
Author preprint: TechDebt 2021

Security Debt: Characteristics, Product Life-Cycle
Integration and Items

Jabier Martinez, Nuria Quintano, Alejandra Ruiz, Izaskun Santamaria, Iker Martinez de Soria and José Arias
Tecnalia, Basque Research and Technology Alliance (BRTA)

Derio, Spain
{name.surname}@tecnalia.com

Abstract—Industries from very diverse domains are realising
that security should not be treated in a reactive way (e.g.,
once the cyberattack has happened). This way, security-related
requirements and risks need to be continuously managed, and
the need of integrating technical measures should be continuously
assessed. In some cases, some decisions led, intentionally or
unintentionally, to debt related to security aspects. This security
debt is thus incurred when limited approaches or solutions are
applied to reach the expected security levels of the system in
operation. Identifying and making explicit security debt items
is a challenge for companies. In this work, we analyse the
literature on security debt to provide initial insights on the
topic. Concretely, we discuss its definition, identify its most
salient characteristics, present approaches for integrating its
management in the product life-cycle, and to present categories
and examples of security debt items.

I. INTRODUCTION

Cyber-security is an increasingly important concern given
the proliferation of highly and continuously connected net-
works and systems. From personal devices to cyber-physical
systems and critical infrastructures, security measures are
required to keep security risks under acceptable thresholds.
Security is the combination of three criteria: confidentiality,
the prevention of the unauthorized disclosure of information;
integrity, the prevention of the unauthorized amendment or
deletion of information; and availability, the prevention of
the unauthorized withholding of information [23]. In addition,
security is usually needed to ensure safety (security-informed
safety) [24] so in some cases it is also relevant to prevent
harms to humans or the environment.

In this work we provide insights on the intersection of
security aspects with technical debt. During the life-cycle of
a system (including maintenance) several decisions need to be
made by the different disciplines involved in the development.
Some of these decisions might incur intentionally or unin-
tentionally in technical debt. “In software-intensive systems,
technical debt is a collection of design or implementation
constructs that are expedient in the short term, but set up a
technical context that can make future changes more costly
or impossible. Technical debt presents an actual or contingent
liability whose impact is limited to internal system qualities,
primarily maintainability and evolvability” [25].

Researchers and practitioners have started to be interested
by the term security debt, now that technical debt management
starts to be more mature as a conceptual framework [20] or
even as a new engineering discipline in its own right, at a

similar level than risk or assurance management. By analysing
the literature on the subject, we aim to respond to the following
research questions:

• RQ1: How can we define security debt and which are its
main characteristics?

• RQ2: How is security debt management introduced in the
product life-cycle?

• RQ3: Which security debt items are described in the
current literature?

This paper is structured as follows, Section II presents the
methodology for the literature and data analysis on the selected
studies. Then Section III presents the results regarding the
definition and characteristics (RQ1), Section IV on product
life-cycle integration (RQ2), and Section V on the items
(RQ3). Finally, Section VI concludes this work.

II. METHODOLOGY

Figure 1 illustrates the two phases of the methodology.
Phase 1: Data extraction: We designed a focused query

based on searching in the title, abstract, and keywords for
security and cybersecurity works related with technical debt.
Concretely, the following query was used without any time
window in the Scopus digital library1:
TITLE-ABS-KEY("*security debt"

OR (*security AND "technical debt"))

This resulted in 67 entries. The inclusion criteria (inclusive
filter) was that the work must be written in English which
discarded 4 entries, and conference reviews (summaries of

1The first search was conducted in March 2020, and then updated November
2020, with a last check for new entries the 15th December 2020.

Phase 1: Data extraction Phase 2: Data analysis

Database Search 67

Inclusive Filter 43

Manual Filter 28

Reading -15

Snowballing +9

Consolidation 22

Coding

Global analysis

Fig. 1: Methodology including the number of publications
which were available in each step.

1



topics from conferences) were also discarded with 20 entries.
The next step was a manual examination by the first author of
titles and abstracts (manual filter) which discarded 15 entries
as completely unrelated to information systems security (e.g.,
social security and finance). This way 28 entries were selected
for being read and analysed in more detail. This set was
used for a snowballing approach [26] where potentially related
references found in the papers were recursively added to the
literature to analyse. Two authors carried out independent com-
plete reading of each paper (all involved). During the reading
of both primary and snowballing entries, 15 instances, that
seemed valid in the preliminary manual filter, were confirmed
by at least two authors as unrelated to security debt because
they were about technical debt but without links to security
aspects. We tried to be conservative and we kept publications
related to security and technical debt but in those 15 cases
no insights were provided. At the end, the total number of
relevant publications from which data was extracted were 22.
Those originated from the database search after the filters and
not excluded after reading were [1]–[17], and the not excluded
ones originated from the snowballing were [18]–[22].

Phase 2: Data analysis: The data was analysed to obtain
the results. First, a consolidation of the data extracted for
each paper was conducted through discussions between the
two authors assigned to the paper. This complemented both
views and helped to avoid misunderstandings on the content.
Once this was finished, workshops among the six authors were
conducted to analyse the data and to provide conclusions. The
findings were systematically categorized using ids, i.e., the
available data was used to perform a coding step (assigning
ids). Emergent ids for the three RQs were based on the reading
and consolidation steps and then harmonized (e.g., merging
similar ids) and refined (e.g., formulated in a more concise
way). Finally, a global analysis was performed during the
reporting in this paper.

Literature overview: Figure 2 shows the distribution per
year of the 22 publications. It suggests an increasing interest
on the intersection of security and technical debt. Table I
shows the publication fora, i.e., how they are distributed in
different journal or venues. Security debt is present in both
technical debt and security venues with higher frequency in
specialized technical debt venues.

2012 2013 2014 2015 2016 2017 2018 2019 2020
0
1
2
3
4
5

Fig. 2: Distribution of the 22 publications per year
TABLE I: Publication fora

Name Type Num

MTD - IEEE Int. Workshop on Managing Technical Debt Workshop 4
TechDebt - IEEE/ACM Int. Conf. on Technical Debt Conference 2
JSS, IST, IEEE Software, Journal of Software: Evolution and
Process, Enterprise Information Systems

Journal 1 each

ARES, Cyber Sec. and Protection of Digital Services, PRO-
FES, ICSA, ICSE (Doctoral Symposium), SCI, IECON,
SEDA, Perf. & Capacity by CMG, EASE, SBSI

Conference 1 each

III. A CLOSER LOOK AT SECURITY DEBT

We identified certain consensus on the security debt defi-
nition even in those that did not explicitly use the term. We
present a consolidated definition in Section III-A together with
its main characteristics in Section III-B to respond to RQ1.

A. Definition
Security debt refers to the completeness and correctness of

the solution that a development team is creating, in terms of the
needed security characteristics and requirements for the future
operation of the system, in the expected operational context. In
other words, security debt is incurred when limited approaches
or solutions are applied (intentionally or unintentionally) to
reach the needed security levels for the system in operation.

The concept is derived from the technical debt metaphor,
however, the interest of the debt is not additional work
to maintain the system as in traditional technical debt, but
additional security risks that are accumulated throughout the
system lifecycle.

The solution being created by the development team can be
convenient in the short term to meet deadlines or advance in
the project with the current knowledge and skills of the team.
This can create a state in which the system might not meet
the necessary security characteristics and requirements, com-
promising the overall quality of the system and the customer
expectations on security. Security debt does not only appear
during the design activities, it can be incurred since earlier
phases such as requirements engineering or risks analyses.
The security debt identification and further management allow
development teams to know and to record these kinds of
situations which appear as a result of business or technical
decisions. Also, for business purposes the companies may want
to gain visibility and to manage them throughout the whole
system lifecycle.

B. Characteristics
We extracted salient characteristics of security debt and its

management. We categorized them in Technological, Orga-
nizational, and aspects related to its Consequences. Table II
summarises the characteristics with a quick reference to the
works mentioning or dealing with it.

Technological: It is acknowledged that different artefact
types can be the source to incur technical debt [20], and
security debt is not an exception [5]–[7], [12], [13]. Different
categories can be found in the literature such as require-
ments [7], code [7], [12], [13], design and architecture [7],
[12], [13], configuration [13], environment [12], hardware
and physical parts [6], cloud computing infrastructure [13],
knowledge distribution [12], documentation [12], [13], and
testing [7], [12], [13]. Section V will later present concrete
categories and examples of security debt items.

One characteristic that we can highlight from security debt
is that it is highly related to security risks. Some authors refer
security debt as technical debt containing a security risk [7]
or potential security implications [8]. Security engineering
techniques (e.g., risk analysis) are used to identify the security
debt [6], [8] and security risk in software can be described

2



TABLE II: Security debt characteristics (RQ1)
Characteristic References

Technological
Security debt can be incurred through different artefact types [5]–[7], [12],

[13]
Security debt and security risks are closely tied [5]–[8]
Security eng. (V&V) helps to identify unintentional security debt [8]
Continuous security eng. helps to avoid unintentional security debt [7], [11]
Technical debt can be a source of security debt [1], [3], [8]
Tradeoffs of security and other quality attributes (e.g., perfor-
mance) might force to assume security debt

[5], [14]

Organizational
Organization policies should prioritize security debt [12], [19]
Security awareness and skills are needed to avoid security debt [8], [13]
Security debt involves different stakeholders requiring discussions
and decision making among them

[5], [14]

Consequences
Business damage: High interest of the debt [8], [9], [12],

[14], [16], [21]
Interest will be paid mainly when someone exploit the vulnerability [8], [9], [16],

[21]
Paying the principal of the security debt might require to change
processes

[16], [19]

in terms of technical debt [8], e.g., including the probability
attribute to the security debt item to measure the chances that
the security-related defect can be actually exploited [5].

Unintentional security debt should be identifiable thanks
to security engineering through validation and verification
(V&V) activities [8]. Also, this security engineering should be
continuous [7], i.e., not a single-shot effort (e.g., thread mod-
elling only at the beginning of the project) as this may create
a quickly obsolete view on the security of the system [11]
creating new security issues.

Another characteristic of security debt is that traditional
technical debt can be the source of security debt, e.g., sub-
optimal internal quality in a security critical software compo-
nent [8]. Under this hypothesis, the correlation between tech-
nical debt indicators and software vulnerabilities can identify
security debt [1], [3].

The last technological characteristic that we identified is
related to tradeoffs among security and other quality attributes
that might force the engineers to assume security debt. An
example is checking if the optimal system security can be
met at the expense of performance [14], or if security and
safety decisions are being considered at the same time creating
tradeoffs between them [5].

Organizational: It is considered that addressing security
debt should be prioritized as the potential damage to the
business is high [12], and the usually limited budget should be
used for that first [19]. There are also non-technical aspects in
technical debt such as personnel capabilities and participation
aspects. For security debt, security awareness and skills is
relevant to avoid security debt [13]. However, a professional
specialized in technical debt management, security engineering
and risk management might be hard to find [8].

Security debt might instigate discussions and it might con-
tinuously trigger decision making among different stakehold-
ers. A study on open source systems suggests that the case
with the highest number of comments when source code wants
to be officially integrated is when security-debt-related topics
are being discussed [14]. Also, key decision points or check

points are defined respectively by NASA and NIST where
stakeholders need to take decisions on security and safety,
and this was extended with technical debt decisions on these
critical considerations [5] making security debt a first-class
citizen in the organizational procedures for discussion and
decision making.

Consequences: Regarding the consequences of security
debt, the first characteristic is that the interest of the debt may
get unacceptably high [8] causing important business damages
[12], [14], [16], [21]. Security debt is usually measured in
terms of loss of business if a vulnerability is successfully
exploited rather than, for example, source code maintenance
effort in traditional technical debt [9]. Interest will be only
paid when someone (intentionally for malicious purposes or
unintentionally) exploit the vulnerability [8]. Security debt
makes the system more penetrable by malicious actors [21]
both in open systems (through externals) and closed systems
(through insider threats). In both cases the interest will not
be paid if the exposure was not discovered or activated [16].
Paying the principal of the security debt will be usually
related to fixing the defect of the vulnerability, however, in
other cases, it might imply also to change processes and
perform administrative changes [16]. In some cases, changes
in processes to perform a proactive security debt management
is desired [16], [19].

IV. SECURITY DEBT MANAGEMENT IN THE LIFE-CYCLE

Table III presents the approaches that were identified related
to the product life-cycle and the management of security debt.

Across the product life-cycle: Security is a cross-cutting
concern affecting all the product life-cycle and the product
assets produced in each stage as presented in Section III-B.
Thus, all engineering disciplines are subject to generate se-
curity debt starting in very early stages such as the concept
and requirements phases [10]. The debt management process
should then consider all those stages [7] and adjust the tech-
niques aiming to reveal security debt items [8], [13], [14] (e.g.,
reviews of policies, design, code etc.). Also, ideally security
debt cannot be incurred when secure-by-design best practices
are followed across the product life-cycle [6]. As this is not
yet feasible in several cases, security “touchpoints” during the
product life-cycle to avoid security debt are proposed [6].

TABLE III: Security debt in the product life-cycle (RQ2)
Characteristic References

Across the product life-cycle
All the stages/disciplines are subject to generate security debt [6]–[8], [10],

[13], [14]
Identification of security debt is a continuous process [7], [11]

Risk management
Extending security risk management to manage security debt [7], [8], [11]
Risk assessment can be used to quantify and prioritize the items [7]–[9], [12]

Identification techniques
Security V&V can help to identify security debt [8]
Assurance can help to identify security debt [5], [7]
Technical debt indicators can help to identify security debt [1], [3], [8]

Instances
SecDevOps [9]
Cybersecurity framework extended with Security debt [5]

3



As mentioned in Section III-B, the identification of security
debt should be a continuous process across the product life-
cycle [7]. It is not appropriate to think of security as a
component that can be added after the product is built, or that it
is a quality attribute that can be checked just once. Continuous
risk analysis and threats modelling [11] or continuous security
testing is thus relevant to identify and monitor security debt.

Risk management: Given the tied relation between se-
curity risks and security debt discussed in previous Section
III-B, it can be observed how extensions of security risk
management to manage security debt were proposed. In [7],
they suggest three main processes aligned with ISO/IEC
21827 [27]: security risk identification and assessment, a secu-
rity engineering process to create risk controls, and a software
assurance process. The software development takes as initial
input functional, operational, and security requirements based
on risks and regulations. In their product life-cycle approach,
software development creates debt in all the stages which is
taken by a technical debt management process. Apart from
this one, a risk-based extension to help in the prioritization
of existing debt has been proposed [8] as well as a threat
modelling approach extended for security debt analysis [11].

Risk assessment can be used to quantify and prioritize the
security debt items [7]. In the previously mentioned prioriti-
zation approach [8], quantitative risk assessment measures are
suggested. For instance, a combined value of risk probability
and impact as proposed in the ISO/IEC 27005 risk manage-
ment standard [28]. In [9], for security debt prioritization
they suggest to take advantage of the Common Weakness
Enumeration (CWE) [29] by analysing the technical impacts
and the tactics that are used to exploit the weaknesses of
the system. In [12], they propose the use of the Common
Weakness Scoring System (CWSS) mapping a CWE hierarchy
to the Quamoco product quality modelling and assessment
approach [30] to help prioritizing items.

Identification techniques: Three product life-cycle pro-
cesses are identified as the main activities for security debt
identification. One is security V&V ranging from reviews
and professional observations of the product assets to se-
curity testing and simulated attacks [8]. The other one is
the assurance process [5], [7] where it must be justified
that the implemented solution meets the expected security
with appropriate evidences and argumentation (e.g., arguing
regulatory compliance through V&V results). An extension
of the assurance cases formalism is proposed to explicitly
represent the security debt [5]. This way, security debt is
integrated at the core of the assurance process which is refined
across the product life-cycle. The third one is the technical debt
management process. As presented in Section III-B, recent
works try to correlate technical debt indicators to security
risks [1], [3], [8].

Instances: Finally, we present two concrete instances of
how to manage security debt within existing processes. In [9],
the authors position their work in the SecDevOps context [31].
DevOps enables to integrate secure development processes into
development and deployment processes so security debt can

be identified and addressed dynamically. For instance, CWE
items detected through static analysis can be mapped to attack
tactics [14]. The other instance is cybersecurity frameworks
extended with security debt management where each activity
in the framework is enhanced with debt considerations [5].

V. SECURITY DEBT ITEMS

A security debt item is a concrete work product created
during the system evolution where its state makes more
difficult the objective to incorporate the needed security char-
acteristics and requirements. Table IV shows the identified
item categories and we present concrete examples in the text.

In the product life-cycle, one of the first security debt items
that might have cascading effects are deficiencies in the re-
quirements, notably, security requirements might be missing or
incomplete [2], [4], [6], [10]. Another item can have as origin
requirements which are unrealistic [2] or inadequate [4], e.g.,
specifying mitigation mechanisms as if they were requirements
preventing the engineers of the next product life-cycle stages
to take potentially better security-related decisions based on
the real requirement [7].

Improper risk management can also be an item [6], for
instance uncovered abuse cases (use cases that might create
harm to the system) [6], improper penetration testing [6] or
improper risk analysis of the physical security [6].

Deficiencies in the design stage might have consequences in
security. The architecture should be a means for communica-
tion between the requirements and the developers and it should
not fail to communicate the security aspects [7]. However, we
might have missing security measures in the architecture [6] or
improper system analyses creating weaknesses in the architec-
ture [6]. The Common Architectural Weakness Enumeration
(CAWE) [32] has been referred in technical debt studies [12]
as a relevant catalogue.

Structural deficiencies in the source code have also potential
implications on security [7], e.g., potential compromise in
code access (private, protected and public access in source
code methods) [14], or security flaws in the source code that
can be identified with tools [20]. Similarly to architecture
deficiencies, the Common Weakness Enumeration (CWE) [29]
present an extensive list of violations of good coding practices
in the area of security such as SQL injection, cross-site
scripting, buffer overflows etc. [21].

Other security debt items are related to compromised
lower-level components from suppliers/third-parties [7], e.g.,

TABLE IV: Security debt items (RQ3)
Items References

Deficiencies in security requirements [2], [4], [6],
[7], [10]

Deficiencies in security abuse cases identified during risk identifi-
cation

[6]

Defective architecture and its implications on security [6], [7], [12]
Structural deficiencies in source code and its implications on
security

[7], [14], [20],
[21]

Compromised lower-level components from suppliers/third-parties [7]
Defects in data integrity (database) and its implications on security [17]
Defects in physical parts (e.g., CPS) and its implications on
security

[6]

Deficiencies in security validation and verification activities [6]
Limitations in the conformity to standards, guidelines etc. [5]

4



dependency debt with security risks that can be exploited
through supply chain attacks. How the database is imple-
mented can also create security debt items such as defects
in data integrity [17]. Defects in physical parts (e.g., of a
Cyber Physical System or IoT device) can also present security
vulnerabilities [6] (e.g., glitching electrical attacks). Incorrect
access control of an intruder or unauthorised personnel through
the physical parts of the system [6] is also a debt item where
hardware plays an important role.

Finally, we have items related to deficiencies in security
V&V activities such as missing code reviews [6], or limitations
in the conformity to standards and guidelines, e.g., in the
health domain a specific device communication standard and
a safety standard are mentioned regarding this aspect [5].

VI. DISCUSSION AND CONCLUSIONS

We have shown that security debt is a trend with several
ongoing research and new approaches. It deals with a real-life
problem posing fundamental challenges to industry and with
potential direct consequences for the final users and society.

We provided an initial overview of the security debt topic
through a review of the literature focused on this specialized
intersection between technical debt and security management.
We discussed its definition and more importantly, we sum-
marized its main characteristics, how it was introduced in the
product life-cycle, and which types of security debt items have
been reported. Direct references to each of these individual
aspects were provided. We consider that those insights and
clarifications are needed for the community for an aligned
vision in next research works of this incipient field.

As identified gaps in the workshops among the authors of
this paper, we can mention the lack of 1) detailed industrial
experience reports and datasets, 2) tool-supported approaches
for early product life-cycle stages, and 3) analyses of security-
by-design on security debt. As further work, an approach to
quantitatively manage security debt starting at the require-
ments engineering and risk management disciplines will be
designed based on the aspects identified in this work. This will
include extensions of risk management and assurance tools.

Acknowledgment: Thanks to the TRUSTIND project
(Creating Trust in the Industrial Digital Transformation), an
Elkartek project funded by the Basque Government.

REFERENCES (DATA ANALYSIS ENTRIES)

[1] R. Halepmollası, “A composed technical debt identification methodology
to predict software vulnerabilities,” in ICSE-Companion, 2020.

[2] M. Zarour, M. Alenezi, and K. Alsarayrah, “Software security specifica-
tions and design: How software engineers and practitioners are mixing
things up,” in EASE, 2020.

[3] M. Siavvas, D. Tsoukalas, M. Jankovic, D. Kehagias, and D. Tzovaras,
“Technical debt as an indicator of software security risk: a machine
learning approach for software development enterprises,” Enterprise
Information Systems, 2020.

[4] W. Behutiye, P. Karhapää, L. López, X. Burgués, S. Martı́nez-Fernández,
A. M. Vollmer, P. Rodrı́guez, X. Franch, and M. Oivo, “Management
of quality requirements in agile and rapid software development: A
systematic mapping study,” IST, vol. 123, p. 106225, Jul. 2020.

[5] X. Larrucea, I. Santamaria, and B. Fernandez-Gauna, “Managing secu-
rity debt across PLC phases in a VSE context,” Journal of Software:
Evolution and Process, vol. 32, no. 3, 2020.

[6] B. Brenner, E. Weippl, and A. Ekelhart, “Security related technical
debt in the cyber-physical production systems engineering process,” in
IECON. Conf. of the IEEE Industrial Electronics Society, vol. 1, 2019.

[7] K. Rindell, K. Bernsmed, and M. G. Jaatun, “Managing security in
software,” in ARES, 2019.

[8] K. Rindell and J. Holvitie, “Security risk assessment and management
as technical debt,” in 2019 Int. Conf. on Cyber Security and Protection
of Digital Services (Cyber Security). IEEE, Jun. 2019.

[9] C. Izurieta and M. Prouty, “Leveraging SecDevOps to tackle the
technical debt associated with cybersecurity attack tactics,” in Int. Conf.
on Technical Debt (TechDebt). IEEE, May 2019.

[10] G. Robiolo, E. Scott, S. Matalonga, and M. Felderer, “Technical debt and
waste in non-functional requirements documentation: An exploratory
study,” in Product-Focused Software Process Improvement, 2019.

[11] L. Sion, D. V. Landuyt, K. Yskout, and W. Joosen, “SPARTA: Security
& privacy architecture through risk-driven threat assessment,” in Int.
Conf. on Software Architecture Companion (ICSA-C), Apr. 2018.

[12] C. Izurieta, D. Rice, K. Kimball, and T. Valentien, “A position study to
investigate technical debt associated with security weaknesses,” in Int.
Conf. on Technical Debt - TechDebt, 2018.

[13] M. M. Kumar and A. N. Nandakumar, “Exploring multilateral cloud
computing security architectural design debt in terms of technical debt,”
in Smart Computing and Informatics, 2018.

[14] M. C. Silva, M. T. Valente, and R. Terra, “Does technical debt lead to
the rejection of pull requests?” in SBSI: Volume 1, 2016, p. 248–254.

[15] D. Russo, “Benefits of open source software in defense environments,”
in Int. Conf. in Softw. Eng. for Defence Applications, 2016, pp. 123–131.

[16] D. P. Kalm and J. Rhodes, “Technical debt - the cost in per-
formance and security,” Int. Conf. on Performance and Capacity
2014 by CMG URL: https://share.confex.com/share/123/webprogram/
Session15955.html, 2 2014.

[17] J. H. Weber, A. Cleve, L. Meurice, and F. J. B. Ruiz, “Managing
technical debt in database schemas of critical software,” in Int. Workshop
on Managing Technical Debt, Sep. 2014.

[18] K. Power, “Understanding the impact of technical debt on the capacity
and velocity of teams and organizations: viewing team and organization
capacity as a portfolio of real options,” in MTD workshop, 2013.

[19] J. Letouzey and M. Ilkiewicz, “Managing technical debt with the
SQALE method,” IEEE Software, vol. 29, no. 6, pp. 44–51, 2012.

[20] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” J. Syst. Softw., vol. 101, 2015.

[21] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and
types of technical debt,” in MTD workshop, 2012, pp. 49–53.

[22] J.-L. Letouzey, “The sqale method for evaluating technical debt,” in Int.
Workshop on Managing Technical Debt, ser. MTD ’12, 2012, p. 31–36.

REFERENCES

[23] A. Abdulkhaleq, S. Wagner, D. Lammering, H. Boehmert, and P. Blue-
her, “Using STPA in compliance with ISO 26262 for developing a safe
architecture for fully automated vehicles,” in Automotive - Safety &
Security, 2017.

[24] K. Netkachova and R. E. Bloomfield, “Security-informed safety,” IEEE
Computer, vol. 49, no. 6, pp. 98–102, 2016.

[25] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. B. Seaman, “Managing tech-
nical debt in software engineering (dagstuhl seminar 16162),” Dagstuhl
Reports, vol. 6, no. 4, pp. 110–138, 2016.

[26] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in EASE ’14, 2014.

[27] ISO/IEC, “Standard 21827:2008 Information Technology – Security
Techniques – Systems Security Engineering – Capability Maturity
Model (SSE-CMM),” 2008.

[28] ——, “Standard 27005:2018, Information technology — Security tech-
niques — Information security risk management,” 2018.

[29] MITRE, “The Common Weakness Enumeration (CWE),” 2006.
[Online]. Available: http://cwe.mitre.org

[30] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz,
R. Plösch, A. Seidi, A. Goeb, and J. Streit, “The quamoco product
quality modelling and assessment approach,” in ICSE, 2012.

[31] A. A. U. Rahman and L. Williams, “Software security in devops:
Synthesizing practitioners’ perceptions and practices,” in Int. Workshop
on Continuous Software Evolution and Delivery (CSED), 2016.

[32] J. C. S. Santos, K. Tarrit, and M. Mirakhorli, “A catalog of security
architecture weaknesses,” in ICSA Workshops, 2017.

5

https://share.confex.com/share/123/webprogram/Session15955.html
https://share.confex.com/share/123/webprogram/Session15955.html
http://cwe.mitre.org

	Introduction
	Methodology
	A closer look at Security Debt
	Definition
	Characteristics

	Security Debt management in the life-cycle
	Security Debt Items
	Discussion and conclusions
	References (Data analysis entries)
	References

