
1

TU Delft Guidelines on
Research Software
Licensing, Registration and
Commercialisation

2

3

tu delft guidelines on research software - l icensing, registration and commercial isation

TU Delft Guidelines on

Research Software V 1.0
Licensing, Registration and Commercialisation

16 February 2021

Name of this document TU Delft Gudelines on Research Software

Licensing, Registation and Commercialisation

Date approved 16 February 2021

Version 1.0 - http://doi.org/10.5281/zenodo.4629635

Previous versions

Person responsible Head of Intellectual Property, TU Delft

Valorisation Centre

Location of the Guidelines and

accompanying Policy on TU

Delft website

https://www.tudelft.nl/en/library/research-da-

tamanagement/r/policies/tu-delft-faculty-pol-

icies

http://doi.org/10.5281/zenodo.4629635
https://www.tudelft.nl/en/library/research-data-management/r/policies/tu-delft-faculty-policies
https://www.tudelft.nl/en/library/research-data-management/r/policies/tu-delft-faculty-policies
https://www.tudelft.nl/en/library/research-data-management/r/policies/tu-delft-faculty-policies

4

tu delft guidelines on research software - l icensing, registration and commercial isation

Table of contents

7	 1 Executive summary

8	 2 Introduction

9	 2.1 Target audience

10	 2.2 Structure of this document

10	 2.3 Support

12	 3 Copyright and software – some background

14	 4 How to determine if an Open Source Software (OSS) licence can be
applied?

14	 4.1 Considerations and conversations

21	 4.2 �Public domain dedication (no licence), permissive and restrictive OSS

licences

21	 4.2.1 No Licence (CC0)

22	 4.2.2 Permissive software licences (MIT, BSD, Apache)

22	 4.2.3 Restrictive software licences (GPL, AGPL, LGPL, EUPL)

25	 5 What to do to apply for an OSS licence?

27	 6 Software commercialisation

28	 6.1 Proprietary licences and software

28	 6.1.1 The Non-Disclosure Agreement

28	 6.1.2 The i-depot

29	 6.1.3 Patents

5

tu delft guidelines on research software - l icensing, registration and commercial isation

31	 Appendix 1. Definitions

33	 Appendix 2. Types of licences pre-approved by TU Delft

33	 1. CC0 – “No rights reserved”

34	 2. MIT

34	 3. BSD

35	 4. Apache

36	 5. GPL

36	 5.1 Incompatibility

36	 5.2 Dynamic linking

37	 5.3 Commercial and private use

37	 5.4 Linking to Libraries – FSO point of view

38	 6. EUPL

38	 6.1 Coverage and Compatibility

40	 7. GPL and EUPL: a comparison

41	 Appendix 3. Relevant contact information

43	 Appendix 4. References

45	 Colophon

6

When dealing with software, the following considerations need to be taken into
account:

•	 Research software falls under copyright law
•	 Software can be patented or licensed
•	 If a patent is considered, report your invention using an Invention Disclosure

Form (IDF) at TU Delft’s inventor portal: https://inventions.tudelft.nl/inventor*
•	 Software licences can be proprietary or open source
•	 Follow the decision tree (Fig. 1) in Chapter 4 to determine if an open source soft-

ware (OSS) licence can be applied
•	 Eight types of open source licences are pre-approved by TU Delft: Apache, MIT,

BSD, EUPL, AGPL, LGPL, GPL, CC0
•	 A description of the software and the licence must be registered in PURE [1]
•	 In order to apply an OSS licence, the software must be published
•	 Contact the data steward at your Faculty for questions about research software

*To access this link, the user must be connected to the TU Delft Intranet using an eduVPN connection.

1 Executive summary

https://inventions.tudelft.nl/inventor
https://pure.tudelft.nl/portal

8

9

Good software is essential for twenty-first century research. An overwhelming ma-
jority of researchers make use of software as part of the research process. Con-
sequently, software is increasingly recognised as an independent research output,
varying from a single line of code to complete software packages comprising sever-
al interacting programs. As such, software should be well documented, preserved
and whenever applicable the FAIR principles (Findable, Accessible, Interoperable,
Reusable) should be followed. Wherever possible, TU Delft encourages its re-
searchers and software developers to make their software available Open Source,
in the spirit of our Open Science programme. [2] There are different ways in which
software can be shared with society. Software can be made freely available to a
large audience through a repository such as GitHub or shared peer-to-peer under
restricted licences. Alternatively, it is possible to run programs on dedicated serv-
ers, allowing only access to the outcome of the programs, while keeping the source
code confidential. Yet, when making software available to others there should
always be a balance between the level of openness and access granted, possible
commercial exploitation of software and any (legal) restrictions that prevent sharing
it as open source.
This document is written in addition to the TU Delft Research Software Policy. The
policy sets out the high-level requirements for how software should be managed;

2 Introduction

https://www.tudelft.nl/en/library/tu-delft-open-science/programme-open-science
http://doi.org/10.5281/zenodo.4629662

10

tu delft guidelines on research software - l icensing, registration and commercial isation

the responsibilities of the different stakeholders involved in software development
and describes the global workflows for sharing software openly. The guidelines
presented here are the ‘how-to’ and go into more detail on the prescribed workflow
for sharing software either under an open or proprietary licence, providing more
background and considerations, additional definitions and references.

It should be appreciated that these guidelines will require some added effort from
all involved compared to the current state of affairs. Please note that under the cur-
rent collective labour agreement software developers and researchers are actually
obliged to report their software. This requirement is hardly ever met and is currently
not enforced within academia. However, with the abovementioned change in recog-
nition of the importance of software contributions and in the scope of fairly reward-
ing people for their contributions to the Open Science programme of TU Delft,
the need for reporting gains a new dimension. The main goal of this document is
to provide a pragmatic, workable solution to the need to register, document and
report our collective software output. The document is also intended as a “living”
document, allowing for input, improvements and updates wherever it does not meet
these goals.

2.1 Target audience
The TU Delft Research Software Policy and these guidelines apply to anyone at
TU Delft who is involved in software development (incl. researchers, software de-
velopers and other employees) that will be shared through either an open licence,
proprietary licence or a patent.

Please note that both bachelor’s and master’s students at TU Delft in principle hold
their own right to their software unless they have made use of university resources
and/or received intellectual support from university researchers, software devel-
opers and/or staff for its inception. In that case, it is a “joint” result with the rights
shared between the student and TU Delft. When students hold their own rights,
the guidelines are explicitly not applicable to them, although these guidelines may
naturally be used as a way marker for students looking for information.

The document also is not directly applicable when ‘merely’ contributing to the work
of others, for instance, when a developer is responding to a pull request on GitHub.
However, when the contribution being made is substantial, it may still be prudent to
register it in PURE. This is voluntary, but may be of interest to the developer, espe-
cially when in the foreseeable future attribution and contribution to Open Science
becomes used as a metric of merit.

Please note that we often refer to “researchers” throughout the document, how-

http://doi.org/10.5281/zenodo.4629662

11

tu delft guidelines on research software - l icensing, registration and commercial isation

ever this should be understood to encompass every employee at TU Delft writing,
dealing with and creating software (including support staff for example, Education
& Student Affairs, TU Delft Library, etc.). Concomitantly, all the support staff and
contact points described herein will be at your disposal as well.

2.2 Structure of this document
Chapter 3 provides some background on the copyright questions underpinning this
document.

Chapter 4 describes the different aspects that need to be considered to determine
if the software can be shared under an open source software (OSS) licence. A
decision tree (Fig. 1) to guide software developers and researchers on when it is
possible to apply an OSS licence to software is provided and the different consid-
erations are explained. TU Delft has pre-approved a subset of licences that can
directly be used by researchers when following these guidelines (Apache, MIT,
BSD, EUPL, AGPL, LGPL, GPL, and CC0). These licences are described in detail
in Appendix 2. The use of other licences is allowed upon agreement with the TU
Delft Valorisation Centre.

Researchers and developers are encouraged to follow the decision tree presented
in these guidelines. In case of questions and uncertainties on how to use it, re-
searchers can contact the data steward at their faculties. It is strongly recommend-
ed to seek support at early stages in their project. When in doubt, reach out.

Chapter 5 describes the follow up steps that must be taken by staff, software devel-
opers and researchers when an OSS licence can be applied.

In addition, Chapter 6 describes the considerations that come into play when deal-
ing with proprietary research software licences.

2.3 Support
TU Delft support offices are there to guide and assist software developers, re-
searchers and staff through the process of creating and sharing software, but it is
the responsibility of each employee to seek advice from support staff when
in doubt about the procedure. A few of the main support roles that come into play
are:

The faculty data stewards provide advice to software developers and researchers
on how data (including code) can be managed, stored and preserved in accord-
ance with internal TU Delft guidelines. The data steward should be the first contact

12

tu delft guidelines on research software - l icensing, registration and commercial isation

point for the software developers, researchers and staff when dealing with software
related questions. If further questions arise, they will be able to redirect software
developers, researchers and staff to the appropriate contract managers, IP man-
agers, Investment Managers of Delft Enterprises or other experts, when and where
needed. It is prudent to connect with the data steward as early as possible in your
software project.

The contract managers at the faculties need to be involved when dealing with
commercialisation of software projects or when involving industrial partners in the
project. They will ensure that the Dean and faculty are properly informed, secure
compliance of all the licences with internal TU Delft guidelines, pre-existing con-
tractual arrangements and (European) legislation. When a contract deviates from
TU Delft general legal guidelines, the legal advice from legal affairs is mandatory.
The contract manager will assist with securing this advice in a timely manner.

The intellectual property managers from the Valorisation Centre assist with
all Intellectual Property (IP) related matters at TU Delft. They will provide support
when filing and administering all forms of IPR (such as patents, licences, industrial
designs, trade secrets) and will assist software developers, researchers and staff
when needed in drafting and negotiating the IP section of licences and collabora-
tion agreements with industrial partners. When a contract involving the generation
or transfer of intellectual property deviates from TU Delft guidelines, the legal
advice from IP legal (VC) is mandatory. The contract manager at the faculties will
assist with securing this advice in a timely manner.

Lawyers of Legal Affairs are responsible for all legal matters, including IP and all
kinds of agreements, including licence agreements, collaboration agreements, etc.
In case of complex matters or whenever required according to the TU Delft Man-
date Agreement (Mandaatregeling TU Delft), the contract manager at the faculties
will contact one of the lawyers from Legal Affairs for (additional) advice.

13

Before starting to discuss the different paths to share software, it is very relevant
to keep in mind that creation of software is protected under copyright law (for an
explanation about the law see Box 1).

Why is this important?
•	 Based on the law, TU Delft owns the software that is written by employees.

•	 When copyright exists, others (i.e. general public or a commercial entity) are not
free to reproduce, copy, adapt, amend, distribute, perform, display or make the
software public without the explicit permission of the owner of that copyright.

In contrast to other types of intellectual property (like patents, trademarks or design
rights), there is no registration of a copyright needed to claim the creator’s right of
software. Even when an explicit notification is absent in a program, the copyright
exists and infringement of the copyright occurs when using the software without
explicit authorisation of the creator.

 Therefore:
•	 If software developers, researchers and staff creating software want to make

3 Copyright and software
– some background

14

tu delft guidelines on research software - l icensing, registration and commercial isation

their software available for free, the permission of this intention must be clearly
indicated to the public by using an appropriate open source software licence
(OSS).[3]

•	 In order for the software developers, researchers and staff to use an OSS licence
TU Delft is willing to waive its claim to the copyright provided the procedure de-
scribed in these guidelines is followed. Please see Chapter 4 for all the neces-
sary steps. Note that in this case the software developer or researcher establish-
es an own copyright: e.g. © (2020) John Doe, Delft, the Netherlands.

•	 When a proprietary software licence is intended and in all other cases, software
developers, researchers and staff should assert copyright on behalf of TU Delft.
This can be done by using the copyright symbol, followed by a date and an iden-
tifier: e.g. © (2020) Technische Universiteit Delft.

https://choosealicense.com/licenses

15

4.1 Considerations and conversations
For convenience, the questions that need to be answered to determine if an open
source software licence can be applied are depicted in the figure below (Fig. 1).
Each step is also described in more detail below.

It is important that the questions be answered correctly. When registering the soft-
ware in PURE these questions will also be listed there. Therefore, when in doubt
please consult with the data steward at your faculty.

Step 1: Funding of the research

In order to assess the question whether TU Delft is the sole entity that can decide
on the possible licensing of the work, it is essential to identify possible other Intel-
lectual Property (IP) candidates.

If a project has been solely funded by the government through direct funding, TU
Delft owns all of the IP of the project based on the collective labour agreement
(CAO VSNU-2019). In that case, it is possible for TU Delft to waive the copyright.

4 How to determine if an
Open Source Software
(OSS) licence can be
applied?

16

tu delft guidelines on research software - l icensing, registration and commercial isation

When companies are involved, there are practically always clauses involved that
secure certain claims on the results and clauses that prohibit the use of (certain
types of) open source software licences. Researchers, software developers and/
or data stewards should contact the contract manager at their faculty to identify
the contracts associated with the research project and closely follow the clauses
provided.

If a project was funded by government agencies, including the European Union, it
is unclear if the researcher and staff have the freedom to operate. In most grants
and subsidies, the IPR is left to the inventor(s). However, this is not always the
case. When companies are involved in the project (e.g. NWO-demonstrator call),
they have a right-of-first negotiation and/or a royalty-free, non-exclusive licence
to exploit the software. Therefore, it is important that software developers and
researchers contact the corresponding contract manager to retrieve the contracts
associated with their projects.

Box 1. Copyright and a software example
Copyright is a type of intellectual property right (IPR) that automatically comes into being the

minute developers or researchers create a piece of software. In order for copyright to exist, only

two requirements must be met:

•	 The creation must have an original character, meaning there must have been a creative pro-

cess (without a creative or intellectual effort a copyright does not exist).

•	 The creation must bear a personal mark of the creator: there must have been an identifiable

involvement of a human mind guiding and steering the process of creation.

Note that the copyright law deals with ‘works’ (e.g. software) and not ideas or concepts of nature.

Therefore, data, a formula, an algorithm or a gene sequence are not subject to copyright as they

are not ‘works’.

Another point is that copyright sees to the form of the works. In software terms: the code as such

is copyrighted, the functionality behind the code is not. This is in contrast to patent rights, which

deal with the exact opposite. Patents protect the functionality. So when a researcher converts a

piece of code from Python to C++, copyright is not infringed. However, if there is a patent on the

(algorithms behind the) Python code, patent law is infringed when transcoding it into C++.

Another caveat of copyright is that although it exists “by creation”, when challenged, the respon-

sibility is on the creator to prove that he/she created the software in a legally binding and unam-

biguous matter. For this reason, it is very important to have your software deposited and regis-

tered, especially if the software is not published immediately in an online repository like GitHub.

17

tu delft guidelines on research software - l icensing, registration and commercial isation

Step 2: Legal restrictions

In a sense, when applying an open source licence on software, then developers,
researchers and staff are exporting it to all countries across the globe simultane-
ously. This brings some responsibilities and considerations.

An important consideration is covered by the “dual use” regulations. Dual use con-
cerns programs that have a beneficial application at heart, but that can be easily
turned into something more dangerous or malicious. To give an example: software
for the automated use of drones will generally be used to the benefit of society, but
it may be used to disrupt air traffic. That is why these types of programs cannot be
simply shared online.

There is a non-exhaustive list of “dual-use” goods. [4] The list gives a good indica-

Figure 1. Decision tree to guide software developers, researchers and staff on when

they can apply an open source licence to their software. OSS: Open Source Software,

IDF: Invention Disclosure Form

1. Is the work directly funded by
university (i.e. not by subsidies)? Do others hold rights to the work ?

2. Are there legal restrictions
(contracts, export control)?

3. Did you link to, include or use
lines of code from others?

4. Do you wish to commercially
exploit the software or offer

consultancy services?

5. Will you publicly publish under
an pre-approved OSS license?

Are you sure you are allowed to use
their code in a compatible manner?

Does the software present a novel
technical solution to a technical

problem?

Consult with your data steward if
needed.

Contact your Data Steward for
guidance

Contact your Data Steward for
guidance

Have the software registered
If possible, please acknowledge
funding and support from TU

Delft and others.

Fill in an
IDF

NO

NO

N
O

N
O

N
O

N
O

N
O

YES

YES

YES YES

Y
ES

Y
ES

Y
ES

REQUEST

NO

YES

https://eur-lex.europa.eu/legal-content/NL/TXT/PDF/?uri=OJ%3AL%3A2019%3A338%3AFULL&from=NL

18

tu delft guidelines on research software - l icensing, registration and commercial isation

tion of what items and programs are considered as “dual use”. If something is on
the list, then by definition it is considered a “dual-use” good and cannot be freely/
openly shared online. Note: the aforementioned example regarding the drone is
indeed listed under 9E102 - Technology for the use of Unmanned Aerial Vehicles.

Other grounds for export control are economic considerations. Currently, multiple
countries in the world are in a race to develop quantum computing. The competitive
economic benefit of the first to succeed is considered so high that all European
funds that facilitate research in the area of quantum computing have clauses that
prohibit the export (and thus open publication) of all results (including software),
that has been developed using European funding.

A last legal restriction is provided by the European privacy laws. Anything dealing
with storing or handling personally identifiable data is subject to strict regulations
provided under the GDPR (General Data Protection Regulation). In case of any
questions, contact the data steward at your faculty.

Step 3: Does the software contain lines of code from others?

It is important and good practice to keep track of the origin of all code included in
the software. This is not only needed for proper attribution [5], but also to know
what type of licence can be used when reusing code from others.

All lines of code have their own copyright associated with them and might have a
licence. If that is the case and if software developers and researchers would like
to build upon existing software (or lines of code), it is important to consider the
compatibility of software licences when thinking of making software openly availa-
ble (Table 1). Not all open source licences are compatible with each other, meaning
you cannot use them interchangeably.

As described above, not all types of open source software licences are compatible.
Therefore, it is best practice (and sometimes, even compulsory) to simply follow
the licences already in place when using the work of others. Naturally, this con-
sideration also implies that when the researcher asks permission to use a licence
outside the TU Delft pre-approved list by reason of it being the licence already in
place, then the permission to do so is practically a given. The researcher is still
requested to make a formal request to the Valorisation Centre however, for the
purpose of monitoring and to facilitate updates of the pre-approved list contained
in this document (e.g. if there is an unlisted licence that turns out to be in particular
demand).

19

tu delft guidelines on research software - l icensing, registration and commercial isation

Proprietary software cannot be used without explicit written permission from the
owner, either in the licence terms or in a written permission from a person au-
thorised to assign a licence on copyright and/or ownership. When using an open
source software licence, the clauses of the corresponding licences automatically
provide grounds for such a permission and assignment.

Original CCO MIT BSD Apache EUPL GPL, AGPL
or LGPL

Proprietary

Combine
with?

CC0 YES YES YES YES YES NO NO

MIT YES YES YES YES YES NO NO

BSD YES YES YES YES YES NO NO

Apache YES YES YES YES YES NO NO

EUPL YES YES YES YES YES NO NO

GPL, AGPL
or LGPL

YES YES YES NO NO YES NO

Proprietary YES YES YES Claused NO NO Depends on
licence

Table 1. �Scheme depicting the compatibility of the OSS licences described in this doc-

ument

Step 4: Commercial exploitation

There are several ways to commercially exploit Open Source Software (OSS).
Some examples are:

•	 Provide the program as open source, but allow clients to hire your services as a
consultant in implementing, maintaining or even upgrading the software.

•	 Provide licences with free use of a basic model (like Adobe Acrobat), or proprie-
tary licence with cheaper versions for dedicated purposes (like Microsoft – re-
search and education purposes).

20

tu delft guidelines on research software - l icensing, registration and commercial isation

Note that each faculty also has their own guidelines and regulations in dealing with
consultancy arrangements or the establishment of spin-offs. In addition, third party
funders might have specific rules concerning research outputs, including software.
For example, many grant schemes from NWO or the European Commission would
expect software developers and researchers to make research outputs resulting
from such grant funding as open as possible, which might preclude commerciali-
sation possibilities. Therefore, you should consult the data steward at your faculty
about commercialisation plans at an early stage of the project.

When the decision has been made to commercially exploit the software, a propri-
etary licence or even a patent application is the way to go. For this, the interested
reader is referred to Chapter 6.

Step 5: �Choose an OSS licence from
the ‘TU Delft pre-approved’ list

TU Delft has defined a list of pre-approved software licences that software develop-
ers, researchers and staff can choose from when sharing software openly. Current-
ly, these are Apache, MIT, BSD, EUPL, AGPL, LGPL, GPL, and CC0. Please note
that it is a ‘living’ list; based on the use this list will be modified and appended in the
future.

Some general recommendations when choosing an OSS licence:
•	 Generally, when you are working in a community it is best to use the licence

that is associated with that community (i.e. GNU recommends GNU GPLv3 for
most programs whereas Cloud Native Computing Foundation prefers to use the
Apache License 2.0 by default).

•	 If at all feasible, it is also best to try to maintain coherence. Hence, if the work
you used was all derived from MIT-licensed material it is preferable to release the
resulting software under an MIT-licence too.

•	 If there is absolute freedom to choose and the researcher has no personal
preference for either licence, some considerations come into play that are best
discussed with the data steward. A major distinction is between the so-called
“permissive” and “restrictive” open-source licence. The characteristics of these
two groups will be explained in more detail in chapter 4.2.

In general, at the Valorisation Centre -in dealing with start-ups and corporately
funded research- we observe that the Apache licence works well for all the different
interests at play between university and corporate headquarters (or garage-box in
case of a start-up). It tends not to raise a red flag from companies investing in R&D

21

tu delft guidelines on research software - l icensing, registration and commercial isation

projects at the universities and does protect the “open” character of the software.
Apache was the first to embed a “patent-retaliation” clause that allows the soft-
ware to stay open, even when under a patent. The main drawback associated with
Apache is that it does not enforce openness on derivative programs.

Another staple in academia is the GPL licence, for the simple reason that any
software that uses code that has been published under a GPL licence must auto-
matically be covered by a GPL licence itself. GPL is also one of the oldest open
source licences and has a large and active community of users behind it. The main
drawback associated with GPL is that it is often contractually prohibited in pub-
lic-private partnering.

Whatever the decision is, software developers, researchers and staff are encour-
aged to read the description of the licences and the full licence text provided in
Appendix 2 in order to understand the implications of their choice. For further input,
the software developer, researcher or staff member is also referred to https://choo-
sealicense.com/ for information and guidance.

Step 6: Register your software

In accordance with the collective labour agreement, software developed by the
researcher needs to be reported to the university. At TU Delft, we do this through
registration. These registrations also serve several other purposes:

•	 Companies collaborating with TU Delft software developers and researchers on
software development demand that TU Delft keeps track of the types of (open
source) licences applied to different programs to prevent contamination.

•	 Society, being the main funding body of our software developers and research-
ers, has a right to be informed of what we do with their contributions. We can use
these lists to report to the government, open science/open source interest groups
and society.

•	 In the foreseeable future, open source sharing of software may be used as a
metric to determine ‘scientific output’ and merit alongside peer-reviewed publica-
tions, data and teaching skills.

There are two different tracks for registration, depending on whether the researcher
wants to have a proprietary licence (or a patent) on the software or an open source
software licence.

22

tu delft guidelines on research software - l icensing, registration and commercial isation

If software developers, researchers and staff have decided to openly share their
software, they must choose to either:

•	 Publish their software in the 4TU.ResearchData repository, providing one of the
pre-approved licences listed and explained in this document. It is the task for
the Library to make it possible for software developers, researchers and staff to
submit software in a straightforward manner (e.g. facilitating the publication of
GitHub repositories directly on 4TU.ResearchData) and to feed the information
into PURE.1

•	 Publish their software in another suitable repository (e.g. GitHub, Zenodo). In this
case, it is the researcher’s responsibility to also register information about this
software in PURE.

 If software developers, researchers and staff have decided to establish a pro-
prietary licence or a patent application, then the registration is embedded in the
process (through submission of an IDF). It is the task of the support staff involved
(mainly contract managers and legal affairs) to ensure this is done properly.

4.2 �Public domain dedication (no licence), permissive and
restrictive OSS licences

4.2.1 No Licence (CC0)
The list starts with CC0 from Creative Commons. Everything considered Crea-
tive Commons licences are not appropriate for software. The notable exception is
CC0, which is commonly deployed to note something (including software) falls in
the public domain and is freely available to all, without any requirement or need
to attribute at all. [6] Note that The Boost software licence [7] and The Unlicense
[8] also provide a proper public domain dedication, but the CC0 has as a benefit
that the simple statement “© 2019 [NAME, PLACE]. This work is licensed under a
CC0 licence.” suffices to cover the legal text of the licence in its entirety. The other
two public domain dedications rely on extensive texts to be incorporated, which is
rather awkward when your project consists of something akin to ten lines of code
(or less).

1	� It has been suggested to make this an automatic deposit linked to 4TU.Research-
Data repository and the PURE system after filling in a questionnaire (along the lines
of fig 1). When established, the text will be amended accordingly.

https://creativecommons.org/share-your-work/public-domain/cc0
https://choosealicense.com/licenses/bsl-1.0
https://choosealicense.com/licenses/unlicense

23

tu delft guidelines on research software - l icensing, registration and commercial isation

Even when the researcher does not want to claim or do anything with the software
at all, it is not advisable to simply “put software online” without any licence [9]. After
all, as explained above, copyright originates from the act of creating the software.
Therefore, without notice, the copyright actually exists, but nobody knows how
it will be applied or enforced and nobody else can copy, distribute, or modify the
work. In addition, please do note, ‘nobody’ can include the actual software develop-
er or researcher too. That is why it is important to use a “public domain dedication”
instead of publishing the software with no licence.

4.2.2 Permissive software licences (MIT, BSD, Apache)
These licences allow users to do anything with the code as long as they properly
attribute the original creator. In other words, when someone wants to place a pro-
prietary licence on a piece of software that is derived from software under an MIT
or a BSD licence, this is possible. BSD and MIT are the most open source software
licences available. Another way of coining it, an MIT or BSD licence is always “eat-
en up” by the other licences.

The Apache licence is sterner in protecting the access rights. The licence agree-
ment also contains a “retaliation” clause, which does not allow filing of patent
infringement proceedings against people using the Apache covered code. It means
that if someone files infringement proceedings (in court) on a software, which was
itself a derivative of code under an Apache licence, then they infringe the licence
itself. As a result, they automatically lose the licence and the right to use the soft-
ware (and therefore their infringement claim is void and they become the perpetra-
tor). The Apache licence is still considered a “permissive” licence because it can
co-exist with other licences. For example, a basic package can be made freely
available under Apache licence, whilst the add-ons and special features are made
available (e.g. for a fee) under a proprietary licence.

4.2.3 Restrictive software licences (GPL, AGPL, LGPL, EUPL)
Note that all versions of GPL are actually considered compatible with these guide-
lines albeit with a recommendation for GPLv3 to be used for new programs and
projects. This may be especially relevant for ‘legacy’ projects given that the GPLv2
and GPLv3 licences are incompatible with each other. In these situations, the soft-
ware developer may therefore simply choose (or rather, is actually forced) to use
the GPLv2 version.

https://choosealicense.com/no-permission

24

tu delft guidelines on research software - l icensing, registration and commercial isation

The GPL (from the GNU General Public License suite), its derivative LGPL (L from
‘Lesser’), another derivative AGPL (A from Affero) and the EUPL (European Union
Public Licence) are all so-called ‘copyleft’ licences and thereby more restrictive
than the two types of open source licences described above. A copyleft licence
grants the right to freely distribute copies and modified versions of a software with
the stipulation that the same rights be preserved in any derivative work [10].

From these two, the EUPL licence is slightly more permissive because it can co-ex-
ist with other open source software licences (including MIT, BSD and Apache) due
to the existence of an ‘exclusion and compatibility list’ in the licence. For example,
when a researcher incorporates a part of a software licensed under Apache it will
stay Apache even when the project as a whole is under EUPL. Under GPL, the en-
tire code would become GPL licensed. This runs counter to the express wish of the
owner that enacted the Apache licence on her/his code and the clauses covering
the Apache licence (which state that Apache covered stays Apache forever). That
is why Apache and GPL are incompatible.

In the case of the GPL licence, all derivative work that uses software pieces under
this licence automatically falls under the same licence no matter how small the
GPL-licensed contribution is. The Free Software Foundation [8] behind the creation
of the GPL licence even considers a link to a GPL-covered program as sufficient
reason to have the linking program fall under the coverage of the GPL licence.
However, this assertion has not yet been tested in court and is in the field generally
deemed ill-advised and not enforceable.

For this reason, many companies sponsoring research at TU Delft often enact spe-
cific clauses in the collaboration agreements prohibiting the use of these copyleft
licences for software to ameliorate the risk of having their in-house proprietary soft-
ware “contaminated” with GPL (which would then result in them having to release
their proprietary source code to the public).

When dealing with GPL, it is good to realise that open does not mean “for free”
(gratis). It is possible to charge for the use of (copies of) GPL licensed software.
However, due to the open nature of the licence, such business models will general-
ly be based on “software as a service” or “maintenance and support” as sources of
income.

Of all GPL licences, AGPL (Affero GPL) is the strictest of the group. It was de-
signed specifically with server-based software in mind. In addition, it has a clause
ensuring that if you run a modified program on a server and let other users commu-
nicate with it there, then your server must also allow them to download the source
code corresponding to the modified version running there.

https://en.wikipedia.org/wiki/Derivative_work
https://choosealicense.com/licenses/unlicense

25

tu delft guidelines on research software - l icensing, registration and commercial isation

LGPL is the final family member to be discussed. LGPL is designed for library
routines and is deemed a lighter version of GPL. When another person modifies
software released under an LGPL licence the licence acts similar to GPL in that it
automatically covers the new software too. However, when someone writes soft-
ware that merely links and uses the library covered by the LGPL licence it does not
automatically extend itself (whereas –as mentioned above- GPL does). This can
broaden the potential uses of a library and makes it more accessible to the public
at large (especially for those operating under proprietary, Apache or MIT covered
works).

26

27

tu delft guidelines on research software - l icensing, registration and commercial isation

It is important to remember that in principle TU Delft holds the rights to the software
created by its employees (i.e. software developers, researchers and/or staff). So,
some formal (legal) steps are needed to arrange matters properly.

When these guidelines are followed and when the software is published, TU Delft
disclaims its copyright, allowing software developers, researchers and staff to hold
the copyright to their software and thereby having the right to apply one of the
pre-approved licences when sharing software. This is provided for in the following
procedure:

1.	Determine if it is possible to apply an Open Source Software licence to your
project (see Chapter 4).

2.	The waiver of TU Delft should be indicated in the software licence with the fol-
lowing text:

Technische Universiteit Delft hereby disclaims all copyright interest in the

program “Name program” (one line description of the content or function)

written by the Author(s).

[Name Dean], Dean of [Name Faculty]

5 What to do to apply for
an OSS licence?

28

tu delft guidelines on research software - l icensing, registration and commercial isation

3.	Assert your own, personal copyright (© YEAR, [NAME], [REFERENCE project,
grant or study if desired].2

4.	Apply one of the TU Delft pre-approved Open Source Software licences in the
format and form described in the licence text after stating, “This work is licensed
under a [NAME and VERSION] OSS licence”.

5.	Make the software openly available (for instance in an online repository such as
GitHub).

6.	Please consider acknowledging support from TU Delft and/or your funding pro-
vider.

7.	Register the software either in 4TU.ResearchData or in PURE.

Please note that if the software is not published, and/or if the guidelines have not
been followed correctly and/or if the software is not registered in PURE, then this
‘agreement’ is invalid and the software automatically falls under the legal copyright
of TU Delft. This instantly nullifies the right of the software developer or research-
er to apply for a licence and thus the open source software licence applied never
came into existence. This works retroactively.

The pre-approved open source software licences at TU Delft are Apache, MIT,
BSD, EUPL, AGPL, LGPL, GPL, and CC0. The licences are described in detail in
Appendix 2 of this document.

2	 �The reason for waiving the copyright and having the software developers, researchers and

staff file the copyright in their own name facilitates the use of copyleft licences.

29

tu delft guidelines on research software - l icensing, registration and commercial isation

If software developers, researchers and staff from TU Delft want to exploit their
software commercially, there are several ways to do it. This chapter lists some
things to take into consideration and discuss with the data steward. The data stew-
ard will then connect the software developer, researcher or staff member with the
contract manager of the faculty involved.

A common option is to provide the program as open source, but to allow clients to
hire your services as a consultant in implementing, maintaining or even upgrading
the software.

An alternative option is by either providing licences, following the model of Adobe
Acrobat (free use of a basic model, proprietary for advanced tools) or Microsoft
(proprietary, but cheaper versions for research and education purposes). General-
ly, this is not done through the university as such directly, but to sell or licence the
software to an existing outside company or to a spinoff established for this pur-
pose. They then use the code to make their own code to be placed on the market.
Universities rarely licence software to the market directly as they do not have the
organisation for it (updates, maintenance, support, etc.). If the researcher consid-
ers the option of a spin-off, it is well worth noting this, as providing these obligatory
services can be time-consuming.

6 Software
commercialisation

30

tu delft guidelines on research software - l icensing, registration and commercial isation

Of note, these activities fall under the regulation for ancillary activities which need
to be reported to HR and can only be engaged in when the researcher has re-
ceived permission of the proper authority to do so (in most cases this will be the
dean of the faculty).

Especially when commercialising software, it may be of interest to apply for a pat-
ent. The contract manager provides support for the researcher about commercial-
isation and is well positioned to discuss and provide guidance. The section below
is intended to provide a brief primer to facilitate the discussions between research
and support staff.

6.1 Proprietary licences and software
When the prime objective of the licence is to make the software available to a com-
mercial party, potentially being a spin-off, a proprietary licence will in most cases
be the best option. Drafting a proprietary licence is the exclusive domain of the
contract manager (with necessary input from the researcher).

Before initiating talks with an interested party on a licence agreement, it is impor-
tant to have two other documents in place: an establishment of ownership and a
non-disclosure agreement. To start with the first document, it is important that the
researcher has some sort of proof establishing ownership. This can be done either
by a patent application or through a so-called “i-depot”. [11]

6.1.1 The Non-Disclosure Agreement
Under a Non-Disclosure Agreement (NDA), parties agree to keep everything they
learn about each other confidential. This means that items shared under an NDA
will not destroy a patent application, because the items were not made public.

The NDA can be unilateral (only one party sends information, the other simply re-
ceives) or reciprocal. In most cases, when initiating talks with a company, a unilat-
eral NDA should be sufficient.

Generally, we insist on the use of our own template in these negotiations. Do not
sign an NDA offered to you by the company without contacting the contract manag-
er at your faculty first.

6.1.2 The i-depot
By filing an i-depot you will receive a certification by the government that on
that particular date and time you disclosed your software to the government in a
confidential manner. The certificate acts as legal proof that on that date and time
you were in possession of the software (it does not establish you as the rightful

https://www.boip.int/en/entrepreneurs/ideas/your-idea-in-an-i-depot

31

tu delft guidelines on research software - l icensing, registration and commercial isation

owner though). This depot is established by depositing one or more files (e.g. the
source code, all manual(s) and hierarchy) to a maximum of 100 MB at the Benelux
Office of Intellectual Property (BOIP). Just like a patent application, this process is
initiated by filing an Invention Disclosure Form (IDF) at: https://inventions.tudelft.nl/
inventor/invlogin.jsp (in this case, however, the researcher must tick the box “trade
secret”).

6.1.3 Patents
When the software provides a novel technical solution to a technical problem in a
technical field, it is possible to file a patent application on the software. As men-
tioned before, a patent will protect the function and as such, give stronger protec-
tion than copyright. If software developers and researchers want to file a patent,
they have to fill in an IDF at TU Delft’s inventor portal: https://inventions.tudelft.nl/
inventor/3.

In order to be eligible for patent protection, software must provide a technical solu-
tion to a narrowly defined technical problem. For example, a self-learning algorithm
that allows pattern recognition is not patentable. However, a self-learning algorithm
that fully automatically recognises and brightly lights up malignant patterns in a
breast-cancer scan can be patented with success.

It is also important to remember that only something that is “novel” can be patent-
ed. A patent application is no longer deemed novel if the software is already pub-
lished, presented at a meeting, or even posted in a blog or on social media, before
the patent application has been filed. Therefore, it is very important not to share
your software online or with other people if a patent application is considered.

From a commercial perspective, the added advantages of a patent on software are:

•	 Not only the method (i.e. the algorithm) is covered by the patent, but also the
product derived from that method (e.g. the diagnostic report).

•	 When the software is part of a high-tech component, a patent can be vested on
the whole package (a “computer implemented-invention”).

•	 When further investment or co-development is needed for the software, a patent
can be considered as an asset to facilitate attracting investors.

3	 �Please note that the portal is only accessible on campus, in a Citrix-environment,
or through a secure eduVPN-connection.

32

tu delft guidelines on research software - l icensing, registration and commercial isation

There are also some disadvantages in patenting software to consider, in particular
cost and time:

•	 Applying for a patent will come at an average cost of 35,000 EUR per patent.
This money needs to be recouped when selling the software to a company or
spin-off, along with the costs incurred by the university to “produce” the software
(wages, experimental cost for validation)4. These costs tend to be challenging for
many smaller companies. Therefore, in most cases a simple licence agreement
will be preferable, leaving patents for the special cases (e.g. unique market, long-
term benefit, large investors/companies).

•	 The length of time to obtain a patent (at least 30 months) is often too long for a
high-paced environment such as the development of apps. During that time, the
software itself may have become obsolete before the patent is even granted. In
such cases, licensing might be a better option.

4	 �Costs relating to the acquisition and integration of the acquired business or opera-
tions into the Company.

33

tu delft guidelines on research software - l icensing, registration and commercial isation

In this document, “software” means a set of coded instructions designed to cause
a computer, a machine or automatic data processing equipment to perform a task.
For the purposes of these guidelines, the term software also includes (where rele-
vant) the associated documentation (including but not limited to a manual), hierar-
chy, platforms, API’s and specific hardware (if any) required to run the aforemen-
tioned instructions.

Licence: “Licence”, “Export Licence” or “Software Licence” in this document mean
a document that provides legally binding guidelines and requirements for the use
and distribution of the software. Licences typically provide end users with the right
to one or more copies of the software without violating copyright law. Open source
licences typically grant this right to all of humankind rather than to a specified
end-user.

Attribution: The requirement that the original authors must be credited for their
work.

Derivative: In this document, “derivative” means a piece of code based upon one
or more pre-existing software, such as a translation, an abridgement, a condensa-

Appendix 1. Definitions

34

tu delft guidelines on research software - l icensing, registration and commercial isation

tion, an expansion or any other form in which a code may be recast, transformed,
or adapted. In order to constitute a derivative, the change needs to be significant.
In general, in our view a dynamic link to another program, a database or library
does not provide a derivative code, but a static link can (under circumstances)
provide a derivative code (though the Open Source foundation advocates a stricter
view– see the chapter covering GPL for a detailed discussion).

Dual-use goods: In this document, “dual-use goods” are goods, software and
technology which are commonly used for civil purposes, but that can have military
use or that can contribute to the production and deployment of weapons of mass
destruction (WMD). For a non-exhaustive list see https://www.rijksoverheid.nl/
onderwerpen/exportcontrole-strategische-goederen.

Inventor: A natural person who has made a substantial, significant intellectual
contribution to the development of Intellectual Property is regarded as an inventor.
To qualify as an inventor, an individual must have contributed sufficiently to the
software to take public responsibility for its content and the individual’s intellectual
contribution must be critical to its main conclusions. When there is disagreement,
an inventor can or should be able to identify, demonstrate and provide documented
evidence of this inventive contribution to specific claims in a patent application.

Intellectual Property (IP): This means all protected forms of intellectual prop-
erty rights including patents, utility models, trademarks, trade or business names,
database rights, service marks (be it either registered or unregistered), copyright,
right to mask work of integrated circuit, copyright of design, know-how and other
proprietary knowledge and information, rights protecting goodwill and reputation
and the applications of the protected forms of intellectual property rights or having
equivalent effect and all rights of licence and consent in respect to any of these
aforementioned rights.

Permissive (software) licences: They have minimal requirements about how
the software can be redistributed. They do not block appropriation, nor do they
force the redistributor to open the modified source code. By its nature, code written
under a permissive licence can generally be incorporated in code written by a more
restrictive licence, but not the other way around. Another caveat of permissive
licences is that the party that originally made the licence can change a permissive
licence into a non-permissive or even proprietary licence. Therefore, as a user of
permissive licences it is important to check the current status when about to do
something that uses a program offered under a permissive licence. Examples of
permissive licences are MIT and BSD.

35

tu delft guidelines on research software - l icensing, registration and commercial isation

There are several types of licences made available to TU Delft employees for appli-
cation without further approval or permission beyond the requirements embedded
in these guidelines and described in detail below.

1. CC0 – “No rights reserved”
Creative Commons [12] licences are not appropriate for software. The notable
exception is CC0, which is commonly deployed to note something (including soft-
ware) falls in the public domain and is freely available to all.

To apply this, simply copy this image:

Please note that when your software contains other types of art (pictures, movies,
excerpts from Wikipedia etc.) these may be covered by a CC licence. Please con-
sult with your data steward.

The link to the legal text of the licence is here: https://creativecommons.org/public-
domain/zero/1.0/legalcode

Appendix 2. Types of
licences pre-approved by
TU Delft

https://creativecommons.org

36

tu delft guidelines on research software - l icensing, registration and commercial isation

2. MIT
The MIT License is a permissive free software licence originating at the Massa-
chusetts Institute of Technology (MIT) in the late 1980s. As a permissive licence,
it puts only very limited restriction on reuse and has, therefore, reasonable licence
compatibility. The MIT licence permits reuse within proprietary software provided
that all copies of the licensed software include a copy of the MIT License terms and
the copyright notice. The MIT licence is also compatible with many copyleft licenc-
es, such as the GNU General Public License (GPL); MIT licensed software can be
integrated into GPL software, but not the other way around.[13]

The MIT licence ensures that the original authors must be credited. Furthermore,
the MIT licence ensures that the software is provided “as is”, without any warran-
ties or guarantees. As a consequence, the researcher cannot be held liable for any
damage or claim regarding your software. These are the minimal requirements of
any open source licence we can accept.

When the researchers wish to apply the MIT licence, the researcher must insert the
full text of the licence found here: https://opensource.org/licenses/MIT.

3. BSD
BSD licences are a family of permissive free software licences, imposing minimal
restrictions on the use and distribution of covered software. The BSD licence is a
simple licence that merely requires that all code retain the BSD licence notice if
redistributed in source code format, or reproduce the notice if redistributed in binary
format. Like the MIT licence, the BSD licence does not require that source code be
distributed at all. The BSD licence is also similar to the MIT licence in that attribu-
tion is secured and disclaimers of warranty are maintained.

There are three types of BSD licences (0, 2 and 3 –clause). TU Delft endorses
the use of the 3-Clause BSD License.

The 3-Clause BSD License is more detailed than the MIT licence and contains a
clause restricting use of the names of contributors for endorsement of a derived
code without specific permission.

When the researchers wish to apply the 3-Clause BSD License, the researcher
must insert the full text of the licence found here: https://opensource.org/licenses/
BSD-3-Clause.

https://en.wikipedia.org/wiki/MIT_License

37

tu delft guidelines on research software - l icensing, registration and commercial isation

4. Apache
The Apache License is a permissive free software licence written by the Apache
Software Foundation (ASF). It does not require a derivative of the software, or
modifications to the original, to be distributed using the same licence. But it still
requires application of the same licence to all unmodified parts. In every licensed
file, original copyright, patent, trademark and attribution notices must be preserved.
Furthermore, in every licensed file that has been changed, a notification must be
added stating that changes have been made to that file.

If a copyright notice is included as part of the original software (for instance, in a
README text file), then derivative code based upon this software must include
a readable copy of these notices within a notice text file either distributed as part
of the derivative code, within the source code or documentation, or within a dis-
play generated by the derivative code (wherever such third-party notices normally
appear).

The Apache License 2.0 [14] has a unique feature that makes sure that the user
does not have to worry about infringing any patents by using the software. The
user is granted a licence to any patent that covers the software. This licence is ter-
minated if the user sues anyone over patent infringement related to this software.
This condition is added in order to prevent patent litigation on software. That’s
why the Free Software Foundation recommends Apache License v2.0 over other
permissive licences.

In the licence text these clauses are:

•	 Giving a free licence: “each Contributor hereby grants to The researcher a per-
petual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as
stated in this section) patent licence”

•	 Preventing patent litigation: “If The research institute patent litigation against any
entity (…), then any patent licences granted to The researcher under this License
for that Work shall terminate as of the date such litigation is filed”

In order to apply the Apache licence to software it is necessary to add the text
found in the Appendix of the following link: https://opensource.org/licenses/
Apache-2.0.

It is recommended that a file or class name and description of purpose of the
software be included on the same “printed page” as the copyright notice for easier
identification within third-party archives.

https://www.apache.org/licenses/LICENSE-2.0

38

tu delft guidelines on research software - l icensing, registration and commercial isation

5. GPL
The GNU General Public License (GPL) is a widely-used free software licence. It is
a copyleft licence, which means that any derivative code must be open source and
distributed under the same or equivalent licence terms. This is a significant differ-
ence with the permissive free software licences, which are discussed above. Any
licensee who adheres to the terms and conditions is given permission to modify the
software, as well as to copy and redistribute the software or any derivative version.
The full text of the licence can be found at: https://opensource.org/licenses/GPL-
3.0

Historically, the GPL licence family is the first copyleft licence and has been one of
the most popular software licences in the open source software domain. In 2007,
the third version of the licence (GPL-3.0) was released to address some perceived
problems. In particular, the third version addresses issues in the area of ‘tivoiza-
tion’, new legislation like the European Union Copyright Directive (which makes it
a crime to write or share software that can break Digital Restrictions Management;
DRM) and the advent of (discriminatory) patent deals in the open source software
community. To keep the licence up to date, the GPL licence includes an optional
“any later version” clause, allowing users to choose between the original terms or
the terms in new versions as updated by the Free Software Foundation.

In order to apply the GPL-3.0 licence to software it is necessary to add the text
found at the end of this page: https://opensource.org/licenses/GPL-3.0.

5.1 Incompatibility
Please note that although the Free Software Foundation states that the Apache
licence v2.0 is compatible with GPL-3.0, in reality it is not. When the researcher
applies an Apache licensed project in a GPL-3.0 licence software it becomes a
derivative of some GPL-3.0. Thus, the Apache licensed software would have to be
distributed under GPL-3.0. This, at the same time, is incompatible with the require-
ment that all Apache licensed software must be distributed under the Apache Li-
cense 2.0. Similarly, GPL-3.0 is unilaterally compatible for materials under Creative
Commons Attribution-ShareAlike (mostly drawings or clips) to be remixed into the
GPL-licensed materials (mostly software), but again not vice versa. This is espe-
cially encountered in niche use cases like mixing a game engine (GPL) with game
scripts (CC-BY-SA).

5.2 Dynamic linking
On linking with GPL, the Free Software Foundation asserts that an executa-
ble which uses a dynamically linked library is indeed a derivative. This does not
however apply to separate programs communicating with one another. The mere
act of communicating with other programs does not, by itself, require all software

39

tu delft guidelines on research software - l icensing, registration and commercial isation

to be GPL; nor does distributing GPL software with non-GPL software on a single
information carrier provide such a link. However, minor conditions must be followed
that ensure the rights of GPL software is not restricted. In the Frequently Asked
Questions (FAQs) from the Free Software Foundation the researcher can find the
answer to the question “What is the difference between an “aggregate” and oth-
er kinds of “modified versions”?” [15], which describes to what extent software is
allowed to communicate with and be bundled with GPL licensed programs.

5.3 Commercial and private use
Software under the GPL may be run for all purposes, including commercial purpos-
es or as a tool for creating proprietary software (GPL-licensed compilers). Users
or companies who distribute GPL-licensed code (e.g. software), may charge a fee
for copies or give them free of charge. This distinguishes the GPL from shareware
software licences that allow copying for personal use but prohibit commercial distri-
bution, or proprietary licences wherein copying is prohibited.

In purely private use (with no sales and no distribution) the software code may be
modified and parts reused without requiring the source code to be released. For
sales or distribution, the entire source code needs to be made available to end
users, including any code changes and additions. The GPL additionally states that
a distributor may not impose “further restrictions on the rights granted by the GPL”.
This forbids activities such as distributing the software under a non-disclosure
agreement or contract.

However, software running as an application program under a GPL-licensed
operating system such as Linux is not required to be licensed under GPL or to be
distributed with source-code availability—the licensing depends only on the used
libraries and software components and not on the underlying platform.

5.4 Linking to Libraries – FSO point of view
The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, the researcher may
consider it more useful to permit linking proprietary applications with the library.
If this is what the researcher wants to do, use the GNU Lesser General Public
License instead of this License. The GNU Lesser General Public License (LGPL)
was created to have a weaker copyleft than the GPL, in that it does not require its
own custom-developed source code (distinct from the LGPLed parts) to be made
available under the same licence terms.

Therein the Free Software Organisation provides the following consideration: “Why
the researcher shouldn’t use the Lesser GPL for your next library” [16].

https://www.gnu.org/licenses/gpl-faq.html#MereAggregation
https://www.gnu.org/licenses/why-not-lgpl.html

40

tu delft guidelines on research software - l icensing, registration and commercial isation

6. EUPL
The European Union Public Licence (EUPL) is a free software licence that has
been created and approved by the European Commission. Software, mainly
produced by European administrations, has been licenced under the EUPL since
the launch of the European Open Source Observatory and Repository (OSOR) in
October 2008, now part of Joinup collaborative platform. It is also for this specif-
ic reason that the EUPL is included in this list. Its latest version, EUPL v1.2, was
published in May 2017. It is, incidentally, the only licence established by law (OJ
19/05/2017 L128 p. 59–64 to be precise).

Importantly, the licence is available in all 23 official languages of the European
Union and all linguistic versions have the same legal validity. The licence is also
vetted to conform with all existing (civil law) copyright laws of the Member States
of the European Union. As a consequence, the limitations of liability and warranty
have been precisely defined, rather than “to the extent allowed by law.

6.1 Coverage and Compatibility
EUPL v1.2 has broader coverage than the previous versions. Currently, it covers
“the work” (meaning copyrighted code) and not exclusively “the software”. There-
fore, it is easier to apply the EUPL v1.2 to related documentation, handbooks,
standard specifications, etc.

It also has broader compatibility: the software itself (copies or modifications/im-
provements) will stay covered by the EUPL without possibilities of re-licensing by
recipients, but it may also be merged into a new and larger code with other soft-
ware components covered by compatible licences. When needed and for avoiding
licence conflicts, this other derivative can then be distributed under the compatible
licence. The list of compatible licences includes both the GPLv3 and the Creative
Commons licence CC-BY-SA. The purpose of this compatibility list is not to en-
dorse or recommend the listed licences: it is finding interoperable solutions to pos-
sible licence conflicts. This is the reason why the list includes SA (share alike) or
copyleft licence, and not the most permissive ones (as these do not pose licensing
conflicts).

EUPL v1.2 (article 9) provides more flexibility concerning the additional agree-
ments: any additional provision that is not in contradiction with the licence is valid,
including the selection of a specific applicable law, of a specific arbitration court,
etc.

The purpose of the EUPL is to encourage European public administrations to
embrace the Free/Open Source model to valorise their software and knowledge.
Some applications developed in the framework of the IDABC programme, such as

41

tu delft guidelines on research software - l icensing, registration and commercial isation

Circabc, or Eusurvey have already been licensed under the EUPL in 2007. Other
European Institutions are bound to follow under the new European Committee and
the Horizon Europe programme.

In order to apply the EUPL licence to your software the application of this boiler-
plate declaration is sufficient:

Copyright [yyyy] [name of copyright owner] Licensed under the EUPL

The full text of the EUPL licence can be found at https://opensource.org/licenses/
EUPL-1.2.

42

tu delft guidelines on research software - l icensing, registration and commercial isation

7. GPL and EUPL: a comparison
For convenience, the table below lists some of the differences between the strong
copyleft licences EUPL and GPL. This table is for information purposes only and is
by no means exhaustive or to be taken as an endorsement of one over the other.

EUPL GPL

Type Strong copyleft Strong copyleft

OSI-approved Yes Yes

Legal
language

22 linguistic versions
Valid “as is” in any of the 22 lan-
guages

English
Need “sworn translator” in court

Applicable
law

Law of the European Union country
of the Licensor, otherwise Belgium

Local law that most closely approxi-
mates an absolute waiver of all civil
liability

Legal
complexity

Based on civil law (“good faith
principles”) short text, provisions
fix principles

Based on common law (“pacta sunt
servanda”)
Long, complex text, provisions ad-
dress specific and technical issues
in detail

Liability &
warranty

Fully in line with EU law: Consumer
protection & information practices.
Warrants ownership copyright. Li-
ability in case of wilful misconduct
and/or damages to persons.

Claims a general “catch-all” exclusion
of warranty and liability. But not ac-
cepted by all jurisdictions, thus only
“to the extent permitted by applicable
law”.

Competent
court

Where the Licensor resides. Other
agreements are permitted.

Court is not designated.

Licence
conflicts

No, mostly not. Pre-defined list of
“interoperable licences” (incl. GPL)

Yes.

Linking Recital 15 specifically authorises
linking without copyright infringe-
ment

“Linking statically or dynamically with
other modules is making a combined
code. Thus, the terms and conditions
of the GNU General Public License
cover the whole combination.”

Specific
items

Covers “Software as a Service”
meaning that if an internet service
provider modifies the licensed soft-
ware to distribute online services
(as Google does), this is “software
distribution”.

Covers “Tivoization” meaning that
it prevents hardware providers from
locking a protection which will not al-
low modified software to run on their
hardware.	
Note: Many consider that “Tivoiza-
tion” is related to hardware protection
(i.e. against theft, counterfeiting) and
not software appropriation!

43

tu delft guidelines on research software - l icensing, registration and commercial isation

Intellectual Property contact information

All inventions should be reported at: https://inventions.tudelft.nl/inventor*
*To access this link, the user must be connected to the TU Delft Intranet using an eduVPN connection.

The IP team of TU Delft can be found at:
Valorisation Centre
Building 26, C tower, 3rd floor
Van der Burghweg 1, 2628 CS Delft
PO Box 5, 2600 AA Delft
Email: patent@tudelft.nl

Delft Enterprises

Ronald Gelderblom
Investment Director
Email: r.gelderblom@tudelft.nl
Phone: (+31) 015 278 4350

Appendix 3. Relevant
contact information

44

tu delft guidelines on research software - l icensing, registration and commercial isation

Legal Affairs (incl. contract management and privacy/GDPR)

Rianne van den Bogerd
TU Delft / Directie Legal Services
Postbus 5, 2600 AA Delft
Gebouw 23, Stevinweg 1, k. 5.24
Email: r.vandenbogerd@tudelft.nl
Phone: +31 (0)15 27 87003/06 41643772

ICT-related Horizon Europe funding

For questions concerning European funding of ICT-related research projects
please contact:
Jan Schiereck
EU research grant advisor
TU Delft / Valorisation Centre / Section European Research Funding
Van der Burghweg 1 (building 26a) | 2628 CS, Delft | PO Box 5, 2600 AA Delft
Email: E j.d.schiereck@tudelft.nl
Phone: +31 (0) 6 810 618 64

45

tu delft guidelines on research software - l icensing, registration and commercial isation

[1] https://pure.tudelft.nl/portal

[2] https://www.tudelft.nl/en/library/tu-delft-open-science/programme-open-science

[3] https://choosealicense.com/licenses

[4] https://eur-lex.europa.eu/legal-content/NL/TXT/PDF/?uri=O-
J%3AL%3A2019%3A338%3AFULL&from=NL

[5] Katz DS, Chue Hong NP, Clark T et al. Recognizing the value of software:
a software citation guide [version 2; peer review: 2 approved].
F1000Research 2021, 9:1257 (https://doi.org/10.12688/f1000research.26932.2)

[6] https://creativecommons.org/share-your-work/public-domain/cc0

[7] https://choosealicense.com/licenses/bsl-1.0

[8] https://choosealicense.com/licenses/unlicense

Appendix 4. References

46

tu delft guidelines on research software - l icensing, registration and commercial isation

[9] https://choosealicense.com/no-permission

[10] https://en.wikipedia.org/wiki/Derivative_work

[11] https://www.boip.int/en/entrepreneurs/ideas/your-idea-in-an-i-depot

[12] https://creativecommons.org

[13] https://en.wikipedia.org/wiki/MIT_License

[14] https://www.apache.org/licenses/LICENSE-2.0

[15] https://www.gnu.org/licenses/gpl-faq.html#MereAggregation

[16] https://www.gnu.org/licenses/why-not-lgpl.html

47

tu delft guidelines on research software - l icensing, registration and commercial isation

Colophon

Credits:

These guidelines were originally written by Merlijn Bazuine, Valorisation Centre
with contributions and feedback from (in alphabetical order):

Anton Akhmerov – Faculty of Applied Sciences

Julie Beardsell – Information & Communications Technologies (ICT)

Rianne van den Bogerd – Legal Services

Susan Branchett – Information & Communications Technologies (ICT)

Alastair Dunning – TU Delft | Library

Meta Keijzer-de Ruijter – Information & Communications Technologies (ICT)

Maria Marques de Barros Cruz – TU Delft | Library

Paula Martinez Lavanchy – TU Delft | Library

Margot Spaargaren – Legal Services

Marta Teperek – TU Delft | Library

TU Delft Data Stewards:

Heather Andrews, Faculty of Aerospace Engineering

Nicolas Dintzner, Faculty of Technology, Policy and Management

Esther Plomp, Faculty of Applied Sciences

Contact info:

Delft University of Technology

Intellectual Property, Valorisation Centre

patent@tudelft.nl

Design:

Carla Feijen

Photography:

Doris Aschenbrenner & Meng Li

Faculty of Industrial Design Engineering

Delft University of Technology

mailto:patent@tudelft.nl

	Table of contents
	1 Executive summary
	2 Introduction
	2.1 Target audience
	2.2 Structure of this document
	2.3 Support

	3 Copyright and software – some background
	4 How to determine if an Open Source Software (OSS) licence can be applied?
	4.1 Considerations and conversations
	4.2 �Public domain dedication (no licence), permissive and restrictive OSS licences
	4.2.1 No Licence (CC0)
	4.2.2 Permissive software licences (MIT, BSD, Apache)
	4.2.3 Restrictive software licences (GPL, AGPL, LGPL, EUPL)

	5 What to do to apply for an OSS licence?
	6 Software commercialisation
	6.1 Proprietary licences and software
	6.1.1 The Non-Disclosure Agreement
	6.1.2 The i-depot
	6.1.3 Patents

	Appendix 1. Definitions
	Appendix 2. Types of licences pre-approved by TU Delft
	1. CC0 – “No rights reserved”
	2. MIT
	3. BSD
	4. Apache
	5. GPL
	5.1 Incompatibility
	5.2 Dynamic linking
	5.3 Commercial and private use
	5.4 Linking to Libraries – FSO point of view

	6. EUPL
	6.1 Coverage and Compatibility

	7. GPL and EUPL: a comparison

	Appendix 3. Relevant contact information
	Appendix 4. References
	Colophon

