the FAIR principles for research software, involving identifiers and

metadata, compatible with best practices in software engineering
around the management and versioning of artefacts?

3. Should the FAIR principles for research software discuss what
metadata should be provided for software, or what standards the
metadata should follow?

4. How much should the FAIR principles for research software discuss the
current state of where metadata associated with software can be
stored and searched? Should it make specific recommendations?

Accessible

The general idea of software accessibility as a foundational principle is again
agreed upon by all recommendations, but again with differences. These
differences include what accessibility means (readability, executability,
removal of barriers to use), what exactly "software" means (a version,
source code, an executable), if coding standards and practices need to be
followed, if dependencies also need to be equally accessible, etc. In general,
FAIR4RS-subgroup1 is the most general, while the other recommendations
add details and limits, ranging from 5RECS to Lamprecht to FAIR4RS-
subgroup4.

Commented [100]: See https://elib.dlr.de/139972/ Many
software registries have started to get organized around
practices.

Commented [101]: E.g., cross walking their metadata
vocabularies and using Codemeta

Deleted: , and

Commented [102]: Another option is, instead of defining
such that it may be understood as standardizing levels
of granularity, it can instead refer to well-known levels
based on existing typical practices. However by no
means providing examples should be understood as
standardizing the levels.

Commented [103]: I vote for no. I think this should be an
infrastructure implementors concern, not part of the
FAIR principles. In other words, implementors of
infrastructure may include highly granularity as a feature
of their repository if they specialise in software. If they
don't however, I don't think we should be putting up
barriers to implementation.

On the FAIR data side, there is similar interests in
granularity, but this is not made problematic by the
absence of a guiding principle.

Commented [104]: +1

Commented [105]: +1
What is an appropriate level of granularity may depend ... [58]

Deleted: should

Commented [106]: This looks like 2 questions: whether
the levels of granularity should be discussed and ... [59]

Commented [107]: Probably a clear definition of
'metadata' is needed first. Is this everything that is not a ... [60]
Commented [108]: I would say no. Some registries have
started doing a cross walk: https://elib.dlr.de/139972/ of ... [61]
Commented [109]: +1
There will be some common metadata which applies ... [62]
Commented [110]: I vote for no. This would block
innovation, and is again an implementors concern. ... [63]
Commented [111]: +1

Commented [112]: +1

Commented [113]: "foundational" is a little vague here
and i wonder whether instead this could briefly explain ... [64]
Commented [114]: whose?

Commented [115]: Is this different to "ease-of-install and
ease-of-use"? I was advised to avoid the use of the ... [65]
Commented [116]: Thanks Joanna for that advise, I think
ease-of-use probably fits better here.

Commented [117]: I agree.

Commented [118]: Alternative word of "barrier" could be
"restriction". And IMO, the absence of restriction doesnt ... [66]
Commented [119]: Not quite sure of the point of this
para, perhaps rewording to highlight the areas that have ... [67]

In terms of how the software is retrieved, 5RECS doesn't discuss this, while
FAIR4RS-subgroup1 points out implementation challenges, including the
potential role of package managers, version control systems, and how
commercial software is treated. Lamprecht says that this can be achieved by
using a repository or registry. FAIR4RS-subgroup4 agrees with FAIR4RS-
subgroup1 on the role of package managers and version control, and also
notes that, unlike data, most software is already retrieved through well-
accepted protocols, such as https or ftp/sftp/scp.

Another difference is the role of authentication and authorization in
accessing software, which Lamprecht and FAIR4RS-subgroup1 agree with,
5RECS ignores, and FAIR4RS-subgroup4 mostly agrees with but some
questioned if this could be interpreted in the same way for software as it is
for data.

FAIR4RS-subgroup 4 suggests that accessibility should include ensuring that
barriers to use (including physical, social, or technological barriers) are
addressed, the usage of the term in other areas of software engineering,
though this could be considered part of reusability. FAIR4RS-subgroup 2
notes that the terminology is confusing and may mean the principle is not
well understood across domains, if the definition is strictly around protocols
for access.

The recommendations generally agree with metadata being accessible even
when the software is no longer available.

Accessibility options

1. Should the FAIR principles for research software discuss the details of
how software is accessed?

a. Is this just http/https? And is it the same as for any other
research object?

b. Or should package managers be discussed, which may internally
use http/https but wrap this with a higher-level of access?

2. Should the FAIR principles for research software discuss at what
granularity software is accessed?

3. Can the FAIR principles for research software apply to commercial
(closed source) software?

4. Can accessing FAIR software require authentication and authorization?
5. Should the FAIR principles for research software ensure that barriers

to use (including physical, social, or technological barriers) are
addressed?

Commented [120]: Not sure what "commercial" software
is or why we need that distinction here. Is it paid for
software? Is the vendor in profit and commercially
viable? Is it closed source? Are the software developers
who created the software well educated in software
development?

Commented [121]: Possible alternative term instead of
"commercial" could be "proprietary", or use related
terms like "IPR-restricted", "copyrighted". "non open
source-licensed" maybe more vague?

Commented [122]: this needs more clarification - do we
mean AAI to download the software?

Commented [123]: Would be useful to be more explicit
on what is being agreed upon.

Commented [124]: +1

Commented [125]: +1

Commented [126]: +1

Commented [127]: +1

Commented [128]: This sentence awkward and unclear
what the point is.

Commented [129]: +1

Commented [130]: +1

Commented [131]: +1

Commented [132]: Accessibility is widely used in EDI
(Equality, Diversity and Inclusion) discussions. Are
there links between what we mean by accessible and
what EDI menas. Our goals are similar.

Commented [133]: Is there a more agnostic way of
expressing intent here rather than protocol used?

Commented [134]: The phrase from FAIR principle A1.1
could be used here "the protocol should be free (no-
cost) and open (-sourced) and thus globally
implementable to facilitate data retrieval."

Commented [135]: +1

Commented [136]: I think it is clearer to just have closed
source here. There is a open source business model
where a business makes its money from consultancy
rather than keeping the software as closed source.

Commented [137]: +1

Deleted: some

Commented [138]: Does "software" also comprise a
service running this software? In some settings, the
software could be open source but the service (acces to
user-specific data, storage, compute power) could ... [68]
Commented [139]: I'm personally against including the ... [69]

Commented [140]: It is not clear what these mean. As ... [70]
Commented [141]: Maybe we need to connect the dots ... [71]
Commented [142]: 4 could be interpreted as a subset of ... [72]
Commented [143]: +1

Interoperable

The FAIR data principles describe interoperable as "The data usually need to
be integrated with other data. In addition, the data need to interoperate with
applications or workflows for analysis, storage, and processing." Lamprecht
interprets this as:

1. A set of independent but interoperable objects interoperate to produce
a runnable version of the software, including libraries, software source
code, APIs and data formats, and any other resources for facilitating
that task.

2. A stack of digital objects interoperate to execute a given task. The
stack includes the software itself, its dependencies, other indirect
dependencies, the whole execution environment including runtime
dependencies and the operating system, the execution environment,
dependencies, and the software itself.

3. Workflows, which interconnect different standalone software tools that
interoperate to transform one or more data sets into one or more
output data sets through agreed protocols and standards.

5RECS doesn't specifically address interoperability in the same way.
FAIR4RS-subgroup1 limits its definition of interoperability to the exchange of
data or metadata between software, which roughly corresponds to
Lamprecht's points 1 and 3, and believes that the sense of building software
and then executing it in an environment (Lamprecht's point 2) is not
interoperability but rather usability (under reusability in the FAIR principles).
FAIR4RS-subgroup 4 more or less aligns with FAIR4RS-subgroup 1 on
Lamprecht's points 1 and 3, but is unsure about point 2. FAIR4RS-subgroup
2 expands on the role of workflows and workflow management systems.

There is also some feeling that interoperable might include the use of
controlled vocabularies for the metadata about software in repositories in
Lamprecht, and that it includes recording of metadata using standards such
as CodeMeta and the Citation File Format in 5RECS. FAIR4RS-subgroup 1
doesn't think this is part of the FAIR principles for research software, as it is
already covered by the FAIR data principles' discussion of metadata, and
FAIR4RS-subgroup 4 is uncertain, with some members agreeing with
Lamprecht, and some suggesting that because all software is written in a
formal language, there is inherent standardisation and machine readability,
making this FAIR principle redundant for software.

Lamprecht also considers the need for controlled vocabularies for the data
consumed and produced by software, which 5RECS doesn't consider.
FAIR4RS-subgroup 4 agrees with Lamprecht, while FAIR4RS-subgroup 1
requests qualified references to such objects, which are covered by the

Commented [144]: interoperability

Commented [145]: needs

Commented [146]: Both singular and plural are used for
data in this document. While both are fine in general,
we might consider to make it consistent.
https://www.theguardian.com/news/datablog/2010/jul/16
/data-plural-singular

Commented [147]: needs

Commented [148]: executable

Commented [149]: +1 (with the note that the preceding
article would need to be modified to "an")

Commented [150]: repeated

Commented [151]: also repeated

Commented [152]: Is there a missing comma (or "that")
here?

Deleted: really

Commented [153]: I do not understand this sentence. in
the same way as ...???

Commented [154]: I guess Lamprecht - but then how
does 5RECS address interoperability? We just jump to
FAIR4RS...

Commented [155]: interoperability

Commented [156]: consistent vocabulary makes digital
searches easier and improves accessibility.

Commented [157]: +1
And may depend on the system utilising the metadata.

Commented [158]: Is the way to define controlled
vocabularies standardized or at least guidelined in
some existing specifications?

Commented [159]: this is a generic example for software
engineering https://www.iso.org/standard/71952.html.
Other vocabularies might be per discipline or
community

Commented [160]: Codemeta has been "adopted" by
many software registries. However, the same could be
enforced in data, and FAIR does not mandate which
metadata vocabularies should be used.

Commented [161]: "Controlled vocabularies" is a specific
term meaning setting the range of specific values
allowed in certain metadata fields, not necessarily which
metadata fields are needed which I think this para blurs
meaning ... [73]
Commented [162]: This doesn't make any sense to me ... [74]
Commented [163]: What would happen if the source ... [75]
Commented [164]: +1 on Ben's skepticism

Commented [165]: +1. What also needs to be thought is. ... [76]
Commented [166]: I also agree. FAIR is needed for ... [77]
Commented [167]: +1

Commented [168]: +1

original FAIR principles' discussion of metadata. FAIR4RS-subgroup 2 agrees
with FAIR4RS-subgroup 1, noting that this also works for workflows and
scripts and all objects where the process is explicit as opposed to being
buried in the code.

Interoperable options

1. Is the process of building software (including determining and
accessing dependencies) and running it in a given environment part of
FAIR principles for research software?

a. If so, is it part of interoperability or reusability?
2. Should the FAIR principles for research software explicitly include

requirements on the metadata used to describe software, or is this
already covered in the FAIR data principles?

a. If already covered, should it explicitly insist that metadata is
FAIR?

3. Similarly, should the FAIR principles for research software explicitly
include requirements on the data consumed and produced by software,
or is this already covered in the FAIR data principles?

a. If already covered, should it explicitly insist that data is FAIR?

Reusable
The FAIR data principles state that their “ultimate goal is to optimise the
reuse of data. To achieve this, metadata and data should be well-described
so that they can be replicated and/or combined in different settings.”
FAIR4RS-subgroup 1 considers “optimise” to be too strong a statement,
suggesting “enable and encourage” instead.

As Lamprecht notes: “Reusability in the context of software has many
dimensions”. For software, consideration needs to be given about whether
reuse simply means optimising the reuse of data or, also, the reuse of
software.

Lamprecht takes the view that “at its core, reusability aims for someone to
be able to reuse software reproducibly” and describes four scenarios:

1. reproducing the same outputs reported by the research supported by
the software,

2. (re)using the code with data other than the test one provided to obtain
compatible outputs

3. (re)using the software for additional cases other than those stated as
supported, or

4. (iv) extending the software in order to add to its functionality.

Commented [169]: An aspect of interoperability of
software is to use standard protocols and format when
possible rather that invent new ones. Is this aspect
reflected in the current discussions?
(I see below that FAIR4RS-subgroup4 wrote this, but it
is not discussed here as an important interoperability
aspect)

Commented [170]: or accessibilty

Commented [171]: So far I had the impression that the
FAIR4RS principles should stand alone rather than
being an addition to the FAIR Data principles. However,
this question seems to imply that they are an addon.

Commented [172]: I understood them to be standalone
as well. Maybe something to highlight in more detail in
the introduction?

Commented [173]: In my opinion, requirements about
data are covered by the FAIR data principles. I think
that requiring that FAIR research software only
consumes/produces FAIR data is too narrow and too
strict. Research software is often quite experimental,
and the exact form and format of the data it produces is
in many cases likely to shift and evolve, in these cases
you can't reasonably require every version of the
software to only work with data in controlled
vocabularies. So if this is a requirement, a lot of
software that is still undergoing active development
cannot be made FAIR yet. This is unfortunate because ... [78]
Commented [174]: +1

Commented [175]: + 1 - no to this one. Maybe you could
tie this into a wider vision of everything being FAIR but I
don't think it is necessary.

Commented [176]: +1

Commented [177]: Wouldn't that mean that FAIR
software would only accept data that is, for instance,
retrievable via a permanent identifier? And it could only ... [79]
Commented [178]: And what happens if there are
intermediate/transient data products? For example, I am
thinking of a MCMC where the likelihood evaluations ... [80]
Commented [179]: As we will be dealing with different
levels of FAIR maturity (for example in an
interdisciplinary context), this explicit insisting can ... [81]
Commented [180]: Technology changes, it is not stable -
is there a statues of limitation for how long soaftware
can be reused? For infinity and beyond or 6 months? ... [82]
Commented [181]: +1 This seem to touch one particular
topic in software called portability. Many discussions on
research software appears to be mainly on software ... [83]
Commented [182]: +1 see also my comments about
preservation and emulation further up the document -
sometimes the performance is the important part of ... [84]
Commented [183]: in finance and medical records, data
needs to be preserved and provided upon inspection for
a number of years X. It can be used the same principle ... [85]
Commented [184]: Seems stray

5. Relevant,possible 5th step of reusability; reimplementation, code well
written, well structured and well documented enough that it can be
understood and be rewritten in another language/for another
computational platform so that its overall ideas and modes of
implementation can be reused. This happens a lot in (neuro)modelling,
where the original model requires a simulator or language the
modeller doesn’t have access to or cannot run for other reasons.

5RECS does not explicitly define reusability but suggests that is associated
with public accessibility of source code, collaboration, and reproducibility of
results.

FAIR4RS-subgroup 1, FAIR4RS-subgroup 2, and FAIR4RS-subgroup 4 agree
that it is important to recognise that software is dependent on other
software, and software should be structured to maximise its potential use or
reuse, following software best practice such as encapsulation, or recording of
dependencies. However FAIR4RS-subgroup 2 queries the application of
encapsulation, is software that calls a service or API not reusable? This leads
to a new reusability principle from FAIR4RS-subgroup 1 that “Software
includes qualified references to other software” and that, to be FAIR,
external data objects required to execute the software must be FAIR as well.
This aligns with the discussion from FAIR4RS-subgroup 4 on the
interpretation of the FAIR foundational principles; however they go further
and suggest that the FAIR-ness of a piece of software is increased when
both the data and the software referenced by it are also made FAIR-er.

FAIR4RS-subgroup 4 also goes into more detail, suggesting that for software
to be reusable, it should also be maintainable (which Lamprecht also
emphasises) and dependable (able to be built on for other purposes). This
latter is encapsulated in additional principles from FAIR4RS-subgroup 4
which align with the vision of, but was considered out of scope for, FAIR4RS-
subgroup 1.

Both FAIR4RS-subgroup 1 and FAIR4RS-subgroup 4 take a much wider, and
similar, view of reuse than Lamprecht. FAIR4RS-subgroup 1 suggests it
should cover “replicated, combined, reinterpreted, reimplemented, and/or
used” and FAIR4RS-subgroup 4 suggest it should be usable, extensible,
integratable, maintainable, well-documented and reproducible.

FAIR4RS-subgroup 1 does not consider “executability” to be a necessary
feature for software to be FAIR. However, FAIR4RS-subgroup 4 implies that
executability is important for reusability. This could be seen as at odds, but
may also point to requiring different interpretations of usability for different
types of software (source code can be read, built into executables, used in

Commented [185]: I think this could be seen as a special
case of bulletpoint 4). Similar things would happen
when calibrating a hydrology model for different regions,
or when training a ML pipeline with a different input
dataset than the original one

Commented [186]: I think it is interesting philosophically
to decide when a piece of software is the same thing if
under the hood it has been completely rewritten....

Commented [187]: @daniel the difference is that in 5,
you never have access to the actual software/code you
are reimplementing, just documentaion/descriptions of it
(so it may be out of scope for this,. But if it can be done
it is a good indicator of sufficient documentation and
description)

Commented [188]: I see. Then I would argue that you
are creating a different piece of software. You can
argue it's a case for reusing the documentation, but I
am not sure I would list it here. For example, if a paper
comes out and the next year there are three additional
implementations of the original one, would they count
as the original software? I don't think so.

Commented [189]: This sentence is confusing

Commented [190]: I agree. I don't understand what
"query" means here

Commented [191]: should/must?

Commented [192]: Given sufficient quantity/appropriate
resources, most (all?) software is likely maintainable. Is
the point here whether or not maintaining the software
only requires *reasonable* resources (where
"reasonable" would change with the context). Or
perhaps, the idea here that the software is
"maintainable" by another person/team (i.e., something
like creating a fork and continuing
developing/maintaining)?

Commented [193]: I think this distinction is fundamental.
"Maintainable in general with reasonable resources" is
rather fuzzy. On the other end of the spectrum,
"maintainable by the person/group who published the
software with the resources available to them" might
render FAIR out of reach (and maybe also
unattractive?) for many software projects?

Commented [194]: suggestion: "take a similar but much
wider view of reuse compared to Lamprecht"

Deleted: imply

Deleted: usability

Commented [196]: +1 and changed

libraries, etc., while executables can be incorporated into other software or
run, etc.) or maturity level. FAIR4RS-subgroup 2 agree that reuse through
inspection is critical and more sustainable than reuse through execution.

There is an agreement from all five efforts (Lamprecht, 5RECS, FAIR4RS-
subgroup 1, FAIR4RS-subgroup 2, FAIR4RS-subgroup 4) that a clear license
is an essential principle for FAIR software. FAIR4RS-subgroup 4 additionally
considered that whilst an open source license was not required for software
to be FAIR, it helped make software FAIR. There is also agreement that
“software is associated with detailed provenance” if we consider version
control systems to capture that information.

Finally, whilst there is agreement that software should be described with a
plurality of accurate and relevant attributes, it was noted by both FAIR4RS-
subgroup 4 and FAIR4RS-subgroup 2 that care must be taken with the way
“community standards” are interpreted to take into account the constant
evolution of standards, and the cross-domain and community nature of
software.

Reusable options
1. Does the principle “Software meets domain-relevant community

standards” need more explicit detail?
a. If so, should documentation be included?
b. If so, should usability be defined?
c. If so, should it also consider the type of software and the

maturity level?
2. Should a new principle be added so that “Software includes qualified

references to other software”?
a. If so, does this imply that any references to external data

objects required to execute the software should be fully qualified
and the data be FAIR as well?

b. If so, does the software that is referenced need to be FAIR as
well?

3. Should a new principle be added so that “Software is dependable and
can be built on by other software and research”?

a. If so, should this make explicit what is expected for the software
to be dependable, or should this remain at a high-level, or
defined by community norms?

Commented [197]: Provenance of data can be modeled
as a chain of activies and entities, so generally the
activity is the execution of a piece of software, and the
entity the generated data. However, provenance of
software may be more specific as what is really relevant
are the dependences with other software (that are
important for reusability). Provenance track may be
seen as the list of commits, but they may be hard to
exploit (unless commits use a standardized
message/vocabulary), so a more useful provenance
would be the chain of versions of the software (i.e. what
matters is the activity "create new version" that uses the
previous version and additional dependences).

So, the FAIR principle “software is associated with
detailed provenance” could be made more specific to
research software by stating that it is important to track :
dependences, commits and chain of versions.

Commented [198]: "...and ensure that version control
information is persistently linked with the software"

Commented [199]: Also relevant for community
standards: the standards acceptance, extension and
evaluation processes - do they involve/rely on
community, are they open, transparent processes?
Does the standard have a responsible someone: a
champion, a committee, does that position
involve community members, does the
champion/committee take an d act on community input?

Commented [200]: and the full diversity of research
software/hardware (Computer Graphics, IoT, robotics)

Commented [201]: Is the community here the developer
community or the user community. Some numerical
methods eg CFD are used in multiple domains. Can the
guidelines fit a "numerical" or "computational" approach
or it is a domain an academic discipline for example
humanities or physics? There are synergies either way.

Commented [202]: Yes, it should. Usability is
traditionally linked to perceptual pychology methods eg
how quickly a user can do something.

Commented [203]: What happens if the software is
targeted for a particular device, say a specific GPU?
Should that hardware be a part of this set of external
objects?

Commented [204]: As with all things this might be easier
to do if you are starting with a clean sheet, if you are
operating in an environment where you use legacy
code, then this may mean that FAIR is never achieved,
so I suggest this is all about "where practical" or "where
there is a choice, choose FAIR over non-FAIR"

Commented [205]: Is the intended meaning here
"stable/reliable/trust-wordy", so things can be built on
top of it and depend of it? If so, to me this is a measure
of the quality of a software, not necessarily of it's FAIR-
ness.

Commented [206]: +1
I also don't think it is achievable, or even necessarily for
Research Software and FAIR-ness

Figures
Two potential figures were created (or adapted) as part of the work of
subgroup 1, as follows.

Your comments on these figures, including what is confusing, what is
missing, etc. are welcome.

Are one or both of these figures useful in explaining FAIR for research
software?

Could they be combined? If so, how?

Commented [207]: I find both figures clear and
understandable, though the smallest boxes in figure 2
contain too much text to be easily redable

Figure 1. Summarizing software as increasingly FAIR research objects
(Credit: Morane Gruenpeter, inspired by the FORCE11 diagram2)

2 https://www.force11.org/fairprinciples

Commented [208]: I think this diagram is great, but it is
not clear about the role of:
- Software configuration files: Are they supposed to be
archived with software source code, or separately?
- Is the executable expected to be archived
somewhere? It doesn't look like in the diagram, and
seems quite important for preserving the accessibility to
a given version.
- Environment files: There is a box for "Dependencies",
but I am not sure whether Docker files would go there,
as they capture all the environment. While there is an
environment box, there is no reference to its archival
either. For example, where would a docker image fit in
the diagram?

Commented [209]: Very good points. Alas, it is difficult in
one diagram to fit all options.
Concerning the executable, do you know of
scholarly infrastructure that archives executables?

Commented [210]: Also, each box is explained
on: https://arxiv.org/pdf/2101.10883.pdf
Can you verify if this information might be relevant to
add to specific explanations there?
Or if we should add the explained boxes here..

Commented [211]: This is really good - could the
description where the source code is only available on a
development platform say that more explicitly in the red
part?

Commented [212]: Morane, GitHub in their release
pages allows for hosting executables (not sure if they
are pushed into Zenodo, I don't think so). Some
software registries also store executables (e.g.,
https://www.usgs.gov/software/modflow-6-usgs-
modular-hydrologic-model). In many cases, domain
scientists have to share their calibrated models to
ensure reproducibility.

I think the explanations of the document help a lot. ... [86]
Commented [213]: Great diagram. I wonder about the
readability of the colours for everyone (green & red not
always a good combination)
I also wonder if it gives a subliminal message that
licenses are not needed to be considered at the start of
a project, whereas I contend that what is the ... [87]
Commented [214]: I have a question about the last panel
in the figure (FAIR + open + sustainable). Should the
panel be interpreted that the full-stack is available for
download or is the expectation that the full-stack is
specified with sufficient detail that anyone could re-run
the software? For example, if someone provided ... [88]
Commented [215]: I have just inserted the most recent
version of the diagram, which impacts your comment.
For more details on the diagram, you can find the
subgroup1
publication: https://arxiv.org/pdf/2101.10883.pdf
page 25 ... [89]
Commented [216]: If they are increasingly FAIR, the last
but 2 are missing green (FAIR) for Exacutable. To me
"artifacts" is no clear as I mentioned above.

Figure 2. Summarizing software as increasingly FAIR research objects. Left
column: labels for different levels of FAIR+. Middle column: software
artifact. Right column: Accompanying objects and information.

Commented [217]: Compared to Fig. 1, this version is
less redundant and contains additional aspects. I found
Fig. 1 easier to follow, though.

Commented [218]: I would also go for easier to
understand with Fig 1

Commented [219]: Yes - I think figure 1 does the job
better here.

Commented [220]: I wonder if it would be easier to read
if was laid out horizontally rather than vertically? Would
need a little bit of rejigging and some colour might help?

Deleted: (Credit: Tom Honeyman)

References

European Commission. Directorate General for Research and Innovation.
(2020). Scholarly infrastructures for research software: report from the
EOSC Executive Board Working Group (WG) Architecture Task Force (TF)
SIRS. Publications Office. https://doi.org/10.2777/28598

FAIR4RS WG. (2021). FAIR4RS Subgroup 4 - reading list of new research
(Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4555865

Gruenpeter, M., Di Cosmo, R., Koers, H., Herterich, P., Hooft, R., Parland-
von Essen, J., Tana, J., Aalto T. Jones, S. (2020). M2.15 Assessment report
on 'FAIRness of software' (Version 1.1). Zenodo.
https://doi.org/10.5281/zenodo.4095092

Katz, D.S., Gruenpeter, M., Honeyman, T., Hwang, L., Wilkinson, M.D.,
Sochat, V., Anzt, H., Goble, C. and FAIR4RS subgroup 1 (2021). A Fresh
Look at FAIR for Research Software. arXiv: 2101.10883.

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del
Pico, E., Dominguez Del Angel, V., van de Sandt, S., Ison, J., Martinez, P.
A., McQuilton, P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll.,
Chue Hong, N., Goble, C., & Capella-Gutierrez, S. (2020). Towards FAIR
principles for research software. Data Science, 3(1), 37–59.
https://doi.org/10.3233/DS-190026.

Netherlands eScience Center / DANS (n.d.), Five Recommendations for FAIR
software. Available online at: https://fair-software.nl/.

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O.,
Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding
Principles for scientific data management and stewardship. Scientific Data,
3(1). https://doi.org/10.1038/sdata.2016.18.

Appendix A: Analysis of software guidelines

This appendix uses annexe B of the FAIRsFAIR assessment report on
‘FAIRness of software’ (Gruenpeter et al., 2020) as a starting point, and
then adds summaries and discussions of FAIR4RS-subgroup 1 and FAIR4RS-
subgroup 4. It provides additional background material to inform the report
and options presented in it.

F. Findable

The first step in (re)using data is to find them. Metadata and data should be easy to find for both
humans and computers. Machine-readable metadata are essential for automatic discovery of datasets
and services, so this is an essential component of the FAIRification process.

Resource Content

Towards FAIR principles
for research software

Findability is a fundamental principle, since it is necessary to find a resource before any other
consideration. The main concern of findability for research software is to ensure software can be
identified unambiguously when looking for it using common search strategies. Such strategies
include the use of keywords in general-purpose search engines like Google, as well as specialised
registries (websites hosting software metadata) and repositories (websites hosting software
source code and binaries). Findability can be improved by registering the software in a relevant
registry, along with the provision of appropriate metadata, providing contextual information
about the software. Registries typically render metadata in a web-findable way and can provide
a DOI. Some registries and repositories allow annotating software using domain-agnostic or
domain-specific controlled vocabularies, increasing findability via search engines further. In the
following we discuss how the original four Findability principles apply to the findability of
research software.

“5 recommendations for
FAIR software”

Register your code in a community registry - WHY THIS IS IMPORTANT
For others to make use of your work, they need to be able to find it first. Community registries
are like the yellow pages for software -- registering your software makes it easier for others to
find it, particularly through the use of search engines such as Google. Community registries
typically employ metadata to describe each software package. With metadata, search engines
are able to get some idea of what the software is about, what problem it addresses, and what
domain it is suited for. In turn, this helps improve the ranking of the software in the search results
-- better metadata means better ranking.

FAIR4RS-subgroup1

F. The first step in (re)using software is to find it. Metadata and software should be easy to find
for both humans and computers. Machine-readable metadata are essential for automatic
discovery of software, so this is an essential component of the FAIRification process.

We believe that findable is an important foundational principle for software.

We also suggest removing the reference to “services.” While software is definitely a
component of any service (and a component that should be FAIR), services are
considered here an instantiation of software, not the software itself. Services present
an additional series of challenges which we have not considered here.

Commented [222]: I feel that this sentences mentions
two separate points: identifiability (unambiguous
reference to a software that I know exists) and
discoverability (finding a software for a specific task that
I don't know it exists)

Commented [223]: yes, agree. Two different very
important points, although the next recommendation
(enter in a community registry) helps with discoverability
(given that the registry is good enough)

Commented [224]: +1

Commented [225]: why "community" and not global?
(Also, defining what merits the label community registry
is hard, and not covered here)

Commented [226]: suggest to divide into "identifiable"
and "discoverable", according to Axel's comment above

FAIR4RS-subgroup2

Workflow findability is foundational - we even have registries dedicated to workflows. What is
a workflow wrt software or service is interesting. A workflow can be:

● A specification in a WfMS specific or common language (e.g. CWL) with test or
exemplar data;

● + an implementation of that design in a WfMS;
● + an instantiation of that implementation ready to be run with input data and

parameters set and computational services / containers; - this is not the same as the
“instantiation of software” as above I suspect. It's more the configuration of the
workflow.

● + a run result with intermediate and final data products and provenance logs.

Training materials related to the software should also be findable.

FAIR4RS-subgroup4

Findable software should:
● Include identifiers which enable location of a specific version
● Be catalogued in a registry or package manager
● Be linked to related research objects, including previous versions [note this links to

Subgroup 1’s proposed I2/I3]
● Have machine-readable metadata that enables search engines and discovery across

different categories (e.g. features, domain, programming language, author)

Specific clarifications in response to “Towards FAIR Principles…”

● The narrow wording of “software” excludes objects on the boundary of software.
● Much of what might be considered “Findability” for software has been addressed by

package managers
● Metadata should specify how software can be translated between its written and its

executable state
● Machine-readable metadata must make all direct and indirect dependencies

findable, using version-specific identifiers.
● Metadata describing software have to follow a commonly agreed upon standard.

Commented [227]: Expand/explain the acronym, please

Commented [228]: suggest one point first in this list:
findable software should have a versioning process and
clear versioning information

F1. (meta)data are assigned a globally unique and eternally persistent
identifier

Resource Content

Applicability of principle to
FAIR for Research
Software

Direct application (use * system? **** - highly applicable * -not at all)

Towards FAIR principles
for research software

Rephrased: “Software and its associated metadata have a global, unique and persistent
identifier for each released version.” “Software versions should get assigned different PIDs as
they represent specific developmental stages of the software. This is important as it will
contribute to guaranteeing data provenance and reproducible research processes.”

“5 recommendations for
FAIR software”

Citation: "Regarding archiving copies of your software, look for services that store their own
copy of a snapshot of your software, such that whatever persistent identifier you get (DOI, URN,
ARK, etc) points to a specific version of the software, and will continue to resolve to exactly that
version for the foreseeable future."

FAIR4RS-subgroup1

F1. Software is assigned a globally unique and persistent identifier

This guiding principle is fundamental for any research output, but note that it can take
some extra effort from the software creators today to acquire a global and persistent
identifier. In Section 2, we noted several differences for software development and
publishing, both in terms of current practices and in the functionality and existence of
relevant infrastructure that might achieve this aim. The creators can use an archive or
an institutional repository to keep software and acquire a persistent identifier for their
software. However, the identification target might be difficult to choose. As presented
in Figure 1 (from Research Data Alliance/ FORCE11 Software Source Code Identification
WG et al., 2020), an identification target can be at one of many different granularity
levels that are found in a complete software project. For reproducibility for example, it
is important to identify a specific version, which means that identifying the full project
isn’t specific enough. Furthermore there is still a lack of community agreement when it
comes to identifying software; see Gaps 1, 2 and 4 in Section 5.

FAIR4RS-subgroup4

All believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”:

● Identifiers should not be restricted to releases. Every version, release or not, should
ideally be citable.

○ Suggest rewording to “Software and its associated metadata are assigned
a global, unique and persistent identifier.” [compatible with Subgroup 1]

● Recognise that the use of identifiers should be compatible with best practice in
software engineering such as respecting semantic versioning and automated
generation of artefacts. [compatible with Subgroup 1 but may require additional
consideration]

Commented [229]: I think it would be beneficial to try
and summarise how applicable each of the original
principles are in a research software context.

Commented [230]: I'm still trying to wrap this around my
head a bit about how this is done in practice in certain
cases. In particular, assuming the use of version
control, each release version shall be put in different
branch with handle that indicate the version, and then
each of this branch shall then have different persistent
identifier? In this sense, should we recommend authors
not use the master branch each time they put the
release version(s), or should the identifier point to
certain commit which points to the release version?

Commented [231]: You can use a SWHID for each
release, without any additional effort.
SWHID for Software Heritage Identifiers which are
intrinsic and persistent. For more
information: https://www.softwareheritage.org/2020/05/1
3/swhid-adoption/
And some guidance for Research
Software: https://www.softwareheritage.org/save-and-
reference-research-software/

Commented [232]: Wouldn't it also need a
nested/collected set of identifiers to identify each used
plugin/toolbox with its specific version? Since the right
version of each plugin is important for reproducibility?
People tend to use a lot of plugins besides the main
software; NumPy, PyTorch....

Commented [233]: Interesting comment. A thought of
mine is, assuming the use of version control, the
identifier can point to the particular git repo of the
software, then for each different version of the software
(which can have its own version of dependencies and
variation of the code), it should be put in a different
branch in the repo? Of course it would be a different
situation if the work is forked from the original repo and
then re-worked / extended / modified by different
author(s), then IMO this deserves its own identifier

Commented [234]: Yes, that sounds workable.
Versioning for all dependencies might be tricky to
track/identify, yet it is needed if one wants to be able to
replicate exactly

Commented [235]: I agree with your comment regarding
reproducibility. Personally I don't think that FAIR is
enough for reproducibility. It is good for better curated
digital objects which is helpful with reproducibility, but
guaranteeing reproducibility is a very high bar.

Deleted: citeable

Commented [236]: citable

Commented [237]: Suggestion: Include a note with
acronyms and their descriptions (in all tables).

Commented [238]: +1

F2. data are described with rich metadata
Resource Content

Applicability of principle to
FAIR for Research
Software

Direct application

Towards FAIR principles
for research software

“Rephrased: Software is described with rich metadata.”
”In order for others to find and use that software, they need information about what it does,
what it depends on and how it works.”
“Additionally, some programming languages provide a way to add metadata to software
sources, i.e., packages”

“5 recommendations for
FAIR software”

Registry:: "What metadata does the community registry offer? This is sometimes described in
the documentation of the registry, but you can also see for yourself by installing a tool like the
OpenLink Structured Data Sniffer. "
Citation: : "Regarding archiving copies of your software, look for services that store their own
copy of a snapshot of your software, such that whatever persistent identifier you get (DOI, URN,
ARK, etc) points to a specific version of the software, and will continue to resolve to exactly that
version for the foreseeable future."

FAIR4RS-subgroup1

F2. Software is described with rich metadata (defined first by R1 below, and then by the
original FAIR principles for metadata)

This guiding principle is reasonable and important when it comes to understanding
what the software can do and where it comes from. However, the extent and
completeness of the metadata is not yet agreed upon by the research community; see
Gaps 1 and 3 in Section 5. As noted in Section 2, software structure can be complex,
which adds complexity with the metadata (see Gap 5) and with documentation, which
might be considered a metadata element (see Gap 6).

As discussed above, there are several relevant guiding principles that apply without
alteration to metadata for digital objects, including software. In order to capture this,
we propose changing the wording for this principle to:

“Software is described with rich metadata (defined first by R1b below, and then by the
original FAIR principles for metadata)”

The specific principles are F1, F4, A1, A1.1, A1.2, I1, I2, I3, R1, R1.1, R1.2, and R1.3.

FAIR4RS-subgroup2

As an example, a profile like Workflow-RO-Crate sets out to define (i) what is expected to be
packaged with a workflow (incl Data) and (ii) metadata about it (using schema.org) and (iii)
how it is described as steps (e.g. CWL). This adheres to workflow is described with rich
metadata.

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”:

● It isn’t yet clear what “rich metadata” means in the context of software, and this
should be elaborated. GO-FAIR suggests that “Rich metadata implies that you should

not presume that you know who will want to use your data, or for what purpose. So,
as a rule of thumb, you should never say ‘this metadata isn’t useful’; be generous and
provide it anyway!” but it is unclear if there are any issues in practice for software.
[Probably compatible with Subgroup 1, but R1.3 may not directly address this]

● A way of stating the metadata standards is required, if machine processing is to be
enabled. [Probably compatible with Subgroup 1, but R1.3 may not directly address
this]

F3. metadata specify the data identifier

Resource Content

Applicability of principle to
FAIR for Research
Software

Not obvious

Towards FAIR principles
for research software

Rephrased and extended: “Metadata clearly and explicitly include identifiers for all the versions
of the software it describes.”
“For reproducibility and reusability purposes, any person and/or system examining the metadata
needs to be able to identify which version of the software is described by it”

“5 recommendations for
FAIR software”

(not explicitly discussed)

FAIR4RS-subgroup1

F3. Metadata clearly and explicitly include the identifier of the software they describe

This guiding principle is reasonable. However, there can be many identifiers to
different artifacts that are under the same software project; see Gaps 4 and 5 in
Section 5.

FAIR4RS-subgroup2
Workflows behave like data here - each workflow may have an identifier. The components of a
workflow may also have identifiers, this appears to be analogous to the “project”?

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● May not be useful - enough to have references for previous and next versions.
[compatible with subgroup 1]

● It would be infeasible to request rich metadata for all old versions, some of which
might not be runnable anymore. This is linked to the challenge of understanding
what rich metadata is for software. If we assume it includes information generated
at compile time, the wording in the rewritten principle in the paper is problematic.
[compatible with subgroup 1]

Commented [239]: A question suddenly pops up on my
head. How do we define "version"? is it based on
certain statement by the author(s) that a particular state
of the work is mentioned to be version 1.0, 1.1 etc, or,
assuming the use of git, it is based on the commit
identifier?

Commented [240]: This is part of the granularity level
discussion and if it should or shouldn't be part of the
FAIR4RS principles.
You can find a description of the granularity levels in the
RDA's Software Identification WG output:
https://doi.org/10.15497/RDA00053

Commented [241]: and all of its dependences?

Commented [242]: but, how do we (as an RSE trying to
make my software FAIR) add identifiers (or any extra
info) to other dependencies (from software
dependencies that we do not have rights on)?

Commented [243]: if all software has dependency info
with versions stated, it should be possible to inherit it

I am using plugins X, Y and Z
X depends on a and b
Y depends on c and d
Z depends on e
Consequently, my setup depends on a+b+c+d+e

(this might be impossible if dependency reports are not
well structured. It might need a STAR
methods approach or some such structured reporting
method to make i machine readable)

F4. (meta)data are registered or indexed in a searchable resource

Resource Content

Applicability of principle to
FAIR for Research
Software

Direct application

Towards FAIR principles
for research software

Rephrased: Software and its associated metadata are included in a searchable software registry.

“5 recommendations for
FAIR software”

Registry:
Register your code in a community registry”
"For others to make use of your work, they need to be able to find it first. Community registries
are like the yellow pages for software -- registering your software makes it easier for others to
find it, particularly through the use of search engines such as Google”
“What metadata does the community registry offer? This is sometimes described in the
documentation of the registry, but you can also see for yourself by installing a tool like the
OpenLink Structured Data Sniffer. "

FAIR4RS-subgroup1

F4. Software is registered or indexed in a searchable resource

This guiding principle is reasonable. However, registering software is a complex
subject. Current common practice in registries is to identify the software project (see
swMath, ASCL or Wikidata) rather than specific software outputs, and this will present
a challenge for adopting FAIR software principles; see Gaps 1, 2 and 4 in Section 5. Also
see the software structure complexity gap (Gap 5), related to identifiers for different
parts of the software.

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● The term and function of a “software registry” is not well defined, so the application
of the principle is unclear. [compatible with subgroup 1]

● Unclear that there needs to be a specific requirement for registries, principle should
be generalised to support other mechanisms for searching for software, by ensuring
metadata follows appropriate standards. [probably compatible with subgroup 1]

● Unclear that it has to be a specific software registry, rather than a general research
object registry. [compatible with subgroup 1[

● Code repositories could be classed as “searchable software repositories” [probably
compatible with subgroup 1]

A. Accessible
Once the user finds the required data, she/he needs to know how can they be accessed, possibly
including authentication and authorisation.

Resource Content

Towards FAIR principles
for research software

In the original FAIR Guiding Principles, accessibility translates into retrievability through a
standardized communication protocol (A1) and accessibility of metadata even when the original
resource is no longer accessible (A2). These principles clearly also apply to software. accessibility
also includes the ability to actually use the software (access its functionality), however, we found
that mere retrievability is not enough. In order for anyone to use any research software, a
working version of the software needs to be available. This is different from just archiving source
code, even in comprehensive and long-term collections like the Software Heritage archive. To
use software, a working version (binary or code) has to be either downloadable and/or accessible
e.g., via a web interface, along with the required documentation and licensing information.
Accessibility requirements depend on the software type, e.g., web-applications, command-line
tools, etc. For example, software containers allow the use across different operating systems
and environments, e.g., local computers, remote servers, and high-performance computing
(HPC) installations. Cloud-based servers can execute existing pieces of code as a service, as
software made available through a web interface or via Jupyter Notebooks [44]. Notebooks
allow others to see the results and the narrative alongside the code used to generate them.
Furthermore, even for software that can be downloaded or accessed without restrictions, being
able to run it might also depend on, for example, data samples, (paid) registration, other
(proprietary) software packages, or a non-free operating system like Windows or macOS. For
data, the FAIR principles demand that “(Meta)data use a formal, accessible, shared, and broadly
applicable language for knowledge representation” (I1) and in that sense discourage the use of
proprietary data formats. This is in our view, however, different from transparent dependencies
for running software.
It is worth to re-emphasize that research software are not single, isolated, digital objects. As
further discussed for Interoperability, research software interoperate at different levels with
other digital objects including other software, and might have different available versions and/or
web-based deployments. Still, all implementations should be considered as part of a single entity
for the considerations on accessibility with metadata, as to ensure appropriate links among them
(see F1, F3). Since accessibility, interoperability and (re)usability are intrinsically connected for
research software, we consider aspects of installation instructions (R1.3), software dependencies
(I4S), and licensing (R1.1) as part of other principles here, rather than adding another
Accessibility principle.

“5 recommendationsfor
FAIR software”

Use a publicly accessible repository with version control - WHY THIS IS IMPORTANT
Developing scientific software in publicly accessible repositories enables early involvement of
users, helps build collaborations, contributes to the reproducibility of results generated by the
software, facilitates software reusability, and contributes to improving software quality. Taken
together, this ensures that your software has the best chance of being used by as many people
as possible while promoting transparency.

FAIR4RS-subgroup1

A. Once the user finds the required software, they need to know how it can be accessed,
possibly including authentication and authorization.

We believe that accessible is an important foundational principle for software.

FAIR4RS-subgroup4 Accessible software should:

Commented [244]: they can

Commented [245]: in general, a standardized protocol
that is not "open" and not used by many is not ideal if
we want it to be retrievable by large audience / user?

Deleted: Interpreting

Deleted: as

Commented [247]: alternative term : executable?

Commented [248]: How about the scenario it can be
executed but it does not in effect run? Working sort of
mean runnable (possibly on a documented,
example case).

Commented [249]: A thought : do we require that the
binary file (executable format) of the software is
available, or is it also sufficient to provide instructions to
run or to generate the binary. The thing about binary is,
sometimes the binary is only executable if the
underlying execution platform suits what the compiler is
targeting. Some software environment technically
doesn't work such that it will require binary format to be
available to run. Does software implemented in python
considered binary, or still source code? Since it relies
on interpreter for execution, in this sense there is no
binary?

Commented [250]: I personally believe that only source
code should be considered for FAIRness, since the
executable isn't readable by humans and can't be
understood by humans.
Having the executable and the environment in an
emulated service can be a plus for reproducibility but
shouldn't be a requirement for FAIR.

Commented [251]: I think this is a leftover from the
original source of this writing?

Commented [252]: I'm not sure if we should re-reference
this, delete, or keep as is - it is the copied text

● Be retrievable through a resolvable identifier, using a standard protocol e.g. https
● Be able to be inspected and/or executed; as part of this it should include sufficient

documentation
● Use open metadata
● Follow good practice in software accessibility, i.e. making it possible for those with

impairments to use the software. These include, but are not limited to, physical,
social and technological barriers.

● Follow relevant coding standards and good practice
● Be accessible in the long-term (but this needs to be reconciled with making all

versions identifiable)
Also, to be accessible, any dependencies required by the software should also be fair, and
available via the same protocol.

A1 (meta)data are retrievable by their identifier using a standardized
communications protocol

Resource Content

Towards FAIR principles
for research software

Rephrased: “Software and its associated metadata are accessible by their identifier using a
standardized communications protocol.”
“Retrievability of research software and its metadata can be achieved by depositing it in an
appropriate repository and/or registry.”
“It is worth to re-emphasize that research software are not single, isolated, digital objects”

“5 recommendationsfor
FAIR software”

(not explicitly discussed)

FAIR4RS-subgroup1

A1. Software is retrievable by its identifier using a standardised communications protocol

This guiding principle is reasonable in the abstract, but unclear how to implement it for
different types of software, particularly for commercial software. In general, open
source software is retrievable by its identifier using a package manager, version
control, or similar programmatic download service.

FAIR4RS-subgroup2

The same for workflows and training materials.

However, this principle is not necessarily well understood across domains. With respect to
training materials, the term "accessibility" (protocols here) can be confused with accessibility in
terms of support for people with some impairment.

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● Better expressed as “(Meta)data and code are accessible by their identifier using a
standardized communications protocol” [Compatible with Subgroup 1]

● Less requirement for A1 and A2, as there is better agreement on standard protocols
for accessing software, e.g. HTTP(S) [Compatible with Subgroup 1, but consideration
should be given to rephrasing]

● Are protocols for sharing metadata compatible with the way that programming
languages exchange information? [May require discussion - related to the rich
metadata issue]

A1.1 the protocol is open, free, and universally implementable

Resource Content

Applicability of principle to
FAIR for Research
Software

Not obvious, though may be because the protocols are widely implemented.

Towards FAIR principles
for research software

“Usually software (and its metadata) can be downloaded directly from the repository and/or
website via standard protocols (HTTP/SSH).
There is no need to rephrase this specific item as it generally applies to any digital resource
exposed via the web, and thus to both data and software.”

“5 recommendations for
FAIR software”

Repository: “Developing scientific software in publicly accessible repositories enables early
involvement of users, helps build collaborations, contributes to the reproducibility of results
generated by the software, facilitates software reusability, and contributes to improving
software quality. “

FAIR4RS-subgroup1

A1.1 The protocol is open, free, and universally implementable

This guiding principle is reasonable in the abstract, but it is unclear how to implement
it for different types of software, particularly for commercial software.

FAIR4RS-subgroup2

Does the protocol need to support all possible formats? Perhaps the principle states that to be
FAIR we should use an open protocol to download software or workflows. It would be
analogous to data.

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting, but some felt it did not
apply to software, and it was unclear what it meant in a software context. [Compatible with
Subgroup 1].

A1.2 the protocol allows for an authentication and authorization procedure,
where necessary

Resource Content

Towards FAIR principles
for research software

“The protocol allows for an authentication and authorization procedure, where
necessary..[Remain the same]”
“Similarly, it might be possible that users might need to register, and/or authenticate, before
downloading binaries or, in the case of web applications, using the software. In all cases, access
conditions should be justified and documented.”

“5 recommendations for
FAIR software”

(not explicitly discussed)

FAIR4RS-subgroup1

A1.2 The protocol allows for an authentication and authorisation procedure, where necessary

This guiding principle is reasonable.

FAIR4RS-subgroup2 (not explicitly discussed)

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting, but some felt it did not
apply to software, and it was unclear what it meant in a software context. [Compatible with
Subgroup 1].

A2. metadata are accessible, even when the data are no longer available

Resource Content

Applicability of principle to
FAIR for Research
Software

Clear examples of applicability.

Towards FAIR principles
for research software

Rephrased: “Software metadata are accessible, even when the software is no longer available.”
“Metadata provides the context for understanding research software, and this should persist
even when the software itself is no longer available.“

“5 recommendations for
FAIR software”

(not explicitly discussed)

FAIR4RS-subgroup1

A2. Metadata are accessible, even when the software is no longer available

This guiding principle is reasonable, and some mechanisms for achieving this already
exist and are in use for some research software already. For instance, software
metadata can be captured in domain specific registries like swMath.org or the
Astrophysics Source Code Library (ASCL), in general repository solutions like Zenodo, or
via a persistent identifier scheme like DOIs.

FAIR4RS-subgroup2
Also applies to workflows, where this would be equivalent to registering them in long term
registries such as workflowhub.eu

FAIR4RS-subgroup4
Most people believed this principle applied, but some felt it did not apply to software in
isolation from other research objects / metadata. [Compatible with Subgroup 1].

I. Interoperable
The data usually need to be integrated with other data. In addition, the data need to interoperate with
applications or workflows for analysis, storage, and processing.

Resource Content

Towards FAIR principles for
research software

The IEEE Standard Glossary of Software Engineering Terminology [46] defines interoperability
as the “ability of two or more systems or components to exchange information and to use the
information that has been exchanged”. This definition is further complemented by semantic
interoperability, ensuring “that these exchanges make sense – that the requester and the
provider have a common understanding of the ‘meanings’ of the requested services and data.”
[47]. When examining the FAIR data principles from a research software perspective,
interoperability turns out to be the most challenging among the four high-level principles. This
is not surprising given the complexity of the software interoperability challenges that form a
research area of its own [48–52].
Already for data and its associated metadata, interoperability has been found to be “the most
challenging of the four FAIR principles. This, in part, is due to interoperability not being well
understood” [53]. In contrast to the rather static nature of data, research software are live
digital objects that interact at different levels with other objects, e.g., other software, managed
data, execution environments; and either directly and/or indirectly, as scripts or as part of a
workflow (see Fig. 1). The interoperability principles are therefore even more challenging to
apply to software, some are not directly applicable, others need to be rephrased and even new
principles need to be defined to appropriately address the dynamic nature of software.
Software interoperability can be defined from three different angles:
1. for a set of independent but interoperable objects to produce a runnable version of the
software, including libraries, software source code, APIs and data formats, and any other
resources for facilitating that task;
2. for a stack of digital objects that should work together for being able to execute a given task
including the software itself, its dependencies, other indirect dependencies, the whole execution
environment including runtime dependencies and the operating system, the execution
environment, dependencies, and the software itself; and
3. for workflows, which interconnect different standalone software tools for transforming one
or more data sets into one or more output data sets through agreed protocols and standards.
Thus, interoperability for software can be considered both for individual objects, which are the
final product of a digital stack, and as part of broader digital ecosystems, which includes
complex processes and workflows as well as their interaction [6,54,55]. Different pieces of
software can also work together independent of programming languages, operating systems
and specific hardware requirements through the use of APIs and/or other communication
protocols.
Software metadata isa necessity for interoperability. They provide the context in which the
software is used and contributes towards provenance, reproducibility and reusability. However,
a balance is needed between the detail level and its generation cost. Depending on whether
research software is considered as an individual product or as part of an ecosystem, the
associated metadata might differ [28,56,57], with workflows having specific mechanisms to
capture it through their specifications, e.g., using Common Workflow Language (CWL) [58,59]
and/or Workflow Description Language (WDL) [60], among others. This metadata should
include software version, dependencies (including which version), input and output data types
and formats (preferably using a controlled vocabulary), communication interfaces (specified
using standards like OpenAPI), and/or deployment options.
Another aspect associated with interoperability is the ability to run the software in different
operating systems, i.e. software portability. Software portability strongly depends on the
availability of the full execution stack in other operating systems (vertical axis in Fig. 1), which
may not always be given. This dependency on other digital objects to have a working software
is further extended in the newly introduced FAIR principle I4S. The present tendency to package
software and its dependencies, in software containers e.g., Docker, Singularity, Rocket,
contributes to enhanced software portability. Although these differences are not negligible,
given that these terms are often used interchangeably, we will be considering both under the
FAIR principle of interoperability, highlighting any issues that arise due to this divergence.

Commented [253]: leftovers from the original source?

Deleted: are

“5 recommendations for
FAIR software”

(not directly addressed)

FAIR4RS-subgroup1

I. The software usually needs to communicate with other software via exchanged data (or
possibly its metadata). Software tools can interoperate via common support for the data they
exchange.

Interoperation between data expresses a reciprocal or concomitant relation. Two
data sources can be said to interoperate if they can, with relative ease, be integrated
in a way that forms a uniform third object. They are equal contributors to the end
result. The potential for integration is commonly taken to be good practice in
software engineering, but the nature of that relationship is different. There is a
contrast between direct or asymmetrical, and indirect or symmetrical integration.

First, there is the direct and asymmetrical integration between a piece of software
and its dependencies. As implied by the label, the software becomes dependent on
the availability and robustness of those dependencies. The dependencies are
integrated into the primary software object. This sense of integration does not seem
to reflect the reciprocal relation expressed by “interoperability.”

Second, there is an indirect and often symmetrical integration between independent
software objects that can or do exchange data. This could be in the form of
information passed between two running instances of software (e.g., services), or it
could be in the form of support for common data formats read or written by both
software packages. This sense of integration does reflect the reciprocal relations
expressed by interoperability.

We propose that this foundational principle focus on a sense of interoperability
facilitated by the exchange of metadata or data between software following
community standards. To better convey this meaning, we propose updating the
wording of this foundational principle:

“The software usually needs to communicate with other software via exchanged data
(or possibly its metadata). Software tools can interoperate via common support for
the data they exchange. ”

Furthermore, we propose that the sense of direct integration is actually related to the
use and reusability of software, rather than interoperability. See the discussion on
Reusability foundational principle for more on this point.

As part of this refocus, we will drop some guiding principles that don’t reflect this,
reword others, and introduce a new principle modelled on one of the reusability
guiding principles.

FAIR4RS-subgroup2

There is an opportunity to expand the second point made by Subgroup 1, that “there is an
indirect and often symmetrical integration between independent software objects that can or
do exchange data” with workflows.

This is the principle of workflows and workflow management systems (WfMS) - they are
expressly about the movement of data between services and the linking of inputs and outputs
of codes, and those codes may be invoked on different platforms.

FAIR4RS-subgroup4

Interoperable software should:
● Be machine readable and pipeable
● Be able to be used together with other software and data, as part of workflows
● Have well-defined and documented data formats and APIs, using existing

community standards where possible
○ This includes protocols and standards for other research objects like use of

ORCID, CRediT, COPE ethical guidelines
● Be portable i.e. can be run (with adaptation) on similar systems, machines and

environments

Specific clarifications in response to “Towards FAIR Principles…”

● Unlike data, in a sense, all software is "integrated" with, or depends upon other
software. And some software can be written such that it can be (easily) integrated
into other software projects. Getting this right seems to be a critical component of
reuse.

● Highly context-dependent. At best, interoperability between software and data can
be discussed in the existing FAIR framework.

● Interoperability should also touch (together with reusable) on the property of
usability. FAIR needs to stay usable - not a burden on the authors but a welcoming
addition.

Other responses on Interoperable from “Towards FAIR Principles…” suggesting additional
guiding principles:

● Software should document the environment required to execute the software
[should this be in Reusable?]

● Software should support checkpointing / repetition of runs
● Software should be linked to related objects including publications using the code,

other versions of the code, tools and libraries used, and derived versions of the code
[should this be in Findable or Reusable?]

I1. (meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation

Resource Content

Applicability of principle to
FAIR for Research Software

Example of use (WfMS) but level of applicability is unclear.

Towards FAIR principles for
research software

Rephrased and extended: “Software and its associated metadata use a formal, accessible,
shared and broadly applicable language to facilitate machine readability and data exchange.”
“Interoperability for research software can be understood in two dimensions: as part of
workflows (horizontal dimension) and as a stack of digital objects that need to work together
at compilation and execution times (vertical dimension).”
“When considering research software as part of a workflow, software should be able to share
input and/or output data sets with other software.”

“5 recommendations for
FAIR software”

Registry: : "What metadata does the community registry offer? This is sometimes described in
the documentation of the registry, but you can also see for yourself by installing a tool like the
OpenLink Structured Data Sniffer. "
Software quality: : “Checklists help you write good quality software. What exactly constitutes
'good quality' depends on the specific application of the software, but typically covers things
like documenting the source code, using continuous testing, and following standardized code
patterns.”

FAIR4RS-subgroup1 (removed)

FAIR4RS-subgroup2

WfMS expressly use a language to describe the workflow - which is why they are data at one
level.

There were differing opinions on whether this was required as a guiding principle, around
whether this should be enforced to encourage sharing code in broadly applicable languages
that may be more usable by the community versus this being, and not coming up with
languages of their own, versus this being encouraged as good practice rather than enshrining
in FAIR.

FAIR4RS-subgroup4

Many people believed this principle applied / applied with rewriting, but some felt it did not
apply to software and should be removed.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● Current phrasing of principle doesn’t take into account that software is all written in
a formal language, so there is some inherent standardisation, and is machine
readable. Therefore this may not be relevant for software. [Compatible with
Subgroup 1]

● For source code based software, code quality should also be considered. This is also
true for the original principle with respect to knowledge representations. [Unclear if
compatible with Subgroup 1]

I2. (meta)data use vocabularies that follow FAIR principles

Resource Content

Applicability of principle to
FAIR for Research
Software

Examples of use (CodeMeta, Citation File Format).

Towards FAIR principles
for research software

Reinterpreted, extended and split: “I2S.1 - Software and its associated metadata are formally
described using controlled vocabularies that follow the FAIR principles. I2S.2- Software
use and produce data in types and formats that are formally described
using controlled vocabularies that follow the FAIR principles.”

“5 recommendations for
FAIR software”

Citation: “The CodeMeta standard and the Citation File Format were specifically designed to
enable citation of software and will likely meet your needs. For either one, you write a plain text
file with citation metadata, which you then distribute with your software.”

FAIR4RS-subgroup1 (removed)

FAIR4RS-subgroup4

1.2S.1: Many people believed this principle applied / applied with rewriting, but some felt it did
not apply to software and should be removed.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● Suggested rewrite to “Software metadata are formally described using controlled
vocabularies that follow the FAIR principles.” [Not compatible with Subgroup 1 -
principle removed]

● Principle applied to metadata, but unclear if it does for software. What is a
controlled vocabulary for software? Is it the programming language? If yes, would
any programming language be less FAIR than others? [Unclear if compatible with
Subgroup 1]

● Controlled vocabularies are (and should be) always in progress, adapting to actual
community use and practices. Software is immensely flexible and varied, it may
happen that the current version of a controlled vocabulary doesn't cover a particular
application that still needs documentation. So semi-formal descriptions might have a
necessary role. [Unclear if compatible with Subgroup 1]

● Should this be moved to Reuse?

1.2S.2: Everyone believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● Difference here between type and format is unclear. [Not compatible with Subgroup
1 - principle removed]

● Should I2S.2 be recast as the foundational “interoperable” principle, rewritten more
simply as "FAIR software should exchange (meta)data that is FAIR"? [Unclear if
compatible with Subgroup 1]

● Should I2S.2. be rewritten as “Software use and produce data that follows the FAIR
principles.”? [Not compatible with Subgroup 1 - principle removed]

I3. (meta)data include qualified references to other (meta)data

Resource Content

Applicability of principle to
FAIR for Research
Software

Sits better in the context of reusability.

Towards FAIR principles
for research software

“Discarded”
“I3 aims to interconnect data sets by semantically meaningful relationships..... However, such
relationships are difficult to translate to the case of research software. We found the closest
resemblance of this principle to be in software dependencies.” => I4S

“5 recommendations for
FAIR software”

 (not explicitly discussed)

FAIR4RS-subgroup1

I2. Software includes qualified references to other objects

This guiding principle applies to software as written, but in discussion we agreed that
this is in aid of (re)use of software, rather than interoperability (at least as described
above). Additionally, this simple translation of the original guiding principle doesn’t
capture that qualified references should be to metadata, data and software, as well as
to non-digital objects that have a virtual presence in digital systems (e.g., samples,
reagents, etc.).

Software source code (and some other types of software) do include references to
other software (requirements, imports, libraries, etc.) but not currently in a way that
meets F1 and A1. Software does not generally include references to metadata, though
in some cases, it can include (in comments) references to algorithms or other
published text that it implements. Some software includes references to external data
objects required to execute the software. To be fully FAIR, the data would ideally be
FAIR as well, and references to external data fully qualified.

We believe that calling for qualified references to metadata and to data is reasonable.
However, in light of the modified definition of the foundational Interoperability
principle, we believe that, while the inclusion of guiding principle calling for software
to include qualified references to other software is reasonable, this is primarily in aid
of the use and reuse of the software. For this reason, we propose that there be two
guiding principles:

“Software includes qualified references to other objects”
“Software includes qualified references to other software”

The second of these is a new guiding principle to be placed under the Reuseable
foundational principle.

FAIR4RS-subgroup2
This also works for workflows and scripts and all objects where the process is explicit as
opposed to being buried in the code

FAIR4RS-subgroup4
This rewritten I2 from Subgroup 1 is compatible with the discussion around the definition of the
Findable and Interoperable guiding principles from Subgroup 4.

I4S. Software dependencies are documented and mechanisms to access them
exist

Resource Content

Towards FAIR principles
for research software

14S. Software dependencies are documented and mechanisms to access them exist.

“5 recommendations for
FAIR software”

 (not explicitly discussed)

FAIR4RS-subgroup1 (not explicitly discussed)

FAIR4RS-subgroup4

Everyone believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● The important question of long-time access of dependencies is not included in the
principle

● Dependencies describe integration, but don't automatically create the preconditions
for interoperation. What (I4S) describes should be a principle for (re)use.

New interoperability principle

Resource Content

Towards FAIR principles
for research software

“Discarded”
“I3 aims to interconnect data sets by semantically meaningful relationships..... However, such
relationships are difficult to translate to the case of research software. We found the closest
resemblance of this principle to be in software dependencies.” => I4S

“5 recommendations for
FAIR software”

 (not explicitly discussed)

FAIR4RS-subgroup1

I1. Software should read, write or exchange data in a way that meets domain-relevant
community standards

… there is an indirect and often symmetrical integration between independent
software objects that can or do exchange data. This could be in the form of
information passed between two running instances of software (e.g., services), or it
could be in the form of support for common data formats read or written by both
software packages. This sense of integration does reflect the reciprocal relations
expressed by interoperability.

FAIR4RS-subgroup4

This new guiding principle from Subgroup 1 is compatible with the definition of the
Interoperable foundational principle from Subgroup 4 (“Have well-defined and documented
data formats and APIs, using existing community standards where possible”)

R. Reusable
The ultimate goal of FAIR is to optimise the reuse of data. To achieve this, metadata and data should
be well-described so that they can be replicated and/or combined in different settings.

Resource Content

Towards FAIR principles
for research software

Reusability in the context of software has many dimensions. At its core, reusability aims for
someone to be able to re-use software reproducibly as described by Benureau and Rougier 2018
[61]. The context of this usage can vary and should cover different scenarios: (i) reproducing the
same outputs reported by the research supported by the software, (ii) (re)using the code with
data other than the test one provided to obtain compatible outputs, (iii) (re)using the software
for additional cases other than those stated as supported, or (iv) extending the software in order
to add to its functionality.
Software reusability depends to a high degree on software maintainability (see also Section
Software quality: beyond FAIR), including proper documentation at various levels of detail. The
legal framework, e.g., software licenses, is also important in terms of reusability as it determines
how software can be built, modified, used, accessed and distributed. Furthermore, as research
software is an integral part of the scientific process, credit attribution (citation) is another
important aspect to consider with regard to (re)usability.

“5 recommendations for
FAIR software”

Use a publicly accessible repository with version control - WHY THIS IS IMPORTANT
Developing scientific software in publicly accessible repositories enables early involvement of
users, helps build collaborations, contributes to the reproducibility of results generated by the
software, facilitates software reusability, and contributes to improving software quality. Taken
together, this ensures that your software has the best chance of being used by as many people
as possible while promoting transparency.

Add a license - WHY THIS IS IMPORTANT
Any creative work (including software) is automatically protected by copyright. Even when the
software is available via code repository platforms such as GitHub, no one can use it unless they
are explicitly granted permission. This is done by adding a software license, which defines the set
of rules and conditions for people who want to use the software. Finally, be aware that you, as
the developer of a given piece of software, may not be a copyright owner of the code you write.
Usually the copyright holder of a work is the employer (or hiring party) and not the author of the
work.

FAIR4RS-subgroup1

The ultimate goal of FAIR is to optimize the reuse of software. To achieve this, metadata and
software should be well-described so that they can be replicated and/or combined in different
settings.

We believe that usability and reusability is an important foundational principle for
software. However, "optimize" is too strong of a statement and should be replaced by
"enable and encourage." Finally, software can be described via metadata.

To maximise software (re)use, we must recognise that most software is dependent on
other software. FAIR Research Software should be structured to maximise its potential
use or reuse. This includes:

● the encapsulation of the software such that it can be reused alone or
within other software projects

● the level of abstraction at which the software is expressed

Deleted: sharing

Commented [254]: probably the term IPR (intellectual
property right) holder or owner is more appropriate?

Deleted: e

● the record of references to dependencies that enable use and reuse of the
software, and

● the metadata that pertains to reusability.

As discussed under the interoperability foundational principle above, it has been
difficult to interpret what interoperable means in a FAIR context. This is true for
reusable as well. These terms have multiple, overlapping senses when applied to
software.

Reuse for software can mean much more than “replicated and/or combined” in the
original wording for this foundational principle.

We do not consider executability to be a necessary feature of software for it to be
FAIR. There are many legitimate (re)uses of software that do not require executability,
for instance, to verify that steps taken within the code are valid, or to look for “bugs”
and other errors in the code.

Software is usually written in a human readable form (source code), which will either
be executed by an interpreter, or compiled into one or more binary forms suitable for
execution within specific hardware and operating system combinations (limiting
potential (re)use). We consider making the original human readable form available
most harmonious with the FAIR principles, but recognise that for commercial,
historical, or sensitivity reasons, the binary or binaries may be the only available form
of some software. The binary itself is opaque and may contain bugs and errors. It is
impossible to verify its validity and it cannot be modified, for example, to fix bugs.
Binaries can be considered black boxes that we can “use” or “reuse” in a research
workflow to produce, analyze, or act on data. Source code, on the other hand, can be
interrogated, modified, and “reused” in other software or research workflows in a
wider range of environments; see Gap 7 in Section 5.

We suggest “replicated, combined, reinterpreted, reimplemented, and/or used”
instead of “replicated and/or combined.”

A new version of the text above is "The ultimate goal of FAIR is to enable and
encourage the use and reuse of software. To achieve this, software should be well-
described (by metadata) and appropriately structured so that it can be replicated,
combined, reinterpreted, reimplemented, and/or used in different settings."

FAIR4RS-subgroup2

The list of suggested techniques to maximise potential use or reuse are akin to the ASAP of
workflows: Automation, Scaling, Abstraction, Provenance (aka dependencies). But not
necessarily encapsulation. If software calls a service or an API or a microservice is it not
reusable?

If software is not required to be executable, then isn’t it just data? However we agree with
Subgroup 1 that reuse through reading is critical (and more sustainable than reuse through
running).

The suggested new version of the text works for workflows.

FAIR4RS-subgroup4 Reusable software should:

Commented [255]: Somewhat feels a little bit
contradictory with what is stated in previous section of
this document, where it is stated that the binary file
(which is executable) is needed.

Commented [256]: Can you mark the remark in the
previous section? I think that these two different ideas
are from two different resources.
this is the text from the subgroup1 report, the text I think
you refer to is the Lamprecht et al. publication.

Commented [257]: Maybe more appropriate term is
"publicly available", since the source code technically is
"available" or "exist" in the universe, but instead the
access is restricted only to those with permissions from
the Intellectual Property owner.

Commented [258]: also possibly executable only certain
environment, OS, but not the incompatible ones ,i.e.,
binary might have limited portability

● Make it possible for others to understand and use the software for their own
purposes

● Be well-documented/curated, and lower effort to use than building own
● Have a suitable and clear license
● Be usable and extensible
● Sustainable
● Reproducible
● Dependable

There was considerable debate about whether the spirit of the Reusable foundational principle
should concentrate on usability, enabling reuse (e.g. extensibility, maintainability, license), or
reproducibility.

An overwhelming viewpoint was that this foundational principle should encourage adherence
to software engineering good practice.

Other guiding principles suggested in this category included:

● Software should be written to follow software engineering principles such as
encapsulation (e.g., modularity, portability, abstraction) and flexibility (e.g., less hard
coded variables) to enable greater reuse

● Software should be written to make it easy for others to understand how to modify it
● Software should be written to encourage contribution (e.g. Code of conduct,

contributing, readme, etc.)
● Software should be documented so that the intent of the software is clear (both in

the code and in the documentation)
● Software should not contain hidden features or bugs that could compromise

suitability for given tasks
● Software should be dependable i.e. it can be built on by other software and research

R1. meta(data) have a plurality of accurate and relevant attributes
Resource Content

Applicability of principle to
FAIR for Research
Software

Direct examples of use

Towards FAIR principles
for research software

Rephrased: “Software and its associated metadata are richly described with a plurality of
accurate and relevant attributes.” (Note that this principles isn’t developed)

“5 recommendations for
FAIR software”

Registry: “With metadata, search engines are able to get some idea of what the software is
about, what problem it addresses, and what domain it is suited for. In turn, this helps improve
the ranking of the software in the search results -- better metadata means better ranking.”

FAIR4RS-subgroup1

R1.1. Software is richly described with a plurality of accurate and relevant attributes

This guiding principle is reasonable.

FAIR4RS-subgroup2 Also makes sense for workflows.

FAIR4RS-subgroup1

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● What does rich and plural mean in the context of software? [Probably incompatible
with Subgroup 1]

● Rich metadata needs to be maintained as well, or it will be even worse than no
metadata. Maybe add "up-to-date" as the first requirement and the others after that
as "secondary". [Probably compatible with Subgroup 1]

● What do attributes mean in the context of software? More guidance is required.
[Probably compatible with Subgroup 1]

R1.1. (meta)data are released with a clear and accessible data usage license

Resource Content

Towards FAIR principles
for research software

Software and its associated metadata have independent, clear and accessible usage licenses
compatible with the software dependencies. [Rephrased and extended]

Applicability of principle to
FAIR for Research Software

Direct examples of use.

“5 recommendations for
FAIR software” “5
recommendations”

License: “Any creative work (including software) is automatically protected by copyright. Even
when the software is available via code sharing platforms such as GitHub, no one can use it
unless they are explicitly granted permission. This is done by adding a software license, which
defines the set of rules and conditions for people who want to use the software.”

FAIR4RS-subgroup1

R1.2. Software is made available with a clear and accessible software usage license

This guiding principle is reasonable, assuming that "release" is defined as making the
software available. Thus, we think this principle should be re-written as "Software is
made available with a clear and accessible software usage license."

FAIR4RS-subgroup4
Most people agreed with this principle as written. [Probably compatible with Subgroup 1 -
needs discussion about licensing of dependencies]

R1.2. (meta)data are associated with their provenance
Resource Content

Towards FAIR principles
for research software

Rephrased: “Software metadata include detailed provenance, detail level should be community
agreed.”
“Provenance refers to the origin, source and history of software and its metadata. It is
recommended to use well-known provenance vocabularies, for instance PROV-O [63], that are
FAIR themselves. “

Applicability of principle to
FAIR for Research Software

Direct examples of use.

“5 recommendations for
FAIR software”

Repository: “Using a version control system allows you to easily track changes in your software,
both your own changes as well as those made by collaborators.”

FAIR4RS-subgroup1

R1.3. Software is associated with detailed provenance

This guiding principle is reasonable. A version control system (VCS) may provide
detailed provenance for software, but the quality of detail, especially of agents,
entities and actions will depend on careful, consistent and considered use of the VCS.
Also note that many contributors may not be recorded by a version control system,
which by default only stores that single individual who submits each change.

FAIR4RS-subgroup2 Also makes sense for workflows.

FAIR4RS-subgroup4

Everyone believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● The phrase "detail level should be community agreed" just restates R1.3 [Compatible
with Subgroup 1]

● Requires clearer definition of what “community” means [Probably compatible with
Subgroup 1]

● Suggested rephrasing as "Software metadata include detailed provenance, detail
level should be at least as high as the community agreed best practice." [Probably
compatible with Subgroup 1]

● Provenance for software is authorship and best ensured by version control
[Compatible with Subgroup 1]

R1.3. (meta)data meet domain-relevant community standards
Resource Content

Towards FAIR principles
for research software

Rephrased: “Software metadata and documentation meet domain-relevant community
standards.”
“we consider aspects of installation instructions (R1.3), software dependencies (I4S), and
licensing (R1.1) as part of other principles here, rather than adding another Accessibility
principle.”

Applicability of principle to
FAIR for Research Software

Consensus of applicability through careful interpretation.

“5 recommendations for
FAIR software”

Registry: "What metadata does the community registry offer? This is sometimes described in the
documentation of the registry, but you can also see for yourself by installing a tool like the
OpenLink Structured Data Sniffer. "

FAIR4RS-subgroup1

R1.3. Software meets domain-relevant community standards

This guiding principle is reasonable, but requires careful consideration for software, for
the reasons in the discussion under the foundational principle and those laid out
below.

As noted in Section 2, one feature that differentiates software from data is that it is a
complex object composed of multiple distinct objects, such as source code and/or
binaries, documentation, and possibly data and metadata of various kinds (see Gaps 5
and 6 in Section 5 for more discussion). For software, the composition of the complex
object may itself be subject to community standards (e.g., an expectation that certain
components such as documentation or detailed references to dependencies should be
included in the overall object), and the distinct objects may also be subject to separate
community standards (i.e., that included or referenced objects should be in a
particular form, or otherwise made FAIR in different ways). Software becomes more
usable or reusable by meeting these kinds of domain-relevant community standards.

Particularly when considering the source code component of software, community
standards may include preferred programming languages or packaging systems. That
is, the “domain-relevant community standards” include the norms established around
the software community for each programming language. They also include any
further norms within research domains. Community standards may include ways of
managing and structuring the code, and expectations around the presence and
structure of documentation; see Gap 6 in Section 5. We interpret this point as allowing
multiple domains to operate at once. We do not consider it an aim of the FAIR
principles for research software to pursue the integrability of all software with all
software or the use of a single preferred programming language above all others.

We also believe that, by extension, this principle can refer to the functionality or
capabilities of the software, and that it is reasonable to expect that:

“Software should read, write or exchange data in a way that meets domain-relevant
community standards.”

Commented [259]: "Community standards" needs to
better defined, there needs to be a threshold or lower
limit for what is defined as a de facto community
standard. The standard being current and continuously
updated is one important factor. Use is another, but
broad community use should not be enough to qualify,
there are many bad/incomplete community "standard"
formats used for convenience and lack of alternatives.

1) Who decides on the standard being standard; is it a
group/committee? 2) does that group change members,
are they community members/elected by community?
3) Does the standard have/need versioning? If so,
3a) Is there a transparent standards update process?
3b) Does community have input on updates?

Commented [260]: I agree this is an important subject.
Should this be dealt within the FAIR principles? or
within the community?

Commented [261]: I just wanted to raise the awareness,
solving it here is probably very much out of scope :-)
But it is important that we don't rely blindly on
community standards existing, being good, and
reflecting community priorities

Commented [262]: and with technical standards, like for
software, that is more important, as it effects everything
along the line and can totally wreck interoperability

We note that calling for data that is read, written, or exchanged by software to be FAIR
would be too strong a statement for data or metadata only used within or between a
collection of software. We also do not insist that FAIR software must integrate with
repository systems by default (for instance, to capture metadata and issue an
identifier); we believe such decisions should be made by the software creator based on
how the software will be used, in the context of community standards and
expectations.

This interpretation of this principle is harmonious with our proposed interpretation of
Interoperability for research software. We propose that this new wording should be a
new and separate principle under Interoperability (I1) in addition to preserving the
original one as discussed further in Section 4.

FAIR4RS-subgroup2

The note that “one feature that differentiates software from data is that it is a complex object
composed of multiple distinct objects” is also true of some datasets. not all datasets are atomic
and homogeneous. The FAIR data principles take into account that different users/stakeholders
will have the need for different metadata on the same data: does that perspective apply to
software?

FAIR4RS-subgroup4

Everyone believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…” rewritten version:

● R1.3, if not time bound, may be problematic. Community standards are (and should
be) in constant development. Exceptions to following the standards should be
possible where necessary. Suggested rephrasing to: "Software metadata and
documentation meet or rise above domain-relevant community standards."
[Probably compatible with Subgroup 1]

● The term “community standards” is fuzzy - how is this recognised? [Unclear if this is
compatible with Subgroup 1 - possibly requires discussion to identify how to be
documented]

● There should be some minimum interdisciplinary standard, as some software is not
limited to a domain [Probably incompatible with Subgroup 1 as stands - does this
suggest an additional principle?]

New reusability principle - qualified references to other software

Resource Content

FAIR4RS-subgroup1 R2 Software includes qualified references to other software

Software source code (and some other types of software) do include references to
other software (requirements, imports, libraries, etc.) but not currently in a way that
meets F1 and A1. Software does not generally include references to metadata, though
in some cases, it can include (in comments) references to algorithms or other
published text that it implements. Some software includes references to external data
objects required to execute the software. To be fully FAIR, the data would ideally be
FAIR as well, and references to external data fully qualified.

FAIR4RS-subgroup2 (not explicitly discussed)

FAIR4RS-subgroup4 This agrees with the general discussion from Subgroup 4 on the meaning of the F, A and R
foundational principles.

However Subgroup 4 goes further, and would suggest that to be fully FAIR, the software
dependencies would ideally be FAIR as well.

But, because software consists of large stacks of interdependent components, any definition of
metrics and indicators of FAIR for software can only be made in the context of a specific stack.
Otherwise NumPy would be criticised for not being interoperable with R.

New reusability principle - dependability

Resource Content

FAIR4RS-subgroup1 Not discussed.

FAIR4RS-subgroup2 (not explicitly discussed)

FAIR4RS-subgroup4 R3. Software is dependable and can be built on by other software and research

● R3.1 The software is maintained by a large community, or supported by an institution
that has made a long-term commitment to its maintenance.

● R3.2 The software comes with a policy statement about its future evolution
(backward compatibility, supported platforms, etc.)

● R3.3 The software's dependencies are as dependable as the software itself.

This should be compared with how dependability is considered for FAIR data.

Commented [263]: I don't think that whether the software
is dependable should be an aspect of FAIRness
The FAIR data principles don't go into whether the data
is right (this can be subjective!)
I also don't think that the size of the developer
community should be a factor in whether a piece of
software is FAIR.
Software can be FAIR but short-lived surely? It may be
superceded, either functionally or technically.
But while it is useful you should be able to discover, use
and reuse it.

Commented [264]: Speaking of research software
produced in university, in university often people come
and go and they work based on projects with the
projects' own requirements and scope of work.
Maintenance in practice is very challenging in this
context, making it a requirements sounds like "asking it
too much", pragmatically speaking.

Commented [265]: I completely agree!! This is a very
important point that is also raised in the FAIRsFAIR
assessment report on FAIRness of software:
https://doi.org/10.5281/zenodo.4095092 with
recommendation n°2: Applying principles and
recommendations to software demands effort, time and
skill. The realistic nature of these principles MUST be
considered.

Commented [266]: Another citation from the report: "At a
more general level, it is to be acknowledged that any
new principle may lead to extra requirements enforced
on researchers, who are already facing significant
challenges when developing or maintaining software,
which is a complex and living object. The time and effort
required to abide by these principles must hence be
properly taken into account; to find a proper balance
between effort and return we suggest that a large
community be consulted. In order to maximize adoption,
clear and immediate benefits should be offered to the
researcher, e.g. by reducing the amount of times she is
requested to enter the same information in different
systems in different phases of her career."

Appendix B: How to apply the FAIRsFAIR recommendations

The recommendations in the FAIRsFAIR report (Gruenpeter et al. 2020) uses the following
requirement level, as defined in RFC21193:

● MUST is an absolute requirement

● SHOULD is a needed requirement for which exceptions are possible

● MAY is an optional requirement

Recommen
dation
number

Recommendation How to satisfy this
recommendation?

n°1 FAIR principles for research software outcomes
MUST be produced by taking into account the
specific nature of software and not as just a
simple adaptation of the FAIR guiding principles
for data.

The creation of the FAIR4RS
WG is a measure to achieve
this recommendation by
having a dedicated
discussion taking into
account the FAIR guiding
principles and the specific
nature of software.

n°2 Applying principles and recommendations to
software demands effort, time and skill. The
realistic nature of these principles MUST be
considered.

Having researchers who
create software or research
software engineers as
reviewers of the principles
can be a means to satisfy
this recommendation.

n°3 A large community forum MUST be consulted
when writing the principles. This community
forum MUST include stakeholders from different
disciplines and with different roles, looking at

Inviting specific
stakeholders which were
not identified in the
FAIR4RS WG to review and

3 https://tools.ietf.org/html/rfc2119

software in all its aspects: as a tool, as a research
outcome and as the object of research.

comment on the WG
outputs and the resulting
FAIR principles for research
software.

Recommen
dation n°4

Existing infrastructures that already provide
solutions for software artifacts SHOULD be asked
to review the FAIR principles for research
software.

Invite infrastructures
representatives to review
the FAIR4RS principles.

Recommen
dation n°5

Each principle MUST be relevant for software
source code.

Recommen
dation n°6

Each principle MUST be achievable for software
source code.

Recommen
dation n°7

Each principle SHOULD be measurable for
software source code; detailed explanations of
how a measurable principle is measured MUST be
available.

Recommen
dation n°8

Each principle SHOULD contribute to software
recognition in scholarly communication.

Recommen
dation n°9

Each principle SHOULD contribute to the curation
quality of the software resource.

Recommen
dation
n°10

Each principle MAY solve one or more research
software challenges (e.g credit, reproducibility,
sustainability & management, documentation,
quality control, quality metadata, licensing and
more).

 Formatted: Justified, Space After: 6 pt, Line spacing:
Multiple 1.15 li

Page 6: [1] Commented [11] Manodeep Sinha 24/02/2021 23:06:00
This phrase is confusing - are both the qualifiers ("initial" & "straightforward") required? Does
"translation" refer to translation from FAIR to FAIR4RS that was done by subgroup1
participants?

Page 6: [2] Commented [12] Tom Pollard 26/02/2021 16:03:00
I agree, the meaning isn't clear to me either. Does "translation" mean a literal rewording of
statements so that references to data-specific items now refer to software-specific items?

Page 6: [3] Commented [13] Paula Andrea 03/03/2021 23:48:00
I think
Initial refers to the FAIR data guiding principles (2016). Translation refers to changing the word
"data" for "software" in the principle, without other changes.

Page 6: [4] Commented [14] Patricia Herterich 08/03/2021 11:40:00
principles as I think the authors don't think of them as rules?

Page 6: [5] Commented [15] Patricia Herterich 08/03/2021 11:41:00
or if rules, which ones do you mean here?

Page 6: [6] Deleted Tom Pollard 26/02/2021 16:06:00

●

Page 6: [6] Deleted Tom Pollard 26/02/2021 16:06:00

●

Page 6: [7] Commented [19] LJ Garcia 08/03/2021 20:16:00
Not sure what current systems refers to

Page 6: [8] Commented [20] Tom Honeyman 10/03/2021 23:17:00
I think "current infrastructure and practices" might be better

Page 6: [9] Commented [21] Manodeep Sinha 24/02/2021 23:20:00
This sentence is a bit long and combines two visions - i) a world where all/most research is
reproducible and carried out with high-quality software and ii) people developing and
maintaining such high-quality research software are both recognised and rewarded. May be
splitting into two sentences or two sub-items might make that clearer?

Page 6: [10] Commented [23] Catherine Jones 10/03/2021 09:46:00
Not sure this is clear - does it mean using the name of the subgroup for shorthand for the
outputs of FAIR4RS-subgroup1? I don't think this is an obvious thing to do

Page 6: [11] Commented [24] Patricia Herterich 08/03/2021 11:48:00
The introduction said the groups worked independently whereas this one seems to fully build on
subgroup 1 - maybe the introductory paragraph needs adjusting?

Page 6: [12] Deleted LJ Garcia 08/03/2021 20:17:00

Page 6: [12] Deleted LJ Garcia 08/03/2021 20:17:00

Page 6: [13] Commented [25] Catherine Jones 10/03/2021 09:47:00
See comment above about whether this is the group or the outputs of the group

Page 6: [14] Commented [26] Tom Pollard 26/02/2021 16:16:00

The text around mapping one name (Subgroup two) to another (FAIR4RS-subgroup2) reduce
readability for me and it isn't clear it is necessary. Is it possible to just refer to the group as
"FAIR4RS-subgroup2" in the first place?

Page 6: [15] Deleted Paula Andrea 03/03/2021 23:49:00

Page 6: [15] Deleted Paula Andrea 03/03/2021 23:49:00

Page 6: [15] Deleted Paula Andrea 03/03/2021 23:49:00

Page 6: [16] Commented [27] Axel Loewe 25/02/2021 10:28:00
Past tense was used for the other subgroups

Page 6: [17] Commented [28] Paula Andrea 04/03/2021 05:32:00
because subgroup 3 didn't finish yet. But I agree we should used past, by the time this report is
ready subgroup 3 will be finished. Do you agree @morane@softwareheritage.org ?

Page 6: [18] Deleted Tom Honeyman 10/03/2021 23:21:00

Page 6: [18] Deleted Tom Honeyman 10/03/2021 23:21:00

Page 6: [19] Deleted Tom Honeyman 10/03/2021 23:24:00

Page 6: [19] Deleted Tom Honeyman 10/03/2021 23:24:00

Page 6: [20] Commented [29] Tom Honeyman 23/02/2021 23:36:00
I suggest breaking this sentence into two or three sentences

Page 6: [21] Commented [30] Paula Andrea 04/03/2021 06:41:00
I would suggest: FAIR4RS-subgroup3 examined the complexity of defining research software. It
discussed exclusive and inclusive definitions regarding the usage of the term "Research" to
clarify the scope of the principles applied to software. @morane@softwareheritage.org what do
you think?

Page 6: [22] Commented [32] Paula Andrea 04/03/2021 06:43:00
a future opportunity to be considered in the

Page 6: [23] Commented [33] Paula Andrea 04/03/2021 06:43:00
@barkermd@outlook.com what do you think about this?
Assigned to Michelle Barker

Page 6: [24] Commented [34] Tom Honeyman 10/03/2021 23:26:00
It would be nice to know what the important controversy is, rather than that there is one.

Page 7: [25] Formatted CODATA Center of Excellence in Data for Society 25/02/2021 20:38:00

Outline numbered + Level: 1 + Numbering Style: Bullet + Aligned at: 0.63
cm + Indent at: 1.27 cm

Page 7: [26] Commented [35] Catherine Jones 10/03/2021 09:50:00

I'm not sure this is the right tense, can one "worked to.....discuss"? Either these bullets verbs
are wrong, or the "worked to" is in the wrong tense

Page 7: [27] Commented [36] Axel Loewe 25/02/2021 10:31:00
Will it be clear to everyone what "foundational" refers to?

Page 7: [28] Commented [37] Paula Andrea 04/03/2021 06:46:00
you are right. We need to be consistent in the references in text. there is Foundational and
Original also guiding and without the word guiding. To be addressed

Page 7: [29] Commented [38] Hugh Shanahan 08/03/2021 14:22:00
the FAIR principles is very the summation of good practices in Research Data Management.
Hence the sentence could be rewritten as "and agree how thinking behind the FAIR principles,
i.e. good practices associated with Research Data Management could be interpreted and
applied...."

Page 7: [30] Commented [40] Axel Loewe 25/02/2021 10:32:00
If this point is referring to the "rewritten FAIR principles", would "re-rewritten" or "rewritten again"
be clearer?

Page 7: [31] Commented [41] Paula Andrea 04/03/2021 06:49:00
rewritten in reference to Lamprecht 2020

Page 7: [32] Commented [42] Paula Andrea 04/03/2021 06:51:00
now I am confused to whether this is the 2016 or the 2020 paper

Page 7: [33] Commented [43] Paula Andrea 04/03/2021 06:52:00
i think is the lamprech paper so will be better to call it like that

Page 7: [34] Commented [44] Hugh Shanahan 08/03/2021 14:28:00
...modify to improve the FAIR guiding principles for research software.

Page 7: [35] Commented [45] Daniel Garijo 06/03/2021 19:24:00
What is "this" referring to? The subgroup? The discussion on how the principles can be
interpreted? On the suggestions?

Page 7: [36] Commented [46] Tom Bakker 09/03/2021 13:04:00
distributed under which audience? Given the conclusion a bit later (lack of attention to domains
outside life sciences and engineering), this is relevant to mention here.

Page 7: [37] Formatted Ilian Todorov 08/03/2021 10:42:00

Font: Italic

Page 7: [38] Formatted Ilian Todorov 08/03/2021 10:43:00

Font: Italic

Page 7: [39] Commented [47] Daniel Garijo 06/03/2021 19:25:00
I kind of like better the original wording here (I agree on removing the second "then")

Page 7: [40] Commented [49] Patricia Herterich 08/03/2021 11:53:00
which questions and how were they selected?

Page 7: [41] Commented [50] Daniel Garijo 06/03/2021 19:27:00
specific options for what? I would be specific here

Page 7: [42] Commented [52] Tom Bakker 09/03/2021 13:06:00
I think that is very valuable. I would consider adding some more info wrt which community is

being talked about here. How are groups, experts and relevant researchers outsidce the current
RSE 'bubble' approached?

Page 7: [43] Commented [54] Axel Loewe 25/02/2021 10:49:00
After having read the next chapter, I suggest: "Overall, the different sets of recommendations
(FAIR4RS, Lamprecht, 5RECS) have a number of similarities, as well as some differences."

Page 7: [44] Commented [57] Patricia Herterich 08/03/2021 13:26:00
How many different FAIR4RS sets are there? One per subgroup?

Page 7: [45] Commented [58] Patricia Herterich 08/03/2021 14:48:00
I think the information from the abstract listing the range of documents should be repeated here
- it's confusing that the only list is in the abstract but the document text would be confusing as a
standalone item

Page 7: [46] Commented [59] Hugh Shanahan 08/03/2021 14:31:00
the recommendations discussed above

Page 7: [47] Commented [60] Catherine Jones 10/03/2021 09:52:00
I think this sentence would benefit from a little extension - is it a surprise that there are some
similarities?
You can compare many things in a related area and there will be some things the same and
some different, so why is worth noting this here?

Page 8: [48] Commented [69] Catherine Jones 10/03/2021 09:59:00
While I agree that past executables are lost, there have been great improvements in the
preservation community around emulation as a preservation mechanism and it depends why
you want to keep the software and how important the actual running of the code (cf performance
is); the Tate (amongst others) have done some interesting things around preserving software
generated works of art .
However as I'm not working in the Arts & Humanties I'm not sure how relevant this would be to
research software there.
So I suppose my point is, we shouldn't base our view on principles based on software
developers and archivists of the past!

Page 8: [49] Commented [70] Daniele Tartarini 10/03/2021 22:03:00
I believe access to software and source code are two independent recommendations. You may
have an undisclosable source code with freely accessible software. Software artifacts should be
preserved where possible even long term to allow reproduction of issues (design failure,
medical diagnosis, forensic analysis, etc)

Page 8: [50] Commented [73] Axel Loewe 25/02/2021 10:43:00
I see the importance and added value of having a definition of research software. A question
could nevertheless be if it's important for the FAIR-aspect whether software is "research
software" or "non-research software"? One person might consider a specific software package
"FAIR research software", anotherone "FAIR non-research software" but both might happily use
it in research as long as it's FAIR (probably according the the same criteria).

Page 8: [51] Commented [74] Morane Gruenpeter 03/03/2021 22:25:00
I agree that it would be better to use FAIR software in research, even if it is not research
software.
I think that the importance of the definition lays with who is asking for it to be FAIR?

Page 8: [52] Commented [75] Hugh Shanahan 08/03/2021 15:01:00
There is an overall classification (well stack) for research software outlined

in https://ieeexplore.ieee.org/document/8701540/ that would help here. This allows one to
distinguish between the OS, the language, the generic scientific software and specific scripts.

Page 8: [53] Commented [76] Morane Gruenpeter 08/03/2021 15:27:00
This is a very good example that we used in the subroup3 discussions about Research
Software. The discussion will be available in the dedicated report in a few weeks.

Page 8: [54] Commented [78] Patricia Herterich 08/03/2021 13:11:00
I guess it's the research aspect, but then doesn't it make more sense the other way around?
Define software first and then apply the "research" filter?

Page 9: [55] Commented [85] Sharif Islam 25/02/2021 10:19:00
+1. Related research objects and dependencies need a place in FAIR4RS. But this can be as
messy as dependency hell. Maybe we leave this up to the specific community to come up with
their version of dependency and relationships? FAIR4S only provides high-level guidelines?
And this dependency can be extended to people (the programmers, sysadmins) as well. I am
thinking about the recent discussion around COBOL which is still part of several big systems in
the U.S government. Recently, some of these systems (for instance, unemployment tracking
system in several U.S states) crashed and created major issues for providing unemployment
benefits to people in need. There was a rush to find COBOL experts (turns out the issue was
not COBOL, it was the layer on top. see this article https://logicmag.io/care/built-to-last/). In this
example, is COBOL FAIR, because it was built to last? How to deal with this type of
dependency in FAIR4S that has a long term impact?

Page 9: [56] Commented [90] Tom Pollard 26/02/2021 16:27:00
saying the principle is "good" feels a little weak. it might be nice for the start of this section to
emphasize why findable is important for software (and same for the other AIR).

Page 9: [57] Commented [93] Patricia Herterich 08/03/2021 13:24:00
I actually think this should come as part of the introduction. A few sentences why you went
through the effort of adjusting FAIR for research data would give the whole document its
purpose.

Page 10: [58] Commented [105] Catherine Jones 10/03/2021 11:06:00
+1
What is an appropriate level of granularity may depend on the context. This is too complicated
to capture in a principle

Page 10: [59] Commented [106] Daniel Garijo 06/03/2021 20:54:00
This looks like 2 questions: whether the levels of granularity should be discussed and whether
identifiers should be assigned.
Regarding identifiers, I don't understand the issue very well. Each registry assigns theirs...

Page 10: [60] Commented [107] Elena Ranguelova 09/03/2021 15:43:00
Probably a clear definition of 'metadata' is needed first. Is this everything that is not a source
code? Or something else?

Page 10: [61] Commented [108] Daniel Garijo 06/03/2021 20:55:00
I would say no. Some registries have started doing a cross walk: https://elib.dlr.de/139972/ of
metadata based on Codemeta. But different communities track different metadata...

Page 10: [62] Commented [109] Catherine Jones 10/03/2021 11:08:00
+1
There will be some common metadata which applies regardless of the purpose it will be used
for, but all applications will have specialised metadata and this is a rabbit hole for

implementation not top level principles!

Page 10: [63] Commented [110] Tom Honeyman 24/02/2021 23:40:00
I vote for no. This would block innovation, and is again an implementors concern.

Consider the way that OAI-PMH is slowly giving way to schema.org harvesting and the addition
of machine readable metadata on landing pages has evolved in the last five years.

The roadmap for this group includes guidance after the principles... perhaps subsequent
guidance is one place these kinds of suggestions should go.

Page 10: [64] Commented [113] Tom Pollard 26/02/2021 16:26:00
"foundational" is a little vague here and i wonder whether instead this could briefly explain why
accessibility is an important concept for software.

Page 10: [65] Commented [115] Joanna Leng 24/02/2021 11:56:00
Is this different to "ease-of-install and ease-of-use"? I was advised to avoid the use of the word
barrier as it implies someone has done something wrong and so can get people's backs up.

Page 10: [66] Commented [118] Udayanto Dwi Atmojo 26/02/2021 15:33:00
Alternative word of "barrier" could be "restriction". And IMO, the absence of restriction doesnt
necessary imply "ease" of install or ease of use. A software designed such that it's a turnkey
(e.g., one click / one script to start everything) might be viewed as ease, but not all softwares
are designed to be turn key. One may require to do many steps, or invest some amount of time
and effort to be able to use.

Page 10: [67] Commented [119] Catherine Jones 10/03/2021 11:10:00
Not quite sure of the point of this para, perhaps rewording to highlight the areas that have not
had common agreement would be useful and that those areas are not in brackets?

Page 11: [68] Commented [138] Axel Loewe 25/02/2021 12:17:00
Does "software" also comprise a service running this software? In some settings, the software
could be open source but the service (acces to user-specific data, storage, compute power)
could require authentication (and also fees)

Page 11: [69] Commented [139] Morane Gruenpeter 03/03/2021 22:30:00
I'm personally against including the running instance of a software (a service) as part of the
software definition in the context of the FAIR principles.

Page 11: [70] Commented [140] Joanna Leng 24/02/2021 12:23:00
It is not clear what these mean. As someone who wants to release software how would I
address social barriers - does it mean I need to get funding for hardware or run training for
women only groups. I would find it easier to check that I provide ease-of-install, ease-of-use,
accessible documentation. Alot of research funding does not allow for continued maintenance
and support of software once the funding has ended. Does being FAIR mean you have to
provide ongoing maintenance and support? The current funding model is for most research
software to be left once it is released.

Page 11: [71] Commented [141] Sharif Islam 25/02/2021 09:58:00
Maybe we need to connect the dots between FAIR and software ethics (and also ongoing
debates about AI ethics -- AI systems are still software). I agree that from the point of funding
constraints and practically of code maintenance and implementation not all aspects of access
barriers can be addressed. But where and how do we address the questions of accountability,
responsibility, and transparency. For instance, the IEEE Software Engineering Code of Ethics
talks about public interest. I think that has a significant impact on accessibility.

Page 11: [72] Commented [142] Lorraine Hwang 24/02/2021 17:49:00
4 could be interpreted as a subset of 5.

Page 12: [73] Commented [161] Catherine Jones 10/03/2021 11:14:00
"Controlled vocabularies" is a specific term meaning setting the range of specific values
allowed in certain metadata fields, not necessarily which metadata fields are needed which I
think this para blurs meaning
Both of these are important for interoperability

Page 12: [74] Commented [162] Ben van Werkhoven 24/02/2021 10:48:00
This doesn't make any sense to me as you can say the same about data, which is stored on
disks in blocks of bytes, in sectors, in files, within file systems, and would therefore benefit from
a similar 'inherent standardisation and machine readability', and by that line of reasoning we
wouldn't need FAIR principles for data either, but I think we all agree that we do.

Page 12: [75] Commented [163] Manodeep Sinha 25/02/2021 02:54:00
What would happen if the source code (or comments within the source code) contains non-
English language? Or perhaps, a scenario where a future programming language that works
only with a non-English language (say Mandarin)? Related, how would character-sets come into
play here?

Page 12: [76] Commented [165] Udayanto Dwi Atmojo 28/02/2021 08:15:00
+1. What also needs to be thought is. FAIR is aimed for us human. Being machine readable can
be meaningless if human who intends to benefit from the work cannot understand and therefore
use it properly. Metadata, README, code comment, documentation are artefacts that help us
human.

Page 12: [77] Commented [166] Daniel Garijo 07/03/2021 18:40:00
I also agree. FAIR is needed for software. However, metadata is not only aimed at humans, it is
aimed at systems to help humans better understand what others have done

Page 13: [78] Commented [173] Ben van Werkhoven 24/02/2021 10:45:00
In my opinion, requirements about data are covered by the FAIR data principles. I think that
requiring that FAIR research software only consumes/produces FAIR data is too narrow and too
strict. Research software is often quite experimental, and the exact form and format of the data
it produces is in many cases likely to shift and evolve, in these cases you can't reasonably
require every version of the software to only work with data in controlled vocabularies. So if this
is a requirement, a lot of software that is still undergoing active development cannot be made
FAIR yet. This is unfortunate because a lot of research software that is being developed could
otherwise be made FAIR and benefit from the rest of the FAIR for research software principles.

Page 13: [79] Commented [177] Tom Honeyman 24/02/2021 00:40:00
Wouldn't that mean that FAIR software would only accept data that is, for instance, retrievable
via a permanent identifier? And it could only output data to a repository that mints a permanent
identifier?

Page 13: [80] Commented [178] Manodeep Sinha 25/02/2021 03:11:00
And what happens if there are intermediate/transient data products? For example, I am thinking
of a MCMC where the likelihood evaluations (i.e., the model predictions) are usually discarded
either when the new model is deemed unsuitable or when the chain is converged.

Page 13: [81] Commented [179] Sharif Islam 25/02/2021 10:29:00
As we will be dealing with different levels of FAIR maturity (for example in an interdisciplinary
context), this explicit insisting can become an unnecessary headache. However, on the other

hand, if the software cannot work on the data, does that violate the FAIR principles? Maybe this
is as simple as providing documentation about the required data and metadata needed for
execution.

Page 13: [82] Commented [180] Joanna Leng 24/02/2021 12:34:00
Technology changes, it is not stable - is there a statues of limitation for how long soaftware can
be reused? For infinity and beyond or 6 months? What if the software executes on unique
hardware or infrastructure (IoT) that is changes and is not accessible to everyone? One of my
concerns here is that guidelines are being developed that suit just one type of research
software, small scale simulation, when there is a vast diversity of software that is dependant on
specific hardware eg computer graphics, VR, robotics

Page 13: [83] Commented [181] Udayanto Dwi Atmojo 26/02/2021 16:03:00
+1 This seem to touch one particular topic in software called portability. Many discussions on
research software appears to be mainly on software that runs on traditional computing platform,
but not cases where the software interacts with non traditional computer / hardware platforms
like Joanna mentioned. One example recommendation is to minimize environment / hardware
dependent code at the application software, so the application software becomes less
susceptible to problem when the original hardware (IoT, robots, etc) used in the first / original
research is no longer available. Perhaps this document could point to some recommendation
that can be followed for cases like this.

Page 13: [84] Commented [182] Catherine Jones 10/03/2021 11:19:00
+1 see also my comments about preservation and emulation further up the document -
sometimes the performance is the important part of software

Page 13: [85] Commented [183] Daniele Tartarini 10/03/2021 22:37:00
in finance and medical records, data needs to be preserved and provided upon inspection for a
number of years X. It can be used the same principle and provide guidelines for specific sectors.
this has to be coupled with the lifetime of the hardware used to reproduce/access.

Page 17: [86] Commented [212] Daniel Garijo 09/03/2021 09:07:00
Morane, GitHub in their release pages allows for hosting executables (not sure if they are
pushed into Zenodo, I don't think so). Some software registries also store executables (e.g.,
https://www.usgs.gov/software/modflow-6-usgs-modular-hydrologic-model). In many cases,
domain scientists have to share their calibrated models to ensure reproducibility.

I think the explanations of the document help a lot. However, I don't understand what does the
cog wheel in the bottom mean. That the hardware/dependencies are somewhere documented?
Or that I have a virtual machine somewhere archived? Or that a Docker image exists in a
repository that I can download? Does "reproducible" mean "executable"?

Page 17: [87] Commented [213] Catherine Jones 10/03/2021 11:29:00
Great diagram. I wonder about the readability of the colours for everyone (green & red not
always a good combination)
I also wonder if it gives a subliminal message that licenses are not needed to be considered at
the start of a project, whereas I contend that what is the appropriate license should be
considered at the start of a development project

Page 17: [88] Commented [214] Manodeep Sinha 23/02/2021 23:13:00
I have a question about the last panel in the figure (FAIR + open + sustainable). Should the
panel be interpreted that the full-stack is available for download or is the expectation that the
full-stack is specified with sufficient detail that anyone could re-run the software? For example, if
someone provided a github repo with the software and a docker image - where would that fall in

this diagram?

I also wondering whether this panel could be marked as reproducible rather than sustainable
since sustainable can have different meaning depending on the context.

Page 17: [89] Commented [215] Morane Gruenpeter 03/03/2021 22:43:00
I have just inserted the most recent version of the diagram, which impacts your comment.
For more details on the diagram, you can find the subgroup1
publication: https://arxiv.org/pdf/2101.10883.pdf
page 25
There each box is explicitly explained

