
Jaime Rodríguez-Guerra · 2021.03.19

Intro to 
best practices in
Jupyter, Python, Git



Jaime Rodríguez-Guerra · 2021.03.19

Outline
1. Jupyter notebooks

a. Interactive reports
b. The notebook
c. Running a cell

2. Beautiful Python
a. Readable code
b. Style conventions
c. Automate

1. S
2. Ds
3. Version control with Git

a. Why do we need it
b. Objects: commits, 

branches
c. Actions: commit, add, 

push, pull, merge

4. Collaborate on GitHub
a. Main features
b. Pull requests

2



Jaime Rodríguez-Guerra · 2021.03.19

Jupyter notebooks
Interactive documents

1



Jaime Rodríguez-Guerra · 2021.03.19

Interactive reports
● Rich text,

executable code,
interactive outputs.

● Plain text JSON file 
(*.ipynb)

● Perfect to lay out theory 
and exercises together

4



Jaime Rodríguez-Guerra · 2021.03.19

The notebook
● Composed of blocks called cells. 

They can be:
rich text (Markdown) or code (Python)

5



Jaime Rodríguez-Guerra · 2021.03.19

Running a cell
● In edit mode, press Shift+Enter or Ctrl+Enter

○ Markdown cells: Double click on them
○ Code cells: Just type

● Each cell can be run many times
○ Careful! Position in the file does not guarantee 

execution order.
○ Always look at the cell index!

6



Jaime Rodríguez-Guerra · 2021.03.19

Beautiful Python
A matter of style!

2



Jaime Rodríguez-Guerra · 2021.03.19

Read >>> write
● Code is more often read than written

● Spend time in writing readable code
● Simple is better than smart ;)
● Learn and use the language style conventions and idioms
● Good style = 

= good calligraphy and punctuation = 
= easier to understand!

8



Jaime Rodríguez-Guerra · 2021.03.19

PEP8
● The Python style guide is detailed in this document

● Specifies things like:
○ How to name your objects (snake_case, CamelCase, UPPER)
○ How to use horizontal whitespace (spaces, tabs)
○ How to use vertical whitespace (blank lines)
○ How to document your functions and classes
○ How long lines should be (rather short, <100 characters)

9

https://www.python.org/dev/peps/pep-0008/


Jaime Rodríguez-Guerra · 2021.03.19

Naming stuff
● Data, functions and instances are named with snake_case_names
● Classes are named with CamelCaseNames
● Constants are named with ALL_UPPERCASE_NAMES

● Use full words! Smart abbreviations are not that smart!

m = open_molecule(“protein.pdb”)
protein = open_molecule(“protein.pdb”)

10



Jaime Rodríguez-Guerra · 2021.03.19

Whitespace
● Indent with four spaces
● Leave one space:

○ at both sides of operators (name = “protein”, a > b),
○ after a comma

● No spaces:
○ In keyword arguments: some_function(option=”value”)
○ After parenthesis, square brackets or curly braces

● Read the PEP8 for more details

11



Jaime Rodríguez-Guerra · 2021.03.19

Automate!
● Naming your objects cannot be automated, but the 

other stuff can!

● Use autoformatters, like black and black-nb

● Do it before committing your code to version control

12



Jaime Rodríguez-Guerra · 2021.03.19

Version control
With Git

3



Jaime Rodríguez-Guerra · 2021.03.19

Why
● Ever done this? 

○ script.py
○ script_v2.py
○ script_v3_final.py
○ script_v3_final.fixed.py
○ script_v3+v2fallback_finalforsure.py
○ script_start_again_v1.py

● Version Control Software (VCS) provides:
history, provenance, collaboration

● It enables workflows!

14



Jaime Rodríguez-Guerra · 2021.03.19

GitHub ≠ Git
● Git is a Distributed Version Control System (DVCS) built 

by Linus Torvalds (creator of Linux) to streamline 
collaborative development on the Linux kernel

● GitHub is a (incredibly useful) social network that works a 
centralized Git server

15



Jaime Rodríguez-Guerra · 2021.03.19

Concepts

16

● Repository
● Diff
● Commit
● Branch



Jaime Rodríguez-Guerra · 2021.03.19

Repositories
● A Git-enabled project. It contains a .git folder
● In other words, a directory where files changes are tracked
● A repository contains three stages or states:

○ The working directory itself: where you code
○ The staging area: prepared to save
○ The actual repository: changes are now in history

17



Jaime Rodríguez-Guerra · 2021.03.19

Diffs
● If you have two versions of 

a script, you can use diff:

● These changes are 
tracked by Git in a directed 
acyclic graph

18

From https://ericsink.com/vcbe/html/directed_acyclic_graphs.html



Jaime Rodríguez-Guerra · 2021.03.19

Commits
● A commit is a set of changes (diffs) that belong together
● They can come from one or more files
● Changes in the same file can belong to different commits!

● Think of them as a labeled box that contain related 
modifications to your code

● Yes, labeled: they must contain a meaningful description. 
Be informative!

19



Jaime Rodríguez-Guerra · 2021.03.19

Branches
● Changes do not need to be necessarily sequential
● You (and your team) can work in parallel!
● Several branches can coexist

● In the end, we expect most
of them to be merged into
the main one: master.

20

From https://blog.programster.org/git-workflows



Jaime Rodríguez-Guerra · 2021.03.19

Commands
● Add
● Commit
● Push

21

● Pull ● Branch
● Merge



Jaime Rodríguez-Guerra · 2021.03.19

Add & commit
● git add

Move changes (diffs) to the 
staging area

● git commit
Consolidate the staging 
area into the repository, 
with a description

22

From https://medium.com/hackernoon/understanding-git-index-4821a0765cf



Jaime Rodríguez-Guerra · 2021.03.19

Push
● Sync your changes with a remote copy
● Most of the time, it means “upload changes to GitHub”

23



Jaime Rodríguez-Guerra · 2021.03.19

Pull
● The opposite: “Download latest changes from GitHub”
● Careful! States must be compatible. If you have been 

working in parallel, you might need to resolve some 
conflicts.

24



Jaime Rodríguez-Guerra · 2021.03.19

Branch
● git branch will list your current branches
● To create a new branch, use 

git checkout -b <name>
● It means “create a new version of the code starting with the 

current state”
● To move to an existing branch:

git checkout <branch_name>

25



Jaime Rodríguez-Guerra · 2021.03.19

Merge
● When you are ready with your branch (all features have 

been implemented / all bugs have been fixed), you can 
merge into the main branch

● git merge that_other_branch
● This means “bring those changes to the current branch”

● We will do this for you on Github

26



Jaime Rodríguez-Guerra · 2021.03.19

Main features in GitHub
The social network for code collaboration

4



Jaime Rodríguez-Guerra · 2021.03.19

“
In a nutshell:

GitHub is Google Drive
for source code

28



Jaime Rodríguez-Guerra · 2021.03.19

In GitHub, you...
● Store an up-to-date copy of your code
● Browse and download the source
● See the history of changes (commit log)
● Ask for help or suggest improvements (issues)
● Contribute to the project (pull request)
● Test new changes
● Read the documentation (wiki)
● Publish installers and other artifacts (releases)

29



Jaime Rodríguez-Guerra · 2021.03.19

Social code
● Each software package has its own repository
● Repositories can be owned by users or organizations
● Large organizations can be optionally divided in teams
● Cross-repo collaboration is encouraged by design

● Example: I am @jaimergp, and belong to several 
organizations: @volkamerlab, @choderalab, @openforcefield, 
@conda-forge… Within conda-forge, I am part of the 
@conda-forge/openmm team, among others.

30



Jaime Rodríguez-Guerra · 2021.03.19

History

31

● See all your changes
● Chronologically!
● Local equivalent:

git log



Jaime Rodríguez-Guerra · 2021.03.19

Issues
● Report problems
● Suggest features
● Get help
● No local equivalent!

32



Jaime Rodríguez-Guerra · 2021.03.19

PRs
● Pull Requests
● Discuss changes before 

git merge
● Every upload (push) can 

trigger events in remote 
services

● Essential in best 
practices

33

https://github.com/conda-forge/openmm-feedstock/pull/16


Jaime Rodríguez-Guerra · 2021.03.19

PRs
● You can create a PR from:

○ A branch in the repo
○ A fork (copy of your 

repo in a different 
account) 

34



Jaime Rodríguez-Guerra · 2021.03.19

Testing (CI)
● CI: Continuous Integration
● Every push action in a PR can 

trigger remote services
● Examples: 

○ Azure Pipelines
○ GitHub Actions

35

https://dev.azure.com/conda-forge/feedstock-builds/_build/results?buildId=100405&view=logs


Jaime Rodríguez-Guerra · 2021.03.19

1. Create your branch/fork
2. Make changes
3. Add, Commit and Push
4. Go to the repo on GitHub and create the PR

36

How to create 
a Pull Request



Jaime Rodríguez-Guerra · 2021.03.19
37

Thanks!
Any questions?


