
FAIR for Research Software Principles Discussion Document
for Community Input

This public document is for community consultation on work carried out by the FAIR4RS
Working Group and subgroup activities from July 2020 to February 2021.
We recommend you become a member of the FAIR4RS Working Group before
collaborating on this document.

This document examines and discusses a) the output of FAIR4RS Subgroup 1: A fresh
look at FAIR for Research Software, b) the output of FAIR4RS Subgroup 4: Review of new
research related to FAIR Software, c) the position paper "Towards FAIR Principles for
Research software", d) "5 recommendations for FAIR software", e) the output report from
FAIR4RS Subgroup 2: FAIR work in other contexts, and e) the definitions of research
software produced by FAIR4RS Subgroup 3.

How to contribute
This document will remain open for collaborators to respond to the questions posed or add
comments from 24 Feb 2021 until 10 Mar 2021.

Please add your name to the list of collaborators.

If adding new information, please make sure to cite your sources in the References
section at the end of the document.

As an online global and diverse community, we expect professional behaviour.
Your contributions are valued by the community. We ask that you help others feel equally
valued and welcomed by treating others with the respect and professionalism with which
you would like to be treated. Please adhere to the RDA Code of Conduct .

https://www.rd-alliance.org/rda-code-conduct-and-how-report-breach
https://www.rd-alliance.org/rda-code-conduct-and-how-report-breach
https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg
https://fair-software.nl/
https://content.iospress.com/articles/data-science/ds190026
https://content.iospress.com/articles/data-science/ds190026
https://arxiv.org/abs/2101.10883
https://arxiv.org/abs/2101.10883
https://github.com/force11/FAIR4RS/blob/master/CommunityEngagementChannels.md

Collaborators

Full name Your role, organisation, location, discipline,
and ORCID (if you haven’t previously provided
this info as part of other FAIR4RS WG activities)

Marcos Roberto Tovani-Palone Researcher, University of São Paulo, Brazil,
ORCID 0000-0003-1149-2437

Tom Honeyman Software Program Manager, Australian Research
Data Commons, Sydney, 0000-0001-9448-4023

Joanna Leng EPSRC funded RSE Fellow, University of Leeds,
UK, 0000-0001-9790-162X

Manodeep Sinha Senior Research Software Scientist, Swinburne
University of Technology/ASTRO 3D Centre of
Excellence, Hawthorn, VIC 3122. 0000-0002-
4845-1228

Sharif Islam Data Architect, Distributed System for Scientific
Collections (DiSSCo). The Netherlands, 0000-
0001-8050-0299

Axel Loewe Assistant Professor, Karlsruhe Institute of
Technology (KIT), 0000-0002-2487-4744

Merc Fox Director, CODATA at UA, University of Arizona,
STS, 0000-0002-0726-7301

Udayanto Dwi Atmojo Postdoctoral Research Fellow, Aalto University,
Finland, 0000-0002-6865-0806

Tom Pollard Technical Director, PhysioNet. 0000-0002-5676-
7898

James McNally Director, NACDA Program on Aging, ICPSR
University of Michigan Orcid ID 0000-0002-
6807-4538

Malin Sandström Community Engagement Officer, Working Group
project manager, INCF
0000-0002-8464-2494

Ben van Werkhoven Senior Research Engineer, Netherlands eScience
Center, Amsterdam, the Netherlands 0000-
0002-7508-3272

Ilian Todorov Computational Chemistry Lead, UKRI Science
and Technology Facilities Council, 0000-0001-
7275-1784

Patricia Herterich Research Data Specialist, Digital Curation
Centre, University of Edinburgh, UK 0000-0002-
4542-9906

Hugh Shanahan Professor of Open Science, Department of
Computer Science, Royal Holloway, University of
London, UK 0000-0003-1374-6015

http://orcid.org/0000-0002-8464-2494

Mathieu Servillat Research Engineer, LUTH - Observatoire de
Paris, France
0000-0001-5443-4128

Elena Ranguelova Technology Lead, Netherlands eScience 0000-
0002-9834-1756

Catherine Jones Energy Data Centre Lead, UKRI Science and
Technology Facilities Council, 0000-0002-5112-
835X

Daniele Tartarini Research Software Engineer. Department of
Computer Science and Insigneo institute of in
silico medicine. University of Sheffield, UK
0000-0002-8913-0156

Invitation

Hello all,

After our recent FAIR4RS Townhall, we're pleased to inform you that the first combined
output of the FAIR4RS working group is now available. This review document discusses the
results of the FAIR4RS subgroups, as well as the paper "Towards FAIR Principles for
Research Software (Lamprecht et al. 2020), the 5 recommendations for FAIR software
website, and identifies key questions related to defining FAIR for research software. It is
now available via Google Docs for community input.

Your feedback on the questions posed in this report will be used to inform the scope,
requirements, and priorities for future outputs of the working group, including its final
report. Comments on the discussion presented in the report are also welcomed.

We plan to use this public document as the main engagement activity in a two-week period.
It will remain open for collaborators to edit from 24 Feb 2021 until 10 Mar 2021.

If you are not available for these two weeks, do not hesitate to get in touch with us, we will
continue offering opportunities to provide feedback for future activities/outputs of the
group. The next stage of the community process will be the drafting of a revised definition
of the FAIR principles for research software, and we will post more details on how to get
involved via the FAIR4RS mailing list (RDA FAIR4RS WG posts).

If you require more information, please comment to this post.

Thank you again for your contribution and support,
FAIR4RS WG Steering Committee

https://www.rd-alliance.org/node/69317/posts

Report
February 23, 2021

---DRAFT---

Table of Contents

Collaborators

Introduction

Comparison
Crosscutting
Findable
Findable options
Accessible
Accessibility options
Interoperable
Interoperable options
Reusable
Reusable options
Figures
References

Appendix: Analysis of software guidelines

Introduction

This document is the result of the four subgroups of the FAIR for Research
Software working group, which is working under the Research Data Alliance,
the Research Software Alliance, and FORCE11. These subgroups
independently examined the FAIR principles in relation to software.

FAIR4RS-subgroup1 started with the original FAIR principles (Wilkinson et al.
2016) and worked to

1. Determine what part of the original FAIR principles apply as is to
research software;

2. Determine what part of the original FAIR principles doesn't apply at all

4

https://www.rd-alliance.org/
https://www.force11.org/
https://www.researchsoft.org/

to research software; and
3. Determine what part of the original FAIR principles applies to research

software, but with a different definition or different details, starting
with the original FAIR principles themselves, and not relying on work
done by others to apply them to research software, such as by
Lamprecht et al. (2020).

This led to a document (Katz et al. 2021) that includes:
● a discussion of the differences between software and data,
● an initial straightforward translation that was collected from the

FAIR4RS-subgroup1 participants;
● a discussion about the nuances of the currently defined rules in the

context of research software;
● a proposed set of principles adapted to the FAIR research software

case;
● a comparison of those proposed principles with the FAIR data

principles;
● a set of gaps in our current infrastructure and existing practices that

make implementing the proposed principles difficult; and
● a discussion of where the proposed principles fall short of a larger

world of fully-open, high-quality, sustainable software developed and
maintained by recognized and rewarded people in the context of full-
reproducible research.

We refer to these proposed principles as FAIR4RS-subgroup1.

FAIR4RS-subgroup2 looked at the work of FAIR4RS-subgroup1 and provided
feedback and comments related to other digital objects that FAIR4RS-
subgroup1 did not consider, such as training materials and workflows, to
understand how general the FAIR4RS-subgroup1 work was. We refer to this
work as FAIR4RS-subgroup2.

FAIR4RS-subgroup3 examined the complexity of defining research software,
by gathering definitions of research software and related terms in the
literature, and by compiling examples and discussing whether they exemplify
research software This was then followed by two workshops with the
intention of clarifying the scope of the FAIR principles by identifying for
which software artifacts the FAIR principles should be applied. The concept
of exclusive and inclusive definitions regarding the usage of the term
“Research” were further discussed, as well as further discussion around a
small number of examples of research software. This discussion and the
preceding compilation work were synthesised as a report portraying a
complex landscape of software uses and software examples in research.
Furthermore, an analysis of existing definitions resulted in a better

5

understanding of the complexity of types of software and types of roles
software has during the research process. The subgroup identified an
important controversy in academia, which is by itself a step forward for the
FAIR software roadmap.

FAIR4RS-subgroup4 started with the rewritten FAIR principles for research
software (Lamprecht et al. 2020) and worked to:

● identify other work (FAIR4RS WG, 2020) that helped to inform the
application of FAIR principles to research software, and examples of
software that helped to understand the characteristics of FAIR
software;

● discuss and agree how the spirit of the FAIR foundational principles
could be interpreted and applied to research software;

● determine which of the rewritten FAIR principles in Lamprecht et al.
2020 applied as written, applied if rewritten, or did not make sense to
apply to research software; and

● suggest where further discussion is needed to rewrite, add or delete
FAIR guiding principles for research software.

This was undertaken using a survey that sought feedback and reflection on
the rewritten FAIR principles in Lamprecht et al. 2020. A reading list of other
work was compiled which identified potential blindspots, including a lack of
attention to relevant work from domains outside of life sciences and physical
sciences. The responses to the survey were synthesised to produce a
reinterpretation of the FAIR foundational principles for software, as well as
identifying common themes and specific criticisms of the Lamprecht et al.
2020 proposed guiding principles for research software. We refer to this
work as FAIR4RS-subgroup4.

We additionally consider two other documents/groups that have worked in
this space. First, the principles proposed by Lamprecht et al. 2020 in
“Towards FAIR principles for research software” which we refer to in the
remainder of the report as Lamprecht, and second, the recommendations in
"5 recommendations for FAIR software," which we refer to as 5RECS.

Then, we compare the different recommendations, ask specific questions,
and discuss possible options. We also show two figures that attempt to
explain the different aspects of FAIR for Research Software. This document’s
main goal and this community consultation period is to get
community feedback on these options and the figures. After this
comparison, discussion of options, figures, and references, a detailed table
of the recommendations appears as an appendix.

6

https://fair-software.nl/

Comparison

Overall, these different recommendations have a number of similarities, as
well as some differences.

Crosscutting

The comparison of the work analysed in this report included five crosscutting
concerns that require resolution to define a set of FAIR guiding principles for
research software.

1. General vs specific principles: Most of the questions raised, to
some extent, relate to the desired balance of the principles between
very general statements and more actionable instructions. General
guidance is less tied to specific infrastructure and is thus more long-
lasting but is also more difficult to act on without details.

○ How do we balance between principles that are very general and
specific, actionable instructions?

2. Long-term access to software: All of the recommendations agree
that long-term access to the metadata describing the software is
important. Archiving of software source code to ensure that software
produced from research work is not lost, is seen as crucial in the wider
context of research (European Commission, 2020). The definitions of
the foundational principles in the various recommendations imply that
long-term access to the software itself is also useful to improve its
FAIR-ness. However, there are no recommendations for explicitly
including this in the guiding principles.

○ Should long-term access to software be considered as a factor
for FAIR, and should it be written into the guiding principles?

○ Should long-term access be reserved to source code?
3. Defining research software: We may consider two definitions,

inclusive and exclusive. Inclusive represents the far end of a spectrum
which will include all software that was used, produced, or analyzed in
research. An exclusive definition will only consider a small subset of
software artifacts that are equivalent in their discovery as reviewed
publications (e.g software published on JOSS).

○ Where should the line between the inclusive and exclusive
definition be when it comes to applying FAIR principles to

7

https://joss.theoj.org/

software? Is it realistic or productive to require “all software” in
research to be FAIR?

4. Defining software: There is also an overall question about different
types of objects and instances to which the FAIR principles for
research software should apply. This is, in part, because research
objects are related, as discussed in the next point, but also because
software is a fuzzy concept that could be applied to source code in a
variety of languages, executables, scripts, workflows, or even input
files that control how a system operates. Here we propose to define
software itself as "A set of instructions1 that performs some action,
either as source code (machine- and human-readable) or executable."
This definition includes scripts and workflows, but does not include
input files, documentation, data, infrastructures, or services.

○ Is this definition of software, used to define the set of objects to
which the FAIR principles for research software should apply,
reasonable in this context?

5. FAIRness of related research objects: A major difference in the
way that the recommendations approach the definition of FAIR guiding
principles for research software is how each considers related objects
including software dependencies, references to required data objects,
and documentation. This includes concepts such as whether FAIR is
recursive, i.e. a digital research object is only “fully FAIR” if the
objects it builds on are also FAIR.

○ Should the FAIR guiding principles for software include
recommendations that related digital research objects which are
required to understand or execute the software, such as
software and data dependencies, are also FAIR?

Findable

Regarding "Findable," all recommendations agree that this is a good
principle. All agree that for software to be findable, it should be identifiable,
that software should be defined with metadata associated with the software,
that an identifier should be part of this metadata, and that this metadata
should be available and searchable through some type of a resource.

However, there are also some differences.

One is related to granularity. FAIR4RS-subgroup1 discusses ten levels of

1The instructions should be capable of general expression (Turing complete), but many
instances of software will be limited to performing specific actions.

8

granularity at which software can be identified, FAIR4RS-subgroup4 and
Lamprecht work at the level of software versions and software packages,
and 5RECS only discusses packages. FAIR4RS-subgroup2 considers versions
at the level of snapshots and releases.

Additionally, FAIR4RS-subgroup4 brings in the idea of identifiers being
compatible with best practices in software engineering such as respecting
semantic versioning and automated generation of artefacts, i.e. applying the
FAIR principles should not hinder the ability to use automated builds and
continuous integration systems which may generate metadata and
identifiers, while none of the other recommendations get to this level of
detail.

FAIR4RS-subgroup4 also goes into more detail about the metadata that
should be associated with the software, and the challenges of defining “rich”
metadata, compared to the other recommendations.

Finally, while the original FAIR principles discuss where metadata are stored
very generally ("F4. (Meta)data are registered or indexed in a searchable
resource"), and Lamprecht basically agrees with this, 5RECS suggests "a
community repository", FAIR4RS-subgroup1 brings up that there is a gap in
practices between various registries and repositories, including Software
Heritage. FAIR4RS-subgroup4 again goes into more detail about different
types of registries and what can be considered to be a registry.

Findable options

1. Should the FAIR principles for research software discuss the levels of
granularity identifiers should be assigned?

a. If so, how many and which levels should be discussed?
2. Are the FAIR principles for research software, involving identifiers and

metadata, compatible with best practices in software engineering
around the management and versioning of artefacts?

3. Should the FAIR principles for research software discuss what
metadata should be provided for software, or what standards the
metadata should follow?

4. How much should the FAIR principles for research software discuss the
current state of where metadata associated with software can be
stored and searched? Should it make specific recommendations?

9

Accessible

The general idea of software accessibility as a foundational principle is again
agreed upon by all recommendations, but again with differences. These
differences include what accessibility means (readability, executability,
removal of barriers to use), what exactly "software" means (a version,
source code, an executable), if coding standards and practices need to be
followed, if dependencies also need to be equally accessible, etc. In general,
FAIR4RS-subgroup1 is the most general, while the other recommendations
add details and limits, ranging from 5RECS to Lamprecht to FAIR4RS-
subgroup4.

In terms of how the software is retrieved, 5RECS doesn't discuss this, while
FAIR4RS-subgroup1 points out implementation challenges, including the
potential role of package managers, version control systems, and how
commercial software is treated. Lamprecht says that this can be achieved by
using a repository or registry. FAIR4RS-subgroup4 agrees with FAIR4RS-
subgroup1 on the role of package managers and version control, and also
notes that, unlike data, most software is already retrieved through well-
accepted protocols, such as https or ftp/sftp/scp.

Another difference is the role of authentication and authorization in
accessing software, which Lamprecht and FAIR4RS-subgroup1 agree with,
5RECS ignores, and FAIR4RS-subgroup4 mostly agrees with but some
questioned if this could be interpreted in the same way for software as it is
for data.

FAIR4RS-subgroup 4 suggests that accessibility should include ensuring that
barriers to use (including physical, social, or technological barriers) are
addressed, the usage of the term in other areas of software engineering,
though this could be considered part of reusability. FAIR4RS-subgroup 2
notes that the terminology is confusing and may mean the principle is not
well understood across domains, if the definition is strictly around protocols
for access.

The recommendations generally agree with metadata being accessible even
when the software is no longer available.

Accessibility options

1. Should the FAIR principles for research software discuss the details of

10

how software is accessed?
a. Is this just http/https? And is it the same as for any other

research object?
b. Or should package managers be discussed, which may internally

use http/https but wrap this with a higher-level of access?
2. Should the FAIR principles for research software discuss at what

granularity software is accessed?
3. Can the FAIR principles for research software apply to commercial

(closed source) software?
4. Can accessing FAIR software require authentication and authorization?
5. Should the FAIR principles for research software ensure that barriers

to use (including physical, social, or technological barriers) are
addressed?

Interoperable

The FAIR data principles describe interoperable as "The data usually need to
be integrated with other data. In addition, the data need to interoperate with
applications or workflows for analysis, storage, and processing." Lamprecht
interprets this as:

1. A set of independent but interoperable objects interoperate to produce
a runnable version of the software, including libraries, software source
code, APIs and data formats, and any other resources for facilitating
that task.

2. A stack of digital objects interoperate to execute a given task. The
stack includes the software itself, its dependencies, other indirect
dependencies, the whole execution environment including runtime
dependencies and the operating system, the execution environment,
dependencies, and the software itself.

3. Workflows, which interconnect different standalone software tools that
interoperate to transform one or more data sets into one or more
output data sets through agreed protocols and standards.

5RECS doesn't specifically address interoperability in the same way.
FAIR4RS-subgroup1 limits its definition of interoperability to the exchange of
data or metadata between software, which roughly corresponds to
Lamprecht's points 1 and 3, and believes that the sense of building software
and then executing it in an environment (Lamprecht's point 2) is not
interoperability but rather usability (under reusability in the FAIR principles).
FAIR4RS-subgroup 4 more or less aligns with FAIR4RS-subgroup 1 on
Lamprecht's points 1 and 3, but is unsure about point 2. FAIR4RS-subgroup

11

2 expands on the role of workflows and workflow management systems.

There is also some feeling that interoperable might include the use of
controlled vocabularies for the metadata about software in repositories in
Lamprecht, and that it includes recording of metadata using standards such
as CodeMeta and the Citation File Format in 5RECS. FAIR4RS-subgroup 1
doesn't think this is part of the FAIR principles for research software, as it is
already covered by the FAIR data principles' discussion of metadata, and
FAIR4RS-subgroup 4 is uncertain, with some members agreeing with
Lamprecht, and some suggesting that because all software is written in a
formal language, there is inherent standardisation and machine readability,
making this FAIR principle redundant for software.

Lamprecht also considers the need for controlled vocabularies for the data
consumed and produced by software, which 5RECS doesn't consider.
FAIR4RS-subgroup 4 agrees with Lamprecht, while FAIR4RS-subgroup 1
requests qualified references to such objects, which are covered by the
original FAIR principles' discussion of metadata. FAIR4RS-subgroup 2 agrees
with FAIR4RS-subgroup 1, noting that this also works for workflows and
scripts and all objects where the process is explicit as opposed to being
buried in the code.

Interoperable options

1. Is the process of building software (including determining and
accessing dependencies) and running it in a given environment part of
FAIR principles for research software?

a. If so, is it part of interoperability or reusability?
2. Should the FAIR principles for research software explicitly include

requirements on the metadata used to describe software, or is this
already covered in the FAIR data principles?

a. If already covered, should it explicitly insist that metadata is
FAIR?

3. Similarly, should the FAIR principles for research software explicitly
include requirements on the data consumed and produced by software,
or is this already covered in the FAIR data principles?

a. If already covered, should it explicitly insist that data is FAIR?

Reusable
The FAIR data principles state that their “ultimate goal is to optimise the

12

reuse of data. To achieve this, metadata and data should be well-described
so that they can be replicated and/or combined in different settings.”
FAIR4RS-subgroup 1 considers “optimise” to be too strong a statement,
suggesting “enable and encourage” instead.

As Lamprecht notes: “Reusability in the context of software has many
dimensions”. For software, consideration needs to be given about whether
reuse simply means optimising the reuse of data or, also, the reuse of
software.

Lamprecht takes the view that “at its core, reusability aims for someone to
be able to reuse software reproducibly” and describes four scenarios:

1. reproducing the same outputs reported by the research supported by
the software,

2. (re)using the code with data other than the test one provided to obtain
compatible outputs

3. (re)using the software for additional cases other than those stated as
supported, or

4. (iv) extending the software in order to add to its functionality.
5. Relevant,possible 5th step of reusability; reimplementation, code well

written, well structured and well documented enough that it can be
understood and be rewritten in another language/for another
computational platform so that its overall ideas and modes of
implementation can be reused. This happens a lot in (neuro)modelling,
where the original model requires a simulator or language the
modeller doesn’t have access to or cannot run for other reasons.

5RECS does not explicitly define reusability but suggests that is associated
with public accessibility of source code, collaboration, and reproducibility of
results.

FAIR4RS-subgroup 1, FAIR4RS-subgroup 2, and FAIR4RS-subgroup 4 agree
that it is important to recognise that software is dependent on other
software, and software should be structured to maximise its potential use or
reuse, following software best practice such as encapsulation, or recording of
dependencies. However FAIR4RS-subgroup 2 queries the application of
encapsulation, is software that calls a service or API not reusable? This leads
to a new reusability principle from FAIR4RS-subgroup 1 that “Software
includes qualified references to other software” and that, to be FAIR,
external data objects required to execute the software must be FAIR as well.
This aligns with the discussion from FAIR4RS-subgroup 4 on the
interpretation of the FAIR foundational principles; however they go further

13

and suggest that the FAIR-ness of a piece of software is increased when
both the data and the software referenced by it are also made FAIR-er.

FAIR4RS-subgroup 4 also goes into more detail, suggesting that for software
to be reusable, it should also be maintainable (which Lamprecht also
emphasises) and dependable (able to be built on for other purposes). This
latter is encapsulated in additional principles from FAIR4RS-subgroup 4
which align with the vision of, but was considered out of scope for, FAIR4RS-
subgroup 1.

Both FAIR4RS-subgroup 1 and FAIR4RS-subgroup 4 take a much wider, and
similar, view of reuse than Lamprecht. FAIR4RS-subgroup 1 suggests it
should cover “replicated, combined, reinterpreted, reimplemented, and/or
used” and FAIR4RS-subgroup 4 suggest it should be usable, extensible,
integratable, maintainable, well-documented and reproducible.

FAIR4RS-subgroup 1 does not consider “executability” to be a necessary
feature for software to be FAIR. However, FAIR4RS-subgroup 4 implies that
usability is important for reusability. This could be seen as at odds, but may
also point to requiring different interpretations of usability for different types
of software (source code can be read, built into executables, used in
libraries, etc., while executables can be incorporated into other software or
run, etc.) or maturity level. FAIR4RS-subgroup 2 agree that reuse through
inspection is critical and more sustainable than reuse through execution.

There is an agreement from all five efforts (Lamprecht, 5RECS, FAIR4RS-
subgroup 1, FAIR4RS-subgroup 2, FAIR4RS-subgroup 4) that a clear license
is an essential principle for FAIR software. FAIR4RS-subgroup 4 additionally
considered that whilst an open source license was not required for software
to be FAIR, it helped make software FAIR. There is also agreement that
“software is associated with detailed provenance” if we consider version
control systems to capture that information.

Finally, whilst there is agreement that software should be described with a
plurality of accurate and relevant attributes, it was noted by both FAIR4RS-
subgroup 4 and FAIR4RS-subgroup 2 that care must be taken with the way
“community standards” are interpreted to take into account the constant
evolution of standards, and the cross-domain and community nature of
software.

14

Reusable options
1. Does the principle “Software meets domain-relevant community

standards” need more explicit detail?
a. If so, should documentation be included?
b. If so, should usability be defined?
c. If so, should it also consider the type of software and the

maturity level?
2. Should a new principle be added so that “Software includes qualified

references to other software”?
a. If so, does this imply that any references to external data

objects required to execute the software should be fully qualified
and the data be FAIR as well?

b. If so, does the software that is referenced need to be FAIR as
well?

3. Should a new principle be added so that “Software is dependable and
can be built on by other software and research”?

a. If so, should this make explicit what is expected for the software
to be dependable, or should this remain at a high-level, or
defined by community norms?

15

Figures
Two potential figures were created (or adapted) as part of the work of
subgroup 1, as follows.

Your comments on these figures, including what is confusing, what is
missing, etc. are welcome.

Are one or both of these figures useful in explaining FAIR for research
software?

Could they be combined? If so, how?

16

Figure 1. Summarizing software as increasingly FAIR research objects

17

(Credit: Morane Gruenpeter, inspired by the FORCE11 diagram2)

Figure 2. Summarizing software as increasingly FAIR research objects. Left
column: labels for different levels of FAIR+. Middle column: software
artifact. Right column: Accompanying objects and information. (Credit: Tom
Honeyman)

2https://www.force11.org/fairprinciples

18

https://www.force11.org/fairprinciples

References

European Commission. Directorate General for Research and Innovation.
(2020). Scholarly infrastructures for research software: report from the
EOSC Executive Board Working Group (WG) Architecture Task Force (TF)
SIRS. Publications Office. https://doi.org/10.2777/28598

FAIR4RS WG. (2021). FAIR4RS Subgroup 4 - reading list of new research
(Version 1.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4555865

Gruenpeter, M., Di Cosmo, R., Koers, H., Herterich, P., Hooft, R., Parland-
von Essen, J., Tana, J., Aalto T. Jones, S. (2020). M2.15 Assessment report
on 'FAIRness of software' (Version 1.1). Zenodo.
https://doi.org/10.5281/zenodo.4095092

Katz, D.S., Gruenpeter, M., Honeyman, T., Hwang, L., Wilkinson, M.D.,
Sochat, V., Anzt, H., Goble, C. and FAIR4RS subgroup 1 (2021). A Fresh
Look at FAIR for Research Software. arXiv: 2101.10883.

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del
Pico, E., Dominguez Del Angel, V., van de Sandt, S., Ison, J., Martinez, P.
A., McQuilton, P., Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J. Ll.,
Chue Hong, N., Goble, C., & Capella-Gutierrez, S. (2020). Towards FAIR
principles for research software. Data Science, 3(1), 37–59. https://doi.org/
10.3233/DS-190026.

Netherlands eScience Center / DANS (n.d.), Five Recommendations for FAIR
software. Available online at: https://fair-software.nl/.

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O.,
Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR Guiding
Principles for scientific data management and stewardship. Scientific Data,
3(1). https://doi.org/10.1038/sdata.2016.18.

19

https://doi.org/10.1038/sdata.2016.18
https://fair-software.nl/
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://arxiv.org/abs/2101.10883
https://doi.org/10.5281/zenodo.4095092
http://doi.org/10.5281/zenodo.4555865
https://doi.org/10.2777/28598

Appendix A: Analysis of software guidelines

This appendix uses annexe B of the FAIRsFAIR assessment report on
‘FAIRness of software’ (Gruenpeter et al., 2020) as a starting point, and
then adds summaries and discussions of FAIR4RS-subgroup 1 and FAIR4RS-
subgroup 4. It provides additional background material to inform the report
and options presented in it.

F. Findable
The first step in (re)using data is to find them. Metadata and data should be easy to find for both
humans and computers. Machine-readable metadata are essential for automatic discovery of datasets
and services, so this is an essential component of the FAIRification process.

Resource Content

Towards FAIR
principles for
research software

Findability is a fundamental principle, since it is necessary to find a resource
before any other consideration. The main concern of findability for research
software is to ensure software can be identified unambiguously when
looking for it using common search strategies. Such strategies include the
use of keywords in general-purpose search engines like Google, as well as
specialised registries (websites hosting software metadata) and repositories
(websites hosting software source code and binaries). Findability can be
improved by registering the software in a relevant registry, along with the
provision of appropriate metadata, providing contextual information about
the software. Registries typically render metadata in a web-findable way
and can provide a DOI. Some registries and repositories allow annotating
software using domain-agnostic or domain-specific controlled vocabularies,
increasing findability via search engines further. In the following we discuss
how the original four Findability principles apply to the findability of
research software.

“5
recommendations
for FAIR software”

Register your code in a community registry - WHY THIS IS IMPORTANT
For others to make use of your work, they need to be able to find it first.
Community registries are like the yellow pages for software -- registering
your software makes it easier for others to find it, particularly through the
use of search engines such as Google. Community registries typically
employ metadata to describe each software package. With metadata,
search engines are able to get some idea of what the software is about,
what problem it addresses, and what domain it is suited for. In turn, this
helps improve the ranking of the software in the search results -- better
metadata means better ranking.

FAIR4RS-subgroup1 F. The first step in (re)using software is to find it. Metadata and software
should be easy to find for both humans and computers. Machine-readable
metadata are essential for automatic discovery of software, so this is an
essential component of the FAIRification process.

We believe that findable is an important foundational principle for

20

https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://fair-software.nl/
https://fair-software.nl/
https://fair-software.nl/

software.

We also suggest removing the reference to “services.” While software
is definitely a component of any service (and a component that
should be FAIR), services are considered here an instantiation of
software, not the software itself. Services present an additional series
of challenges which we have not considered here.

FAIR4RS-subgroup2

Workflow findability is foundational - we even have registries dedicated to
workflows. What is a workflow wrt software or service is interesting. A
workflow can be:

● A specification in a WfMS specific or common language (e.g. CWL)
with test or exemplar data;

● + an implementation of that design in a WfMS;
● + an instantiation of that implementation ready to be run with input

data and parameters set and computational services / containers; -
this is not the same as the “instantiation of software” as above I
suspect. It's more the configuration of the workflow.

● + a run result with intermediate and final data products and
provenance logs.

Training materials related to the software should also be findable.

FAIR4RS-subgroup4

Findable software should:
● Include identifiers which enable location of a specific version
● Be catalogued in a registry or package manager
● Be linked to related research objects, including previous versions

[note this links to Subgroup 1’s proposed I2/I3]
● Have machine-readable metadata that enables search engines and

discovery across different categories (e.g. features, domain,
programming language, author)

Specific clarifications in response to “Towards FAIR Principles…”
● The narrow wording of “software” excludes objects on the boundary

of software.
● Much of what might be considered “Findability” for software has

been addressed by package managers
● Metadata should specify how software can be translated between its

written and its executable state
● Machine-readable metadata must make all direct and indirect

dependencies findable, using version-specific identifiers.
● Metadata describing software have to follow a commonly agreed

upon standard.

21

F1. (meta)data are assigned a globally unique and eternally persistent
identifier
Resource Content

Applicability of
principle to FAIR for
Research Software

Direct application (use * system? **** - highly applicable * -not at all)

Towards FAIR
principles for
research software

Rephrased: “Software and its associated metadata have a global, unique
and persistent identifier for each released version.” “Software versions
should get assigned different PIDs as they represent specific developmental
stages of the software. This is important as it will contribute to guaranteeing
data provenance and reproducible research processes.”

“5
recommendations
for FAIR software”

Citation: "Regarding archiving copies of your software, look for services
that store their own copy of a snapshot of your software, such that whatever
persistent identifier you get (DOI, URN, ARK, etc) points to a specific version
of the software, and will continue to resolve to exactly that version for the
foreseeable future."

FAIR4RS-subgroup1

F1. Software is assigned a globally unique and persistent identifier

This guiding principle is fundamental for any research output, but
note that it can take some extra effort from the software creators
today to acquire a global and persistent identifier. In Section 2, we
noted several differences for software development and publishing,
both in terms of current practices and in the functionality and
existence of relevant infrastructure that might achieve this aim. The
creators can use an archive or an institutional repository to keep
software and acquire a persistent identifier for their software.
However, the identification target might be difficult to choose. As
presented in Figure 1 (from Research Data Alliance/ FORCE11
Software Source Code Identification WG et al., 2020), an identification
target can be at one of many different granularity levels that are
found in a complete software project. For reproducibility for example,
it is important to identify a specific version, which means that
identifying the full project isn’t specific enough. Furthermore there is
still a lack of community agreement when it comes to identifying
software; see Gaps 1, 2 and 4 in Section 5.

FAIR4RS-subgroup4 All believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”:
● Identifiers should not be restricted to releases. Every version,

release or not, should ideally be citable.
○ Suggest rewording to “Software and its associated

metadata are assigned a global, unique and persistent
identifier.” [compatible with Subgroup 1]

● Recognise that the use of identifiers should be compatible with best
practice in software engineering such as respecting semantic

22

https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.qvv6cq5an4l3
https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.hmi31jw7u7xv

versioning and automated generation of artefacts. [compatible with
Subgroup 1 but may require additional consideration]

F2. data are described with rich metadata
Resource Content

Applicability of
principle to FAIR for
Research Software

Direct application

Towards FAIR
principles for
research software

“Rephrased: Software is described with rich metadata.”
”In order for others to find and use that software, they need information
about what it does, what it depends on and how it works.”
“Additionally, some programming languages provide a way to add metadata
to software sources, i.e., packages”

“5
recommendations
for FAIR software”

Registry:: "What metadata does the community registry offer? This is
sometimes described in the documentation of the registry, but you can also
see for yourself by installing a tool like the OpenLink Structured Data
Sniffer. "
Citation: : "Regarding archiving copies of your software, look for services
that store their own copy of a snapshot of your software, such that whatever
persistent identifier you get (DOI, URN, ARK, etc) points to a specific version
of the software, and will continue to resolve to exactly that version for the
foreseeable future."

FAIR4RS-subgroup1

F2. Software is described with rich metadata (defined first by R1 below, and
then by the original FAIR principles for metadata)

This guiding principle is reasonable and important when it comes to
understanding what the software can do and where it comes from.
However, the extent and completeness of the metadata is not yet
agreed upon by the research community; see Gaps 1 and 3 in Section
5. As noted in Section 2, software structure can be complex, which
adds complexity with the metadata (see Gap 5) and with
documentation, which might be considered a metadata element (see
Gap 6).

As discussed above, there are several relevant guiding principles that
apply without alteration to metadata for digital objects, including
software. In order to capture this, we propose changing the wording
for this principle to:

“Software is described with rich metadata (defined first by R1b below,
and then by the original FAIR principles for metadata)”

23

https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.qvv6cq5an4l3
https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.hmi31jw7u7xv
https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.hmi31jw7u7xv

The specific principles are F1, F4, A1, A1.1, A1.2, I1, I2, I3, R1, R1.1,
R1.2, and R1.3.

FAIR4RS-subgroup2

As an example, a profile like Workflow-RO-Crate sets out to define (i) what is
expected to be packaged with a workflow (incl Data) and (ii) metadata
about it (using schema.org) and (iii) how it is described as steps (e.g. CWL).
This adheres to workflow is described with rich metadata.

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”:
● It isn’t yet clear what “rich metadata” means in the context of

software, and this should be elaborated. GO-FAIR suggests that
“Rich metadata implies that you should not presume that you know
who will want to use your data, or for what purpose. So, as a rule of
thumb, you should never say ‘this metadata isn’t useful’; be
generous and provide it anyway!” but it is unclear if there are any
issues in practice for software. [Probably compatible with Subgroup
1, but R1.3 may not directly address this]

● A way of stating the metadata standards is required, if machine
processing is to be enabled. [Probably compatible with Subgroup 1,
but R1.3 may not directly address this]

24

F3. metadata specify the data identifier

Resource Content

Applicability of
principle to FAIR for
Research Software

Not obvious

Towards FAIR
principles for
research software

Rephrased and extended: “Metadata clearly and explicitly include
identifiers for all the versions of the software it describes.”
“For reproducibility and reusability purposes, any person and/or system
examining the metadata needs to be able to identify which version of the
software is described by it”

“5
recommendations
for FAIR software”

(not explicitly discussed)

FAIR4RS-subgroup1

F3. Metadata clearly and explicitly include the identifier of the software they
describe

This guiding principle is reasonable. However, there can be many
identifiers to different artifacts that are under the same software
project; see Gaps 4 and 5 in Section 5.

FAIR4RS-subgroup2

Workflows behave like data here - each workflow may have an identifier.
The components of a workflow may also have identifiers, this appears to be
analogous to the “project”?

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● May not be useful - enough to have references for previous and next
versions. [compatible with subgroup 1]

● It would be infeasible to request rich metadata for all old versions,
some of which might not be runnable anymore. This is linked to the
challenge of understanding what rich metadata is for software. If we
assume it includes information generated at compile time, the
wording in the rewritten principle in the paper is problematic.
[compatible with subgroup 1]

25

https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.hmi31jw7u7xv

F4. (meta)data are registered or indexed in a searchable resource

Resource Content

Applicability of
principle to FAIR for
Research Software

Direct application

Towards FAIR
principles for
research software

Rephrased: Software and its associated metadata are included in a
searchable software registry.

“5
recommendations
for FAIR software”

Registry:
Register your code in a community registry”
"For others to make use of your work, they need to be able to find it first.
Community registries are like the yellow pages for software -- registering
your software makes it easier for others to find it, particularly through the
use of search engines such as Google”
“What metadata does the community registry offer? This is sometimes
described in the documentation of the registry, but you can also see for
yourself by installing a tool like the OpenLink Structured Data Sniffer. "

FAIR4RS-subgroup1

F4. Software is registered or indexed in a searchable resource

This guiding principle is reasonable. However, registering software is
a complex subject. Current common practice in registries is to identify
the software project (see swMath, ASCL or Wikidata) rather than
specific software outputs, and this will present a challenge for
adopting FAIR software principles; see Gaps 1, 2 and 4 in Section 5.
Also see the software structure complexity gap (Gap 5), related to
identifiers for different parts of the software.

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● The term and function of a “software registry” is not well defined, so
the application of the principle is unclear. [compatible with
subgroup 1]

● Unclear that there needs to be a specific requirement for registries,
principle should be generalised to support other mechanisms for
searching for software, by ensuring metadata follows appropriate
standards. [probably compatible with subgroup 1]

● Unclear that it has to be a specific software registry, rather than a
general research object registry. [compatible with subgroup 1[

● Code repositories could be classed as “searchable software
repositories” [probably compatible with subgroup 1]

26

https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.hmi31jw7u7xv
https://ascl.net/
https://swmath.org/

A. Accessible
Once the user finds the required data, she/he needs to know how can they be accessed, possibly
including authentication and authorisation.

Resource Content

Towards FAIR
principles for
research software

In the original FAIR Guiding Principles, accessibility translates into
retrievability through a standardized communication protocol (A1) and
accessibility of metadata even when the original resource is no longer
accessible (A2). These principles clearly also apply to software. Interpreting
accessibility also as the ability to actually use the software (access its
functionality), however, we found mere retrievability not enough. In order
for anyone to use any research software, a working version of the software
needs to be available. This is different from just archiving source code, even
in comprehensive and long-term collections like the Software Heritage
archive. To use software, a working version (binary or code) has to be either
downloadable and/or accessible e.g., via a web interface, along with the
required documentation and licensing information. Accessibility
requirements depend on the software type, e.g., web-applications,
command-line tools, etc. For example, software containers allow the use
across different operating systems and environments, e.g., local computers,
remote servers, and high-performance computing (HPC) installations. Cloud-
based servers can execute existing pieces of code as a service, as software
made available through a web interface or via Jupyter Notebooks [44].
Notebooks allow others to see the results and the narrative alongside the
code used to generate them.
Furthermore, even for software that can be downloaded or accessed without
restrictions, being able to run it might also depend on, for example, data
samples, (paid) registration, other (proprietary) software packages, or a
non-free operating system like Windows or macOS. For data, the FAIR
principles demand that “(Meta)data use a formal, accessible, shared, and
broadly applicable language for knowledge representation” (I1) and in that
sense discourage the use of proprietary data formats. This is in our view,
however, different from transparent dependencies for running software.
It is worth to re-emphasize that research software are not single, isolated,
digital objects. As further discussed for Interoperability, research software
interoperate at different levels with other digital objects including other
software, and might have different available versions and/or web-based
deployments. Still, all implementations should be considered as part of a
single entity for the considerations on accessibility with metadata, as to
ensure appropriate links among them (see F1, F3). Since accessibility,
interoperability and (re)usability are intrinsically connected for research
software, we consider aspects of installation instructions (R1.3), software
dependencies (I4S), and licensing (R1.1) as part of other principles here,
rather than adding another Accessibility principle.

“5
recommendationsf
or FAIR software”

Use a publicly accessible repository with version control - WHY THIS IS
IMPORTANT
Developing scientific software in publicly accessible repositories enables
early involvement of users, helps build collaborations, contributes to the
reproducibility of results generated by the software, facilitates software

27

reusability, and contributes to improving software quality. Taken together,
this ensures that your software has the best chance of being used by as
many people as possible while promoting transparency.

FAIR4RS-subgroup1

A. Once the user finds the required software, they need to know how it can
be accessed, possibly including authentication and authorization.

We believe that accessible is an important foundational principle for
software.

FAIR4RS-subgroup4

Accessible software should:
● Be retrievable through a resolvable identifier, using a standard

protocol e.g. https
● Be able to be inspected and/or executed; as part of this it should

include sufficient documentation
● Use open metadata
● Follow good practice in software accessibility, i.e. making it possible

for those with impairments to use the software. These include, but
are not limited to, physical, social and technological barriers.

● Follow relevant coding standards and good practice
● Be accessible in the long-term (but this needs to be reconciled with

making all versions identifiable)
Also, to be accessible, any dependencies required by the software should
also be fair, and available via the same protocol.

28

A1 (meta)data are retrievable by their identifier using a standardized
communications protocol

Resource Content

Towards FAIR
principles for
research software

Rephrased: “Software and its associated metadata are accessible by their
identifier using a standardized communications protocol.”
“Retrievability of research software and its metadata can be achieved by
depositing it in an appropriate repository and/or registry.”
“It is worth to re-emphasize that research software are not single, isolated,
digital objects”

“5
recommendationsf
or FAIR software”

(not explicitly discussed)

FAIR4RS-subgroup1

A1. Software is retrievable by its identifier using a standardised
communications protocol

This guiding principle is reasonable in the abstract, but unclear how to
implement it for different types of software, particularly for
commercial software. In general, open source software is retrievable
by its identifier using a package manager, version control, or similar
programmatic download service.

FAIR4RS-subgroup2

The same for workflows and training materials.

However, this principle is not necessarily well understood across domains.
With respect to training materials, the term "accessibility" (protocols here)
can be confused with accessibility in terms of support for people with some
impairment.

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● Better expressed as “(Meta)data and code are accessible by their
identifier using a standardized communications protocol”
[Compatible with Subgroup 1]

● Less requirement for A1 and A2, as there is better agreement on
standard protocols for accessing software, e.g. HTTP(S) [Compatible
with Subgroup 1, but consideration should be given to rephrasing]

● Are protocols for sharing metadata compatible with the way that
programming languages exchange information? [May require
discussion - related to the rich metadata issue]

29

A1.1 the protocol is open, free, and universally implementable

Resource Content

Applicability of
principle to FAIR for
Research Software

Not obvious, though may be because the protocols are widely implemented.

Towards FAIR
principles for
research software

“Usually software (and its metadata) can be downloaded directly from the
repository and/or website via standard protocols (HTTP/SSH).
There is no need to rephrase this specific item as it generally applies to any
digital resource exposed via the web, and thus to both data and software.”

“5
recommendations
for FAIR software”

Repository: “Developing scientific software in publicly accessible
repositories enables early involvement of users, helps build collaborations,
contributes to the reproducibility of results generated by the software,
facilitates software reusability, and contributes to improving software
quality. “

FAIR4RS-subgroup1

A1.1 The protocol is open, free, and universally implementable

This guiding principle is reasonable in the abstract, but it is unclear
how to implement it for different types of software, particularly for
commercial software.

FAIR4RS-subgroup2

Does the protocol need to support all possible formats? Perhaps the
principle states that to be FAIR we should use an open protocol to download
software or workflows. It would be analogous to data.

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting, but
some felt it did not apply to software, and it was unclear what it meant in a
software context. [Compatible with Subgroup 1].

A1.2 the protocol allows for an authentication and authorization procedure,
where necessary

Resource Content

Towards FAIR
principles for
research software

“The protocol allows for an authentication and authorization procedure,
where necessary..[Remain the same]”
“Similarly, it might be possible that users might need to register, and/or
authenticate, before downloading binaries or, in the case of web
applications, using the software. In all cases, access conditions should be
justified and documented.”

“5 (not explicitly discussed)

30

recommendations
for FAIR software”

FAIR4RS-subgroup1

A1.2 The protocol allows for an authentication and authorisation procedure,
where necessary

This guiding principle is reasonable.

FAIR4RS-subgroup2 (not explicitly discussed)

FAIR4RS-subgroup4

Most people believed this principle applied / applied with rewriting, but
some felt it did not apply to software, and it was unclear what it meant in a
software context. [Compatible with Subgroup 1].

31

A2. metadata are accessible, even when the data are no longer available

Resource Content

Applicability of
principle to FAIR for
Research Software

Clear examples of applicability.

Towards FAIR
principles for
research software

Rephrased: “Software metadata are accessible, even when the software is
no longer available.”
“Metadata provides the context for understanding research software, and
this should persist even when the software itself is no longer available.“

“5
recommendations
for FAIR software”

(not explicitly discussed)

FAIR4RS-subgroup1

A2. Metadata are accessible, even when the software is no longer available

This guiding principle is reasonable, and some mechanisms for
achieving this already exist and are in use for some research software
already. For instance, software metadata can be captured in domain
specific registries like swMath.org or the Astrophysics Source Code
Library (ASCL), in general repository solutions like Zenodo, or via a
persistent identifier scheme like DOIs.

FAIR4RS-subgroup2
Also applies to workflows, where this would be equivalent to registering
them in long term registries such as workflowhub.eu

FAIR4RS-subgroup4

Most people believed this principle applied, but some felt it did not apply to
software in isolation from other research objects / metadata. [Compatible
with Subgroup 1].

32

I. Interoperable
The data usually need to be integrated with other data. In addition, the data need to interoperate with
applications or workflows for analysis, storage, and processing.

Resource Content

Towards FAIR
principles for
research software

The IEEE Standard Glossary of Software Engineering Terminology [46]
defines interoperability as the “ability of two or more systems or
components to exchange information and to use the information that has
been exchanged”. This definition is further complemented by semantic
interoperability, ensuring “that these exchanges make sense – that the
requester and the provider have a common understanding of the
‘meanings’ of the requested services and data.” [47]. When examining the
FAIR data principles from a research software perspective, interoperability
turns out to be the most challenging among the four high-level principles.
This is not surprising given the complexity of the software interoperability
challenges that form a research area of its own [48–52].
Already for data and its associated metadata, interoperability has been
found to be “the most challenging of the four FAIR principles. This, in part,
is due to interoperability not being well understood” [53]. In contrast to the
rather static nature of data, research software are live digital objects that
interact at different levels with other objects, e.g., other software, managed
data, execution environments; and either directly and/or indirectly, as
scripts or as part of a workflow (see Fig. 1). The interoperability principles
are therefore even more challenging to apply to software, some are not
directly applicable, others need to be rephrased and even new principles
need to be defined to appropriately address the dynamic nature of
software.
Software interoperability can be defined from three different angles:
1. for a set of independent but interoperable objects to produce a runnable
version of the software, including libraries, software source code, APIs and
data formats, and any other resources for facilitating that task;
2. for a stack of digital objects that should work together for being able to
execute a given task including the software itself, its dependencies, other
indirect dependencies, the whole execution environment including runtime
dependencies and the operating system, the execution environment,
dependencies, and the software itself; and
3. for workflows, which interconnect different standalone software tools for
transforming one or more data sets into one or more output data sets
through agreed protocols and standards.
Thus, interoperability for software can be considered both for individual
objects, which are the final product of a digital stack, and as part of broader
digital ecosystems, which includes complex processes and workflows as
well as their interaction [6,54,55]. Different pieces of software can also
work together independent of programming languages, operating systems
and specific hardware requirements through the use of APIs and/or other
communication protocols.
Software metadata isa necessity for interoperability. They provide the
context in which the software is used and contributes towards provenance,
reproducibility and reusability. However, a balance is needed between the
detail level and its generation cost. Depending on whether research
software is considered as an individual product or as part of an ecosystem,
the associated metadata might differ [28,56,57], with workflows having
specific mechanisms to capture it through their specifications, e.g., using
Common Workflow Language (CWL) [58,59] and/or Workflow Description
Language (WDL) [60], among others. This metadata should include
software version, dependencies (including which version), input and output

33

data types and formats (preferably using a controlled vocabulary),
communication interfaces (specified using standards like OpenAPI), and/or
deployment options.
Another aspect associated with interoperability is the ability to run the
software in different operating systems, i.e. software portability. Software
portability strongly depends on the availability of the full execution stack in
other operating systems (vertical axis in Fig. 1), which may not always be
given. This dependency on other digital objects to have a working software
is further extended in the newly introduced FAIR principle I4S. The present
tendency to package software and its dependencies, in software containers
e.g., Docker, Singularity, Rocket, contributes to enhanced software
portability. Although these differences are not negligible, given that these
terms are often used interchangeably, we will be considering both under
the FAIR principle of interoperability, highlighting any issues that arise due
to this divergence.

“5
recommendations
for FAIR software”

(not directly addressed)

FAIR4RS-subgroup1 I. The software usually needs to communicate with other software via
exchanged data (or possibly its metadata). Software tools can interoperate
via common support for the data they exchange.

Interoperation between data expresses a reciprocal or concomitant
relation. Two data sources can be said to interoperate if they can,
with relative ease, be integrated in a way that forms a uniform third
object. They are equal contributors to the end result. The potential
for integration is commonly taken to be good practice in software
engineering, but the nature of that relationship is different. There is a
contrast between direct or asymmetrical, and indirect or symmetrical
integration.

First, there is the direct and asymmetrical integration between a
piece of software and its dependencies. As implied by the label, the
software becomes dependent on the availability and robustness of
those dependencies. The dependencies are integrated into the
primary software object. This sense of integration does not seem to
reflect the reciprocal relation expressed by “interoperability.”

Second, there is an indirect and often symmetrical integration
between independent software objects that can or do exchange data.
This could be in the form of information passed between two running
instances of software (e.g., services), or it could be in the form of
support for common data formats read or written by both software
packages. This sense of integration does reflect the reciprocal
relations expressed by interoperability.

We propose that this foundational principle focus on a sense of
interoperability facilitated by the exchange of metadata or data
between software following community standards. To better convey

34

this meaning, we propose updating the wording of this foundational
principle:

“The software usually needs to communicate with other software via
exchanged data (or possibly its metadata). Software tools can
interoperate via common support for the data they exchange. ”

Furthermore, we propose that the sense of direct integration is
actually related to the use and reusability of software, rather than
interoperability. See the discussion on Reusability foundational
principle for more on this point.

As part of this refocus, we will drop some guiding principles that
don’t reflect this, reword others, and introduce a new principle
modelled on one of the reusability guiding principles.

FAIR4RS-subgroup2

There is an opportunity to expand the second point made by Subgroup 1,
that “there is an indirect and often symmetrical integration between
independent software objects that can or do exchange data” with
workflows.

This is the principle of workflows and workflow management systems
(WfMS) - they are expressly about the movement of data between services
and the linking of inputs and outputs of codes, and those codes may be
invoked on different platforms.

FAIR4RS-subgroup4 Interoperable software should:
● Be machine readable and pipeable
● Be able to be used together with other software and data, as part

of workflows
● Have well-defined and documented data formats and APIs, using

existing community standards where possible
○ This includes protocols and standards for other research

objects like use of ORCID, CRediT, COPE ethical guidelines
● Be portable i.e. can be run (with adaptation) on similar systems,

machines and environments

Specific clarifications in response to “Towards FAIR Principles…”
● Unlike data, in a sense, all software is "integrated" with, or depends

upon other software. And some software can be written such that it
can be (easily) integrated into other software projects. Getting this
right seems to be a critical component of reuse.

● Highly context-dependent. At best, interoperability between
software and data can be discussed in the existing FAIR framework.

● Interoperability should also touch (together with reusable) on the
property of usability. FAIR needs to stay usable - not a burden on
the authors but a welcoming addition.

Other responses on Interoperable from “Towards FAIR Principles…”
suggesting additional guiding principles:

35

● Software should document the environment required to execute
the software [should this be in Reusable?]

● Software should support checkpointing / repetition of runs
● Software should be linked to related objects including publications

using the code, other versions of the code, tools and libraries used,
and derived versions of the code [should this be in Findable or
Reusable?]

36

I1. (meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation

Resource Content

Applicability of
principle to FAIR for
Research Software

Example of use (WfMS) but level of applicability is unclear.

Towards FAIR
principles for
research software

Rephrased and extended: “Software and its associated metadata use a
formal, accessible, shared and broadly applicable language to facilitate
machine readability and data exchange.”
“Interoperability for research software can be understood in two
dimensions: as part of workflows (horizontal dimension) and as a stack of
digital objects that need to work together at compilation and execution
times (vertical dimension).”
“When considering research software as part of a workflow, software
should be able to share input and/or output data sets with other software.”

“5
recommendations
for FAIR software”

Registry: : "What metadata does the community registry offer? This is
sometimes described in the documentation of the registry, but you can also
see for yourself by installing a tool like the OpenLink Structured Data
Sniffer. "
Software quality: : “Checklists help you write good quality software.
What exactly constitutes 'good quality' depends on the specific application
of the software, but typically covers things like documenting the source
code, using continuous testing, and following standardized code patterns.”

FAIR4RS-subgroup1 (removed)

FAIR4RS-subgroup2

WfMS expressly use a language to describe the workflow - which is why
they are data at one level.

There were differing opinions on whether this was required as a guiding
principle, around whether this should be enforced to encourage sharing
code in broadly applicable languages that may be more usable by the
community versus this being, and not coming up with languages of their
own, versus this being encouraged as good practice rather than enshrining
in FAIR.

FAIR4RS-subgroup4

Many people believed this principle applied / applied with rewriting, but
some felt it did not apply to software and should be removed.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● Current phrasing of principle doesn’t take into account that
software is all written in a formal language, so there is some
inherent standardisation, and is machine readable. Therefore this
may not be relevant for software. [Compatible with Subgroup 1]

● For source code based software, code quality should also be
considered. This is also true for the original principle with respect to
knowledge representations. [Unclear if compatible with Subgroup
1]

37

38

I2. (meta)data use vocabularies that follow FAIR principles

Resource Content

Applicability of
principle to FAIR for
Research Software

Examples of use (CodeMeta, Citation File Format).

Towards FAIR
principles for
research software

Reinterpreted, extended and split: “I2S.1 - Software and its associated
metadata are formally described using controlled vocabularies that follow
the FAIR principles. I2S.2- Software
use and produce data in types and formats that are formally described
using controlled vocabularies that follow the FAIR principles.”

“5
recommendations
for FAIR software”

Citation: “The CodeMeta standard and the Citation File Format were
specifically designed to enable citation of software and will likely meet your
needs. For either one, you write a plain text file with citation metadata,
which you then distribute with your software.”

FAIR4RS-subgroup1 (removed)

FAIR4RS-subgroup4 1.2S.1: Many people believed this principle applied / applied with rewriting,
but some felt it did not apply to software and should be removed.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● Suggested rewrite to “Software metadata are formally described
using controlled vocabularies that follow the FAIR principles.” [Not
compatible with Subgroup 1 - principle removed]

● Principle applied to metadata, but unclear if it does for software.
What is a controlled vocabulary for software? Is it the programming
language? If yes, would any programming language be less FAIR
than others? [Unclear if compatible with Subgroup 1]

● Controlled vocabularies are (and should be) always in progress,
adapting to actual community use and practices. Software is
immensely flexible and varied, it may happen that the current
version of a controlled vocabulary doesn't cover a particular
application that still needs documentation. So semi-formal
descriptions might have a necessary role. [Unclear if compatible
with Subgroup 1]

● Should this be moved to Reuse?

1.2S.2: Everyone believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● Difference here between type and format is unclear. [Not
compatible with Subgroup 1 - principle removed]

● Should I2S.2 be recast as the foundational “interoperable” principle,
rewritten more simply as "FAIR software should exchange

39

https://codemeta.github.io/
https://citation-file-format.github.io/

(meta)data that is FAIR"? [Unclear if compatible with Subgroup 1]
● Should I2S.2. be rewritten as “Software use and produce data that

follows the FAIR principles.”? [Not compatible with Subgroup 1 -
principle removed]

40

I3. (meta)data include qualified references to other (meta)data

Resource Content

Applicability of
principle to FAIR for
Research Software

Sits better in the context of reusability.

Towards FAIR
principles for
research software

“Discarded”
“I3 aims to interconnect data sets by semantically meaningful
relationships..... However, such relationships are difficult to translate to the
case of research software. We found the closest resemblance of this
principle to be in software dependencies.” => I4S

“5
recommendations
for FAIR software”

 (not explicitly discussed)

FAIR4RS-subgroup1 I2. Software includes qualified references to other objects

This guiding principle applies to software as written, but in discussion
we agreed that this is in aid of (re)use of software, rather than
interoperability (at least as described above). Additionally, this simple
translation of the original guiding principle doesn’t capture that
qualified references should be to metadata, data and software, as
well as to non-digital objects that have a virtual presence in digital
systems (e.g., samples, reagents, etc.).

Software source code (and some other types of software) do include
references to other software (requirements, imports, libraries, etc.)
but not currently in a way that meets F1 and A1. Software does not
generally include references to metadata, though in some cases, it
can include (in comments) references to algorithms or other
published text that it implements. Some software includes references
to external data objects required to execute the software. To be fully
FAIR, the data would ideally be FAIR as well, and references to
external data fully qualified.

We believe that calling for qualified references to metadata and to
data is reasonable. However, in light of the modified definition of the
foundational Interoperability principle, we believe that, while the
inclusion of guiding principle calling for software to include qualified
references to other software is reasonable, this is primarily in aid of
the use and reuse of the software. For this reason, we propose that
there be two guiding principles:

“Software includes qualified references to other objects”
“Software includes qualified references to other software”

41

The second of these is a new guiding principle to be placed under the
Reuseable foundational principle.

FAIR4RS-subgroup2
This also works for workflows and scripts and all objects where the process
is explicit as opposed to being buried in the code

FAIR4RS-subgroup4

This rewritten I2 from Subgroup 1 is compatible with the discussion around
the definition of the Findable and Interoperable guiding principles from
Subgroup 4.

42

I4S. Software dependencies are documented and mechanisms to access
them exist

Resource Content

Towards FAIR
principles for
research software

14S. Software dependencies are documented and mechanisms to access
them exist.

“5
recommendations
for FAIR software”

 (not explicitly discussed)

FAIR4RS-subgroup1 (not explicitly discussed)

FAIR4RS-subgroup4

Everyone believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● The important question of long-time access of dependencies is not
included in the principle

● Dependencies describe integration, but don't automatically create
the preconditions for interoperation. What (I4S) describes should be
a principle for (re)use.

New interoperability principle

Resource Content

Towards FAIR
principles for
research software

“Discarded”
“I3 aims to interconnect data sets by semantically meaningful
relationships..... However, such relationships are difficult to translate to the
case of research software. We found the closest resemblance of this
principle to be in software dependencies.” => I4S

“5
recommendations
for FAIR software”

 (not explicitly discussed)

FAIR4RS-subgroup1 I1. Software should read, write or exchange data in a way that meets
domain-relevant community standards

… there is an indirect and often symmetrical integration between
independent software objects that can or do exchange data. This
could be in the form of information passed between two running
instances of software (e.g., services), or it could be in the form of
support for common data formats read or written by both software
packages. This sense of integration does reflect the reciprocal

43

relations expressed by interoperability.

FAIR4RS-subgroup4

This new guiding principle from Subgroup 1 is compatible with the definition
of the Interoperable foundational principle from Subgroup 4 (“Have well-
defined and documented data formats and APIs, using existing community
standards where possible”)

44

R. Reusable
The ultimate goal of FAIR is to optimise the reuse of data. To achieve this, metadata and data should
be well-described so that they can be replicated and/or combined in different settings.

Resource Content

Towards FAIR
principles for
research software

Reusability in the context of software has many dimensions. At its core,
reusability aims for someone to be able to re-use software reproducibly as
described by Benureau and Rougier 2018 [61]. The context of this usage
can vary and should cover different scenarios: (i) reproducing the same
outputs reported by the research supported by the software, (ii) (re)using
the code with data other than the test one provided to obtain compatible
outputs, (iii) (re)using the software for additional cases other than those
stated as supported, or (iv) extending the software in order to add to its
functionality.
Software reusability depends to a high degree on software maintainability
(see also Section Software quality: beyond FAIR), including proper
documentation at various levels of detail. The legal framework, e.g.,
software licenses, is also important in terms of reusability as it determines
how software can be built, modified, used, accessed and distributed.
Furthermore, as research software is an integral part of the scientific
process, credit attribution (citation) is another important aspect to consider
with regard to (re)usability.

“5
recommendations
for FAIR software”

Use a publicly accessible repository with version control - WHY THIS IS
IMPORTANT
Developing scientific software in publicly accessible repositories enables
early involvement of users, helps build collaborations, contributes to the
reproducibility of results generated by the software, facilitates software
reusability, and contributes to improving software quality. Taken together,
this ensures that your software has the best chance of being used by as
many people as possible while promoting transparency.

Add a license - WHY THIS IS IMPORTANT
Any creative work (including software) is automatically protected by
copyright. Even when the software is available via code repository platforms
such as GitHub, no one can use it unless they are explicitly granted
permission. This is done by adding a software license, which defines the set
of rules and conditions for people who want to use the software. Finally, be
aware that you, as the developer of a given piece of software, may not be a
copyright owner of the code you write. Usually the copyright holder of a
work is the employer (or hiring party) and not the author of the work.

FAIR4RS-subgroup1 The ultimate goal of FAIR is to optimize the reuse of software. To achieve
this, metadata and software should be well-described so that they can be
replicated and/or combined in different settings.

We believe that usability and reusability is an important foundational
principle for software. However, "optimize" is too strong of a
statement and should be replaced by "enable and encourage."
Finally, software can be described via metadata.

45

To maximise software (re)use, we must recognise that most software
is dependent on other software. FAIR Research Software should be
structured to maximise its potential use or reuse. This includes:

● the encapsulation of the software such that it can be reused
alone or within other software projects

● the level of abstraction at which the software is expressed
● the record of references to dependencies that enable use

and reuse of the software, and
● the metadata that pertains to reusability.

As discussed under the interoperability foundational principle above,
it has been difficult to interpret what interoperable means in a FAIR
context. This is true for reusable as well. These terms have multiple,
overlapping senses when applied to software.

Reuse for software can mean much more than “replicated and/or
combined” in the original wording for this foundational principle.

We do not consider executability to be a necessary feature of
software for it to be FAIR. There are many legitimate (re)uses of
software that do not require executability, for instance, to verify that
steps taken within the code are valid, or to look for “bugs” and other
errors in the code.

Software is usually written in a human readable form (source code),
which will either be executed by an interpreter, or compiled into one
or more binary forms suitable for execution within specific hardware
and operating system combinations (limiting potential (re)use). We
consider making the original human readable form available most
harmonious with the FAIR principles, but recognise that for
commercial, historical, or sensitivity reasons, the binary or binaries
may be the only available form of some software. The binary itself is
opaque and may contain bugs and errors. It is impossible to verify its
validity and it cannot be modified, for example, to fix bugs. Binaries
can be considered black boxes that we can “use” or “reuse” in a
research workflow to produce, analyze, or act on data. Source code,
on the other hand, can be interrogated, modified, and “reused” in
other software or research workflows in a wider range of
environments; see Gap 7 in Section 5.

We suggest “replicated, combined, reinterpreted, reimplemented,
and/or used” instead of “replicated and/or combined.”

A new version of the text above is "The ultimate goal of FAIR is to
enable and encourage the use and reuse of software. To achieve this,
software should be well-described (by metadata) and appropriately
structured so that it can be replicated, combined, reinterpreted,
reimplemented, and/or used in different settings."

46

https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.hmi31jw7u7xv

FAIR4RS-subgroup2

The list of suggested techniques to maximise potential use or reuse are akin
to the ASAP of workflows: Automation, Scaling, Abstraction, Provenance
(aka dependencies). But not necessarily encapsulation. If software calls a
service or an API or a microservice is it not reusable?

If software is not required to be executable, then isn’t it just data? However
we agree with Subgroup 1 that reuse through reading is critical (and more
sustainable than reuse through running).

The suggested new version of the text works for workflows.

FAIR4RS-subgroup4

Reusable software should:
● Make it possible for others to understand and use the software for

their own purposes
● Be well-documented/curated, and lower effort to use than building

own
● Have a suitable and clear license
● Be usable and extensible
● Sustainable
● Reproducible
● Dependable

There was considerable debate about whether the spirit of the Reusable
foundational principle should concentrate on usability, enabling reuse (e.g.
extensibility, maintainability, license), or reproducibility.

An overwhelming viewpoint was that this foundational principle should
encourage adherence to software engineering good practice.

Other guiding principles suggested in this category included:
● Software should be written to follow software engineering principles

such as encapsulation (e.g., modularity, portability, abstraction) and
flexibility (e.g., less hard coded variables) to enable greater reuse

● Software should be written to make it easy for others to understand
how to modify it

● Software should be written to encourage contribution (e.g. Code of
conduct, contributing, readme, etc.)

● Software should be documented so that the intent of the software is
clear (both in the code and in the documentation)

● Software should not contain hidden features or bugs that could
compromise suitability for given tasks

● Software should be dependable i.e. it can be built on by other
software and research

47

R1. meta(data) have a plurality of accurate and relevant attributes

Resource Content

Applicability of
principle to FAIR for
Research Software

Direct examples of use

Towards FAIR
principles for
research software

Rephrased: “Software and its associated metadata are richly described with
a plurality of accurate and relevant attributes.” (Note that this principles
isn’t developed)

“5
recommendations
for FAIR software”

Registry: “With metadata, search engines are able to get some idea of
what the software is about, what problem it addresses, and what domain it
is suited for. In turn, this helps improve the ranking of the software in the
search results -- better metadata means better ranking.”

FAIR4RS-subgroup1

R1.1. Software is richly described with a plurality of accurate and relevant
attributes

This guiding principle is reasonable.

FAIR4RS-subgroup2 Also makes sense for workflows.

FAIR4RS-subgroup1

Most people believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● What does rich and plural mean in the context of software?
[Probably incompatible with Subgroup 1]

● Rich metadata needs to be maintained as well, or it will be even
worse than no metadata. Maybe add "up-to-date" as the first
requirement and the others after that as "secondary". [Probably
compatible with Subgroup 1]

● What do attributes mean in the context of software? More guidance
is required. [Probably compatible with Subgroup 1]

48

R1.1. (meta)data are released with a clear and accessible data usage license

Resource Content

Towards FAIR
principles for
research software

Software and its associated metadata have independent, clear and
accessible usage licenses compatible with the software dependencies.
[Rephrased and extended]

Applicability of
principle to FAIR for
Research Software

Direct examples of use.

“5
recommendations
for FAIR software”
“5
recommendations”

License: “Any creative work (including software) is automatically protected
by copyright. Even when the software is available via code sharing
platforms such as GitHub, no one can use it unless they are explicitly
granted permission. This is done by adding a software license, which defines
the set of rules and conditions for people who want to use the software.”

FAIR4RS-subgroup1

R1.2. Software is made available with a clear and accessible software usage
license

This guiding principle is reasonable, assuming that "release" is
defined as making the software available. Thus, we think this principle
should be re-written as "Software is made available with a clear and
accessible software usage license."

FAIR4RS-subgroup4
Most people agreed with this principle as written. [Probably compatible with
Subgroup 1 - needs discussion about licensing of dependencies]

49

R1.2. (meta)data are associated with their provenance

Resource Content

Towards FAIR
principles for
research software

Rephrased: “Software metadata include detailed provenance, detail level
should be community agreed.”
“Provenance refers to the origin, source and history of software and its
metadata. It is recommended to use well-known provenance vocabularies,
for instance PROV-O [63], that are FAIR themselves. “

Applicability of
principle to FAIR for
Research Software

Direct examples of use.

“5
recommendations
for FAIR software”

Repository: “Using a version control system allows you to easily track
changes in your software, both your own changes as well as those made by
collaborators.”

FAIR4RS-subgroup1

R1.3. Software is associated with detailed provenance

This guiding principle is reasonable. A version control system (VCS)
may provide detailed provenance for software, but the quality of
detail, especially of agents, entities and actions will depend on
careful, consistent and considered use of the VCS. Also note that
many contributors may not be recorded by a version control system,
which by default only stores that single individual who submits each
change.

FAIR4RS-subgroup2 Also makes sense for workflows.

FAIR4RS-subgroup4

Everyone believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● The phrase "detail level should be community agreed" just restates
R1.3 [Compatible with Subgroup 1]

● Requires clearer definition of what “community” means [Probably
compatible with Subgroup 1]

● Suggested rephrasing as "Software metadata include detailed
provenance, detail level should be at least as high as the
community agreed best practice." [Probably compatible with
Subgroup 1]

● Provenance for software is authorship and best ensured by version
control [Compatible with Subgroup 1]

50

https://content.iospress.com/articles/data-science/ds190026#ref063

R1.3. (meta)data meet domain-relevant community standards

Resource Content

Towards FAIR
principles for
research software

Rephrased: “Software metadata and documentation meet domain-relevant
community standards.”
“we consider aspects of installation instructions (R1.3), software
dependencies (I4S), and licensing (R1.1) as part of other principles here,
rather than adding another Accessibility principle.”

Applicability of
principle to FAIR for
Research Software

Consensus of applicability through careful interpretation.

“5
recommendations
for FAIR software”

Registry: "What metadata does the community registry offer? This is
sometimes described in the documentation of the registry, but you can also
see for yourself by installing a tool like the OpenLink Structured Data
Sniffer. "

FAIR4RS-subgroup1

R1.3. Software meets domain-relevant community standards

This guiding principle is reasonable, but requires careful consideration
for software, for the reasons in the discussion under the foundational
principle and those laid out below.

As noted in Section 2, one feature that differentiates software from
data is that it is a complex object composed of multiple distinct
objects, such as source code and/or binaries, documentation, and
possibly data and metadata of various kinds (see Gaps 5 and 6 in
Section 5 for more discussion). For software, the composition of the
complex object may itself be subject to community standards (e.g.,
an expectation that certain components such as documentation or
detailed references to dependencies should be included in the overall
object), and the distinct objects may also be subject to separate
community standards (i.e., that included or referenced objects should
be in a particular form, or otherwise made FAIR in different ways).
Software becomes more usable or reusable by meeting these kinds of
domain-relevant community standards.

Particularly when considering the source code component of software,
community standards may include preferred programming languages
or packaging systems. That is, the “domain-relevant community
standards” include the norms established around the software
community for each programming language. They also include any
further norms within research domains. Community standards may
include ways of managing and structuring the code, and expectations
around the presence and structure of documentation; see Gap 6 in
Section 5. We interpret this point as allowing multiple domains to
operate at once. We do not consider it an aim of the FAIR principles
for research software to pursue the integrability of all software with all
software or the use of a single preferred programming language

51

https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.1xukeyn67tfq
https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit?ts=5fa4549f#heading=h.hmi31jw7u7xv
https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.qvv6cq5an4l3

above all others.

We also believe that, by extension, this principle can refer to the
functionality or capabilities of the software, and that it is reasonable
to expect that:

“Software should read, write or exchange data in a way that meets
domain-relevant community standards.”

We note that calling for data that is read, written, or exchanged by
software to be FAIR would be too strong a statement for data or
metadata only used within or between a collection of software. We
also do not insist that FAIR software must integrate with repository
systems by default (for instance, to capture metadata and issue an
identifier); we believe such decisions should be made by the software
creator based on how the software will be used, in the context of
community standards and expectations.

This interpretation of this principle is harmonious with our proposed
interpretation of Interoperability for research software. We propose
that this new wording should be a new and separate principle under
Interoperability (I1) in addition to preserving the original one as
discussed further in Section 4.

FAIR4RS-subgroup2

The note that “one feature that differentiates software from data is that it is
a complex object composed of multiple distinct objects” is also true of some
datasets. not all datasets are atomic and homogeneous. The FAIR data
principles take into account that different users/stakeholders will have the
need for different metadata on the same data: does that perspective apply
to software?

FAIR4RS-subgroup4

Everyone believed this principle applied / applied with rewriting.

Additional feedback, based on discussion of “Towards FAIR Principles…”
rewritten version:

● R1.3, if not time bound, may be problematic. Community standards
are (and should be) in constant development. Exceptions to
following the standards should be possible where necessary.
Suggested rephrasing to: "Software metadata and documentation
meet or rise above domain-relevant community standards."
[Probably compatible with Subgroup 1]

● The term “community standards” is fuzzy - how is this recognised?
[Unclear if this is compatible with Subgroup 1 - possibly requires
discussion to identify how to be documented]

● There should be some minimum interdisciplinary standard, as some
software is not limited to a domain [Probably incompatible with
Subgroup 1 as stands - does this suggest an additional principle?]

52

https://docs.google.com/document/d/1WsKbZAr5HAVHCCXq5A5Bed3IRafu-CzJtmwJpdrOjSQ/edit#heading=h.zf0otdsox2sq

New reusability principle - qualified references to other software

Resource Content

FAIR4RS-subgroup1 R2 Software includes qualified references to other software

Software source code (and some other types of software) do include
references to other software (requirements, imports, libraries, etc.)
but not currently in a way that meets F1 and A1. Software does not
generally include references to metadata, though in some cases, it
can include (in comments) references to algorithms or other
published text that it implements. Some software includes references
to external data objects required to execute the software. To be fully
FAIR, the data would ideally be FAIR as well, and references to
external data fully qualified.

FAIR4RS-subgroup2 (not explicitly discussed)

FAIR4RS-subgroup4 This agrees with the general discussion from Subgroup 4 on the meaning of
the F, A and R foundational principles.

However Subgroup 4 goes further, and would suggest that to be fully FAIR,
the software dependencies would ideally be FAIR as well.

But, because software consists of large stacks of interdependent
components, any definition of metrics and indicators of FAIR for software
can only be made in the context of a specific stack. Otherwise NumPy would
be criticised for not being interoperable with R.

New reusability principle - dependability

Resource Content

FAIR4RS-subgroup1 Not discussed.

FAIR4RS-subgroup2 (not explicitly discussed)

FAIR4RS-subgroup4 R3. Software is dependable and can be built on by other software and
research

● R3.1 The software is maintained by a large community, or
supported by an institution that has made a long-term commitment
to its maintenance.

● R3.2 The software comes with a policy statement about its future
evolution (backward compatibility, supported platforms, etc.)

● R3.3 The software's dependencies are as dependable as the

53

software itself.

This should be compared with how dependability is considered for FAIR
data.

54

Appendix B: How to apply the FAIRsFAIR recommendations

The recommendations in the FAIRsFAIR report (Gruenpeter et al. 2020) uses
the following requirement level, as defined in RFC21193:

● MUST is an absolute requirement

● SHOULD is a needed requirement for which exceptions are possible

● MAY is an optional requirement

Recommen
dation
number

Recommendation How to satisfy this
recommendation?

n°1 FAIR principles for research software outcomes MUST
be produced by taking into account the specific
nature of software and not as just a simple
adaptation of the FAIR guiding principles for data.

The creation of the FAIR4RS
WG is a measure to achieve
this recommendation by
having a dedicated discussion
taking into account the FAIR
guiding principles and the
specific nature of software.

n°2 Applying principles and recommendations to software
demands effort, time and skill. The realistic nature of
these principles MUST be considered.

Having researchers who
create software or research
software engineers as
reviewers of the principles
can be a means to satisfy this
recommendation.

n°3 A large community forum MUST be consulted when
writing the principles. This community forum MUST
include stakeholders from different disciplines and
with different roles, looking at software in all its
aspects: as a tool, as a research outcome and as the
object of research.

Inviting specific stakeholders
which were not identified in
the FAIR4RS WG to review
and comment on the WG
outputs and the resulting
FAIR principles for research
software.

Recommen
dation n°4

Existing infrastructures that already provide solutions
for software artifacts SHOULD be asked to review the
FAIR principles for research software.

Invite infrastructures
representatives to review the
FAIR4RS principles.

3https://tools.ietf.org/html/rfc2119

55

https://tools.ietf.org/html/rfc2119

Recommen
dation n°5

Each principle MUST be relevant for software source
code.

Recommen
dation n°6

Each principle MUST be achievable for software
source code.

Recommen
dation n°7

Each principle SHOULD be measurable for software
source code; detailed explanations of how a
measurable principle is measured MUST be available.

Recommen
dation n°8

Each principle SHOULD contribute to software
recognition in scholarly communication.

Recommen
dation n°9

Each principle SHOULD contribute to the curation
quality of the software resource.

Recommen
dation n°10

Each principle MAY solve one or more research
software challenges (e.g credit, reproducibility,
sustainability & management, documentation, quality
control, quality metadata, licensing and more).

56

