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Abstract—Software-Defined Networking promises to deliver a
more manageable network whose behaviour could be easily
changed using applications written in high-level declarative lan-
guages running on top of a logically centralized control plane
resulting, on the one hand, in the mushrooming of complex point
solutions to very specific problems and, on the other hand, in the
creation of a multitude of network configuration options. This
fact is especially true for 802.11-based Software-Defined WLANs
(SD-WLANs). It is our standpoint that to tame this increase
in complexity, future SD-WLANs must follow an Artificial
Intelligence (AI) native approach. In this paper we present aiOS,
an AI-based Operating System for SD-WLANs. Then, we use
aiOS to implement several Machine Learning (ML) models for
user-adaptive frame length selection in SD-WLANs. An extensive
performance evaluation carried out on a real-world testbed shows
that this approach improves the aggregated network throughput
by up to 55%. Finally, we release the entire implementation
including the controller, the ML models, and the programmable
data-path under a permissive license for academic use.

Index Terms—Machine Learning, Software-Defined Network-
ing, WLANs, IEEE 802.11, frame length selection, aggregation

I. INTRODUCTION

It is no doubt that Wi-Fi networks are one of the pil-
lars of today’s communications. With their pivotal role in
our lives, the need for higher efficiency is essential. While
recent amendments to the 802.11 standard, such as IEEE
802.11ax [1], increase the Physical Layer (PHY) rates using
solutions like Multiple-Input Multiple-Output (MIMO), the
achieved throughput is far from the theoretical capacity. In
fact, with higher PHY rates, the transmission time is reduced,
leading to huge inefficiencies since enhancements on top of
the Medium Access Control (MAC) Layer are limited by fixed
overheads, i.e., channel access and encapsulation [2].

The IEEE 802.11 standard has received several improve-
ments across its lifetime, including the Enhanced DCF Chan-
nel Access (EDCA) as a Quality-of-Service (QoS) aware
extension to the original Distributed Coordination Func-
tion (DCF), the support for frame aggregation, block acknowl-
edgements, etc. Every revision of the standard, however, also
introduced a new set of knobs into the 802.11 machinery.
Each of these knobs (or combination of thereof) has been the
focus of a humbling amount of scientific studies. Recently,
Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) have attempted to move computer net-
works into the modern era by introducing several levels of
softwarization and by separating mechanisms (the knobs) from

policies (how the knobs are turned), and by putting the latter
into the hands of the so-called network programmer.

The promises of SDN and NFV go in the direction of deliv-
ering a much simpler network whose behaviour could be easily
modified and adapted. This change of perspective resulted, on
the one hand, in the mushrooming of convoluted solutions to
very specific problems and, on the other hand, in the creation
of a multitude of network configuration options. The expected
complexity of future Wireless Local Area Networks (WLANs),
and by extension also of 6G networks, is set to make such an
approach impractical. Conversely, recent advances in Artificial
Intelligence (AI), such as reinforcement learning and deep
neural networks, are set to play an important role in the control
and management of current and future wireless networks.

Future wireless networks, including WLANs, must follow
an AI-native approach towards autonomous management, and
become smart, agile, and able to learn from and adapt to the
changing environment. If this transition from network soft-
warization to network brainitisation is to take place, AI cannot
be treated as an afterthought but instead must be accounted
for from the requirements phase. Similarly, each subsystem
composing future wireless networks cannot be expected to
employ distinct and separated AI tools and datasets. That
approach would lead to AI-silos, thus preventing progress in
one domain to be shared and leveraged for other aspects of
network control and management.

In order to deal with these limitations, our contributions in
this paper are threefold:

• We take a first step towards network brainitisation
by introducing an AI-based Operating System for
SD-WLANs. This Operating System, named aiOS, em-
beds state-of-the-art Machine Learning (ML) toolboxes
with the aim of providing a global intelligence platform,
which is at the same time driven by AI and designed to
drive future AI-powered applications and services.

• We present a proof-of-concept implementation of aiOS
and we validate it by implementing several low-
complexity ML models for adaptive frame length selec-
tion in 802.11-based SD-WLANs. An extensive perfor-
mance assessment carried out on a real-world testbed
has shown that our approach can improve the aggregated
network throughput by up to 55% over the standard A-
MSDU aggregation with constant frame length.

• We share with the community the entire implementation
including the controller, the ML models, and the pro-
grammable data-path.978-1-7281-4973-8/20/$31.00 c© 2020 IEEE



The rest of the paper is outlined as follows. Section II
discusses the related work. The problem statement and the
system model are provided in Sec. III. The aiOS system
architecture is introduced in Sec. IV. The ML models are
presented in Sec. V. Section VI reports on the performance
evaluation. Finally, Sec. VII draws the conclusions pointing
out the future work.

II. RELATED WORK

A. Artificial Intelligence in Wireless Networks

Despite 5G is still in its early stages of deployment, there
is already several attempts at sketching the roadmap of future
6G systems [3], [4]. While it is too early to clearly identify the
characteristics of 6G and beyond networks, it is widely agreed
that AI will play a pivotal role by providing the foundation
upon which new services and applications will be built.

The application of ML has already been proved in tasks
such as image and voice recognition. These and similar
success stories motivated the use of ML techniques to address
the challenges in networking and, in particular, in wireless
communications [5]. This includes, for example, resource
management at the MAC layer, mobility management at the
network layer, and localization at the application layer. Several
works can also be found on ML for securing WLANs [6].
Conversely, deep learning uses multi-layer neural networks to
perform accurate pattern recognition. In the case of wireless
networks it can be used to discover network dynamics (such
as hotspots) starting from the analysis of a large number
of network parameters [7], [8]. Similarly, cognitive networks
leveraged AI concepts to implement optimal resource usage
and management at the physical layer [9].

The expected complexity of future wireless networks is set
to make current network optimization approaches based on
analytical models and on system-level simulations impractical.
Likewise, while early works on SDN did attempt to provide
network programmers with powerful abstractions to control
their networks [10], [11], [12], they eventually fell short
of providing a practical platform that can leverage, often
low-level, primitives to implement complex optimization tasks.
As opposed to the current efforts on SDN, which did not
deliver anything fundamentally new, but rather proposed a
different way of arranging network functionalities, the goal
of aiOS is to provide a coherent, practical, and data-driven
AI platform for SD-WLANs. It is our standpoint that such an
approach is pivotal to enable re-utilization of best practises in
AI within the networking domain.

B. Frame Length Selection in WLANs

Frame length selection in 802.11 networks has been so far
widely investigated. Literature in this respect mainly relies on
frame aggregation mechanisms defined in the standard, namely
A-MSDU, A-MPDU, and a combination of the two.

Works on A-MSDU aggregation are mostly focused on QoS,
real-time traffic, and small-sized frames. Maqhat et al. [13]
propose a scheduler for delay-sensitive traffic. In their pro-
posal, control bits are separately adjusted for each sub-frame to
enable faster retransmissions. This work is later implemented

using NS-2 [14]. Similarly, in [15] the authors pursue im-
provements for error-prone channels by adding control bits
to every subframe to enable per-subframe retransmissions.
The work in [16] deals with adaptive frame size estimation
based on Extended Kalman Filter for saturated networks. Sal-
dana et al. [17] discuss the trade-off between throughput and
latency of frame aggregation in a specific scenario accounting
for mobile users. In [18], a dynamic scheme is introduced
to calculate the optimal size based on the traffic class of the
packets. This study shows a trade-off between throughput and
delay caused by the time taken to form an aggregated frame.

Regarding A-MPDU mechanisms, the scheme introduced
in [19] aims at dynamically adapting the A-MPDU length
by observing how the mobility of the stations affects the
quality of the channel. Likewise, the work in [20] uses a
Proportional Integral Derivative controller to appropriately
select the A-MPDU aggregation size based on QoS indicators.
Complementary to [20], the objective of [21] is to find the
optimal number of MPDUs based on delay requirements for
802.11ac WLANs. In particular, via simulation, the authors
seek throughput improvements while satisfying delay require-
ments using RTS/CTS. In contrast to the previous works,
the authors of [22] propose a QoS-aware adaptive A-MPDU
aggregation scheduler for voice traffic. However, this approach
is non-standard-compliant.

The combination of A-MSDU and A-MPDU aggregation
is adopted by Kim et al. for achieving airtime fairness and
improving overall network throughput [23]. The work in [24]
studies the performance of A-MSDU and A-MPDU mecha-
nisms in NS-2 under error-prone channel conditions. The au-
thors propose an optimal frame aggregation scheme based on
the results obtained from an analysis studying the relationship
between frame length and Bit Error Rate (BER). Similar strate-
gies are also applied in vehicular networks [25], [26]. Li et al.
propose in [2] a scheme with fragment retransmission where
multiple packets are aggregated and transmitted as a single
frame. Instead of using MSDU or MPDU aggregation, this
work discusses an algorithm where a fragmentation threshold
is set and any packet longer than this threshold is fragmented
before the aggregation process begins. The model is evaluated
using NS-2 for TCP, HDTV and VoIP.

Kriara et al. [27] study the effect of PHY rate and frame
aggregation on the performance of a 802.11 network, pointing
out their higher relevance in comparison to other factors. In
line with this, in [28] the authors deal with rate and frame
size adaptation using A-MPDU aggregation. The network
conditions are modelled in NS-2 using different BER values.
Similarly, the work in [29] performs rate adaptation, frame
aggregation, and MIMO mode selection based on Channel
State Information (CSI) focusing on A-MPDU aggregation.
Finally, authors in [30] propose a joint PHY-MAC link adap-
tation strategy with theoretical link quality analysis together
with A-MSDU aggregation in error-prone channel conditions.

Despite the abundance of solutions for frame length adap-
tation to channel conditions, we observe that most of them
overlook the question about how diverse factors determining
such channel conditions affect each other. In this context, many
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Fig. 1. Schematic diagram of A-MSDU and A-MPDU aggregation formats.

works have proved the greater role of the PHY rate over others
when selecting a user specific frame length [30], [31]. In [30]
the authors jointly select PHY rate and A-MSDU length. Link
characteristics are estimated using an analytical model and
are used to compute the optimal A-MSDU length and rate.
The key assumption is that the network is saturated. Similarly,
in [31] the signal strength of the ACKs is used to jointly set
frame size and transmission rate.

Different than prior work, our solution relies on ML to com-
pute user-specific frame length through A-MSDU aggregation
based on the transmission rate. To set the parameters in a
timely fashion, we adhere to a supervised learning approach
in which a Software-Defined controller collects link state and
packet delivery statistics from the rate control algorithm to
estimate the best frame length for each user. Our ML-based
approach obviates the need to derive the relation between
Modulation and Coding Scheme (MCS) and frame size, which
is hard without simplifying assumptions and perfect channel
state information, making our solution suitable in realistic en-
vironments. We implement and validate our proposed approach
on a real-world testbed under various network conditions.

III. PROBLEM STATEMENT

In this section we provide the technical background on
frame aggregation and rate adaptation in 802.11. Then, we dis-
cuss in various contexts how frame length and MCS influence
delivery probability and the need to find such a relationship.
Finally, we introduce the system model and formulate our
frame length adaptation problem in SD-WLANs.

A. Frame Aggregation in IEEE 802.11

IEEE 802.11 defines three levels of frame aggregation in the
MAC layer, namely A-MSDU, A-MPDU and a combination of
the two methods, as depicted in Fig. 1, to reduce the overhead
caused by channel access, headers, and preambles [32], [33].

A-MSDU aggregation seeks higher efficiency by combining
multiple MSDUs within a single PHY and MAC header, which
is especially suitable for small payloads. Nevertheless, the
subframe header of the MSDUs must have as Destination
Address (DA) and Sender Address (SA) the same as Receiver
Address (RA) and Transmitter Address (TA) in the MAC
header to be aggregated. The A-MSDU is complete when the
packet length reaches the maximum aggregation size (limited
to 3839 or 7935 bytes) or if the oldest frame delay reaches
a threshold. However, given that a unique Frame Check
Sequence (FCS) is generated for the entire packet, A-MSDUs
are vulnerable under error-prone channel conditions.

TABLE I
MINSTREL RETRY CHAIN CONFIGURATION.

Rate Look-around Normal transmissionRandom < Best Random > Best
r0 Best rate Random rate Best rate
r1 Random rate Best rate Second best rate
r2 Best probability Best probability Best probability
r3 Base rate Base rate Base rate

A-MPDU aggregation includes a single PHY header and
aggregates multiple A-MSDUs or MPDUs encapsulating their
own MAC headers. Contrary to A-MSDU aggregation, FCS
is present in each subframe, which allows retransmitting only
the affected MPDU in case of error. A-MPDU aggregation
is solely dependent on the number of packets already in the
queue. The maximum aggregation length is limited to 65536
bytes. All this points to the fact that A-MSDU is more suitable
for smaller frames.

B. Rate Adaptation in IEEE 802.11

Among the rate adaptation algorithms, such as Onoe [34]
and ARF [35], Minstrel [36] is one of the most advanced and
widely used due to its implementation in the MadWifi driver
and its ability to work even under noisy and/or fast faded
environments. Due to these reasons, Minstrel is taken as a
reference for our research. However, any other rate control
method could be used instead. Minstrel is based on a retry
chain composed of four rate-count pairs namely r0/c0, r1/c1,
r2/c2 and r3/c3. If a frame is successfully transmitted, the
remaining part of the chain is ignored. Otherwise, the next
pair is used until the frame is transmitted or finally dropped.

The ratio of transmission attempts to acknowledgments
received is calculated using Exponential Weighted Moving
Average (EWMA) to smoothen the probability estimation.
Such a ratio is then stored for each rate, r, as shown in Table I.
Minstrel uses the link delivery statistics to configure the retry
chain during 90% of the time, while in the remaining 10%, a
random rate is used to gather new statistics.

C. Problem Analysis

To understand how the optimal frame length changes
according to MCS and channel conditions we have per-
formed a set of simulations using NS-3. More precisely,
we aim to address the following question: what is the
〈MCS, framelength〉 combination that, given certain chan-
nel conditions, results in the highest goodput?

The reference scenario consisted of a Wi-Fi AP and a Wi-Fi
station, which has been positioned at diverse distances from
the AP at each run of the simulations. The transmission power
of the AP has been set to 18 dBm and the channel between
the AP and the client was an ITU-indoor channel for an office
setting [37]. For each distance in the coverage area of the AP,
2R, we have used a specific MCS and we have measured the
goodput at the station using different frame lengths.

In Fig. 2a we plot the goodput for an increasing frame length
for three MCS values. We plot on purpose the goodput for
different distances between AP and station to highlight how



(a) Goodput vs. increasing frame length for fixed
distances and MCS values.

(b) Delivery probability vs. distance for different
frame length (MCS 0, 3 Mbps).

(c) Delivery probability vs. distance for different
frame length (MCS 6, 22 Mbps).

Fig. 2. Performance comparison for a single downlink stream according to different frames, distances and MCS values.

stations with different channel conditions do have a frame
length that maximises the goodput at the receiver. Notice
however how the particular peak of the curve could change ac-
cording to both distance and MCS. To develop further insights,
we also plot the change in the delivery probability (i.e., the
percentage of packets successfully decoded) with increasing
distance from the AP and for various frame lengths. Fig-
ure 2b depicts the results for a robust modulation and coding
scheme (MCS 0) whereas Fig. 2c presents the results for a
higher MCS (MCS 6). Both figures show that shorter packets
with lower number of MSDUs sustain a longer communication
range compared to the longer ones. Comparing Fig. 2b and
Fig. 2c, we observe that higher MCS values, despite achieving
higher goodput, as shown in Fig. 2a, are characterized by a
smaller coverage (as expected). This confirms once more that
the optimal aggregation length is not always the maximum
supported by the link layer and thus the need for a more
advanced strategy to effectively select the frame length.

D. System Model

The system model considered in this work is based on a
Wi-Fi network, as in Fig.3, comprising M WiFi APs, N Wi-Fi
stations (also referred to as clients), and a Software-Defined
Radio Access Network (SD-RAN) controller. We assume
both uplink and downlink traffic. Moreover, clients may have
diverse traffic activity evolving over time. The SD-RAN
controller collects network state information regularly from
the APs. This information includes network-wide statistics,
e.g., channel utilization, and per-station statistics, e.g., rate
control statistics. Based on this information, the ML models
presented in Sec. V compute the frame length for each
AP/client pair and communicate it to the SD-RAN controller,
who applies the new directives on the network elements.

Note that configuring the frame aggregation parameters at
this granularity is essential as clients might have very diverse
traffic patterns and link qualities. This is also a feature enabled
by our SDN approach. As a matter of fact, in traditional Wi-Fi
networks the maximum aggregation length is static and defined
either at the AP or at the traffic class level. We assume that the
frame length optimization is implemented only in the downlink
direction as it does not require changes to the clients nor to the
standard. On the contrary, while possible, uplink aggregation
length optimization would require modifications to the Wi-Fi
stations hence making it non standard-compliant.

Ȼɵɔɵ�ɵɛňąƄąŵŻɜ

%Ⱥ

%Ȼ

%ȼ

%Ŋ

°Ⱥ

°Ľ

¡%ɡ��pɵ
�ŒŊƄŵŒŁŁąŵ

��Ⱥ ��ň

Fig. 3. System model considered for the ML-based frame length selection.

The SD-RAN controller uses the ML models presented in
Sec. V to set the optimal downlink frame length for a given
MCS. The reason for this is that, in Sec. III-C we claimed that
the distance/Signal-To-Noise Ratio (SNR) clearly affects the
selected MCS and the other way around. The output of the
rate control algorithm (i.e., Minstrel in this work) is actually
based on the delivery probability, which includes the state of
the network and accounts for the distance. Therefore, given
its more than proved effectiveness, we have decided to accept
the MCS that the rate control algorithm chooses, and provide
it as input for the ML-based frame length adaptation models.

IV. aiOS SYSTEM ARCHITECTURE

Figure 4 illustrates the high-level aiOS system architecture.
Note that aiOS is 802.11 standard-compliant and does not
require modifications to the 802.11 MAC/PHY layers nor
to the clients. Based on SDN principles, where control and
forwarding planes are decoupled, the architecture is divided
into infrastructure, control and application layers.

A. Control Layer

It is based on a modular architecture, where the SD-RAN
controller is in charge of building the global view of the net-
work and of issuing management policies to the devices at the
infrastructure layer. The SD-RAN controller defines a Python
Application Programming Interface (API) that provides a set of
programming abstractions to specify network directives while
sheltering the network programmer from the complexities of
the underlying wireless technology. However, once defined,
such directives are unable to change by themselves, or even
to be created from the network state since the system lacks
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Fig. 4. High-level view of the system architecture.

this ability to reason. Building on this, as shown in Fig. 4, we
introduce a Machine Learning Core that is able to drive and
be driven by the changing network dynamics.

Strategically located, the Machine Learning Core supervises
the network state information handled by the SD-RAN con-
troller and filters it using the Time Series Manager module.
The Machine Learning Core can act in two manners: proac-
tively or reactively. In the former mode, depending on the
nature of the data, which could be for example labeled or
unlabeled, complete or incomplete due to partial network syn-
chronization, real-time or cumulative, the Machine Learning
Core is able to proactively select the most relevant features
in a dataset, and propose and push to the application layer a
new learning-based policy. If required, modifications can be
performed afterwards. In addition, network programmers can
reactively leverage this layer to build a model of interest, and
deploy it as a network app at the application layer. It is worth
stressing that in this work we focus on how specific networking
problems can be tackled in the reactive mode, leaving the
proactive capabilities as a future work. Conversely, the Time
Series Manager is responsible for merging, cleaning and
filtering network statistics from different sources (e.g., diverse
network devices and performance metrics) and unifying them
into a homogeneous data structure.

The offline model construction (i.e., reactive approach) is
left to the choice of the implementer. The output provided
by the Machine Learning Core is available as a Comma-
Separated Values (CSV) file that can be processed by any
Python-based ML framework. Some examples include Sklearn
and TensorFlow. After the model is built, it can be easily
loaded as a network application at the application layer.

B. Infrastructure Layer

It is composed of several independent modules in charge of
applying the directives issued by the SD-RAN controller.

• Software Agent. It is responsible for the communication
with the control layer via the southbound interface and for
implementing the policies from the SD-RAN controller.
Furthermore, it collects information about the network

state, including PHY/MAC statistics (e.g., rate control
and CSI), and reports it to the SD-RAN controller.

• Slice Manager. It is responsible for partitioning radio
resources into logical networks or slices attending, for
example, to traffic types. Slices are identified by the
tuple 〈SSID, Slice ID〉, where SSID is the network
name and Slice ID is the portion of the flowspace of
the incoming traffic that must be mapped to the slice.
Slices are characterized by a set of parameters, including
EDCA parameters, aggregation type (e.g., A-MSDU), and
the fraction of airtime that can be assigned to the slice.1

• Transmission Policies. They specify the parameters the
APs can use for the communication with a wireless client.
Such parameters include, the MCS values that can be used
by the rate selection algorithm2, the RTS/CTS threshold,
and the multicast strategy. Transmission Policies are
specified on a L2 destination address basis. As a result,
for each destination address and for each network slice,
a specific transmission policy can be created.

• A-MSDU Aggregator. It is responsible for assembling
and encapsulating the A-MSDUs. Each slice contains
m traffic queues identified by the tuple 〈src, dst〉, where
src and dst are, respectively, the MAC source and desti-
nation addresses. A-MSDUs are generated from each of
these queues according to the maximum length specified
by the SD-RAN controller. It is noteworthy that, since
incoming packets are classified by the tuple 〈src, dst〉,
expensive search and post-processing is not required,
thus reducing the computational complexity of the frame
aggregation subsystem to O(1).

C. Application Layer
It is made up of network applications which, taking advan-

tage of the global view exposed by the SD-RAN controller,
implement diverse network functionalities. In the next section,
we will introduce a particular ML-oriented network applica-
tion on which it is essential to improve the Wi-Fi network
efficiency and realize the promised high transmission capacity.

V. MACHINE LEARNING MODELS DESIGN

A. Design Decisions
The ML models utilized in this work target the 802.11n

version of the standard. This release defines four basic modu-
lation schemes (BPSK, QPSK, 16-QAM, and 64-QAM), each
of them with different coding schemes. This results in a total
of eight basic MCS values (from MCS 0 to MCS 7). Albeit
the standard supports up to four MIMO streams, most APs
typically support only two MIMO streams. MCS values higher
than 7 are essentially the same of the lower ones but with an
increasing number of streams, e.g., MCS 15 has two streams,
MCS 23 has 3 streams, and MCS 31 has four streams. For
this work we have focused purely on effects of MCS on the
optimal aggregation length, leaving the analysis of the impact

1Slice management and definition are out of the scope of this paper. Further
details about this system can be found in [38].

2While the transmission policies are set by SD-RAN controller, the
frame-by-frame MCS selection is implemented at the AP.
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Fig. 5. Flowchart of the construction and deployment of the ML models.

of MIMO for a future work. As a result, the training of the
ML models has been done using only MCS values from 0 to 7.
Notice also how the 802.11n standard defines two maximum
aggregation lengths for an A-MSDU: 3839 and 7935 bytes.
Wi-Fi clients can support either of the two values. In this
work we have decided to use 3839 bytes as maximum length.
The reason for this choice is that this is the most common
value found in Wi-Fi clients for 802.11n interfaces.

Concerning the design of the ML models, in this work we
have leveraged supervised learning techniques. There are three
key reasons for this. First, we aimed to guide the algorithms
to predict a specific output variable, i.e., the expected goodput
when selecting a specific MCS and frame length. Second, the
performance of wireless networks can be influenced by many
factors. For that reason, we considered controlled scenarios
that facilitate the knowledge acquisition. Lastly, in addition
to the accuracy, the interpretability and understanding of the
models is an essential requirement since, once loaded in the
system presented in Fig. 4, they must be able to learn and
adjust the predictions based on the network outputs.

Supervised learning refers to the process of defining a
model, hΘ(x), from supervised data, which is characterized
by n input features, X = (X1, . . . , Xn), and an output
variable, Y . Thus, data must be previously acquired and
represented as a pair, (X,Y ). Based on this, the models
must predict the output of other unlabeled data, y, from its
input features, x. Depending on the output class, two types
of supervised learning can be distinguished: classification
(for binary/categorical classes) and regression (for numerical
classes). Since the output class in this problem is a numerical
variable, i.e., the expected goodput for a specific MCS and
aggregation length, we have therefore focused on regression
models. In particular, we have used M5P [39] and Random
Forest Regressor (RFR) [40] with the aim of comparing their
performance and adaptability to the problem. These observ-
able ML techniques are characterized by low computational
complexity and simple decision branches, facilitating their
comprehension and amendment. Moreover, RFR is able to
tackle problems with high variance and high bias. Hence,
it is suitable for wireless networks problems where channel
conditions can vary along time. The process followed for
building and deploying the ML models is depicted in Fig. 5
and will be described in detail in the following subsections.

TABLE II
PARAMETERS USED IN THE DATA GENERATION PROCESS.

Parameter Value
MCS [0-7]

Aggregation length [512, 1024, 2048, 3839] bytes
Payload size [200, 500, 1000, 1470] bytes

Aggregated bitrate [5, 10, 15, 20, 25, 30, 35, 40] Mbps
Distance from AP [15, 35, 50, 70] meters
Number of stations [1, 2, 4, 10]
Background traffic 2 uplink transmissions (1Mbps)

B. Data Acquisition

The objective of data acquisition is to obtain the dataset
needed to train the ML models. However, complexity and
privacy aspects are an important issue for collecting data from
operational networks. For that reason, in this work we have
chosen a dataset generation approach using an experimental
WiFi testbed (Step 1 in Fig. 5) based on a network setup
similar to the one in Fig. 3 but comprising of a single AP.
The AP has been deployed using a PCEngines ALIX 2D
(x86) board mounted with an Atheros AR9220 Wi-Fi interface
running OpenWRT 18.06.04. The AP has been set on channel
36 isolated from other external noise. The SDN controller has
been built using the 5G-EmPOWER SD-RAN controller [41].
Both the controller and the stations have been deployed on
Dell laptops with an Intel i7 CPU running Ubuntu 18.04.02.

In this context we have carried out a wide test distribution
covering different traffic scenarios, as shown in Table II.
Each combination of these parameters are run using the setup
described above for a duration of 30 seconds. Among the
parameters involved, we shall highlight the aggregation length,
for which we have proposed a range of values in addition to
the standard one. It should be noted that the ML models seek
to independently select the frame length for every particular
station instead of imposing a network-wide configuration. For
each parameter combination, we have collected the statistics of
the rate control algorithm for each station, which have been
extended to account not only in terms of packets but also
in terms of bytes. The rate control algorithm in this case is
Minstrel. Moreover, we have measured other Key Performance
Indicators (KPIs) such as goodput, throughput, success ratio,
delivery probability, and channel utilization, among others. As
a result of this process, approximately 60000 instances were
generated to build the training dataset.

C. Model Construction and Learning Process

Once the dataset is acquired, it has been processed offline
using the Sklearn library, which has been deployed on a
a1.medium instance at the Amazon EC2 platform. This process
includes three main subtasks, namely data cleaning, variable
selection and model building (Step 2 and Step 3 in Fig. 5).

The ML models are meant to find the frame length that
provides the highest goodput for each client. Given the high
accuracy of Minstrel, we rely on the MCS that it chooses at
each moment and, based on this MCS, the models provide
a prediction on the expected goodput for each possible frame
size. Despite the several features collected per scenario, not all



of them have clear impact on the prediction. For this reason,
after cleaning the dataset (i.e., addressing missing values, du-
plicates, etc.) we have carried out a variable selection process
to reduce the variance of the prediction. For this task we have
leveraged Random Forest techniques, which are able to rank
input features in such a manner that the purity of the nodes is
maximized [42]. As a result, the input features selected are:
(i) channel utilization, (ii) number of attempted bytes in the
last window of the rate control algorithm, (iii) throughput, and
(iv) success ratio of the selected MCS.

Considering these input features, we have built an M5P and
an RFR model for each MCS, limiting the depth of the trees
to 3 levels to reduce over-fitting. The models have undertaken
a 10-fold cross validation to guarantee that the training and
the testing datasets are independent. This process reports on a
mean absolute error of 1.73% and 9.80%, for M5P and RFR,
respectively, which shows the accuracy of the models and the
relationship between the parameters involved. Notice how the
error of M5P is much lower than the one offered by RFR given
that regression trees tend to provide more overfitted models
than random forest techniques.

Finally, the models have been deployed at the application
layer of the platform presented in Fig. 4, where they can
be loaded, and modified in real-time thanks to the Machine
Learning Core present at the control layer (Step 4 in Fig. 5).
The models are run once per second for every station, produc-
ing as output the 〈MCS, framelength〉 combination and the
corresponding predicted goodput (Step 5 in Fig. 5). However,
the models are not static: in the next run, the real goodput
obtained is compared with the predicted one, thus correcting
the next predictions with a factor, f , that represents the
prediction error (Step 6 in Fig. 5).

VI. PERFORMANCE EVALUATION

A. Methodology
The effectiveness of the ML models has been assessed

on the real-world testbed described in the previous section
and compared with the performance offered by transmissions
performed without frame aggregation and by using the fixed
A-MSDU aggregation mechanism defined in the IEEE 802.11
standard. In this regard, we have measured different metrics,
namely goodput improvement, channel utilization and retrans-
mission attempts. Moreover, we have analysed the distribution
of the aggregation length selected by each ML model.

The layout of the scenario is based on the system model
shown in Fig. 3, comprising a single AP, 2 stations transmitting
traffic to the AP, and an increasing number of stations (from 2
to 4) receiving UDP traffic from the AP. The configuration of
both the AP and the SD-RAN controller is the same as the one
previously described in Sec. V-B. Regardless of the number of
stations, the aggregated bitrate transmitted by the AP has been
set to 20 Mbps, while the payload has been set to 200 bytes.
The uplink transmissions have used the same payload size but
limiting the aggregated bitrate of the 2 stations to 1 Mbps
in order to decrease the transmission opportunities of the AP
and account for more realistic scenarios. The traffic has been
generated using Iperf.

To perform the evaluation under a controlled environment,
we have previously placed N stations at distances from 30
to 50 meters from the AP in order to analyse the status
of the channel. In this sense, we have observed two main
behaviours of the rate control algorithm. At closer distances,
i.e., around 30 m, Minstrel tended to select MCS 3 and MCS 4,
while at longer distances, i.e., around 50 m, it usually selected
MCS 0. Considering that the ML models depend on the MCS
chosen, and given the difficulty to replicate the behaviour of
Minstrel in real environments, we have differentiated 2 main
scenarios with the aim of drawing a comparison in the fairest
possible manner. In Scenario 1, MCS 0 and MCS 4 have been
configured as follows. For 2 stations, one has been set with
MCS 0 and the other with MCS 4; for 3 stations, two of them
have been set MCS 0 and the other MCS 4; and for 4 stations,
the MCS values have been set equally in pairs. Conversely, in
Scenario 2, MCS 3 and MCS 4 have been configured following
the same approach. All the scenarios have been repeated 5
times, and the results shown below are represented with a
confidence interval of 95%.

B. Experimental Results

Figure 6 reports on the results of the evaluation performed
in Scenario 1. In particular, Fig. 6a shows the goodput
improvement with respect to the single frame delivery, i.e.,
without frame aggregation, of the different mechanisms for 2,
3 and 4 stations. In this regard, we can observe that, although
the standard A-MSDU policy (fixed to 3839 bytes) enhances
the performance of the single frame delivery, the length is not
adequate for all the stations. In fact, for the stations under
worse channel conditions, the use of longer frames leads to a
higher number of transmission errors (as shown in Fig. 6c).
By contrast, the M5P and the RFP models adapt such an
aggregation length to the conditions of each station, thus
outperforming the results of the standard mechanisms. Notice
how the higher tolerance to variance of the RFR model allows
it to reach the highest goodput improvement by up to 278%
with respect to not using frame aggregation and by up to 55%
with respect to the standard A-MSDU mechanism.

Moreover, it should be noted that since the channel differ-
ences are more significant for 2 stations given that they are
using very different MCS values, i.e., MCS 0 and MCS 4,
the improvement achieved by performing frame aggregation
and, specifically, by the ML models is more significant in
this scenario. Again, the standard aggregation mechanism fails
when setting the same aggregation length for stations that are
clearly under completely diverse conditions. Finally, in Fig. 6b
it can be seen how as a result of the improvements in the
transmission, the proposed models are able to decrease the
channel utilization in all the evaluated cases.

Similarly, Fig. 7 sketches the results obtained in Scenario 2,
where the stations experience better channel conditions with
respect to the previous experiments. This fact can be seen
in Fig. 7b, where the channel utilization is significantly
lower than in Scenario 1. Having similar conditions entails
three consequences. First, the enhancement in the simplest
setup, i.e., composed of 2 stations, is less significant than



(a) Goodput improvement of the aggregation poli-
cies with respect to single frame transmissions.

(b) Channel utilization for single frame delivery
versus different aggregation policies.

(c) Retransmission attempts for single frame deliv-
ery versus different aggregation policies.

Fig. 6. Performance evaluation for an increasing number of stations in Scenario 1 (MCS 0 and MCS 4).

(a) Goodput improvement of the aggregation poli-
cies with respect to single frame transmissions.

(b) Channel utilization for single frame delivery
versus different aggregation policies.

(c) Retransmission attempts for single frame deliv-
ery versus different aggregation policies.

Fig. 7. Performance evaluation for an increasing number of stations in Scenario 2 (MCS 3 and MCS 4).

(a) M5P model in Scenario 1. (b) RFR model in Scenario 1. (c) M5P model in Scenario 2. (d) RFR model in Scenario 2.

Fig. 8. Distribution of the aggregation length selected by the M5P and RFR models in Scenario 1 and Scenario 2.

in Scenario 1 for all the schemes. Second, although the ML
models outperform the standard A-MSDU aggregation policy,
the improvement is slightly reduced due to the good reception
conditions. Finally, when increasing the number of stations
the improvement ratio stabilises at about 200% with respect to
single frame transmission and at about 25% with respect to the
standard A-MSDU mechanism using fixed aggregation length.
In line with this, it can be also observed that this improvement
results in a reduction in both the channel utilization (Fig 7b)
and the retransmission attempts (Fig 7c).

Lastly, Fig. 8 reports the distribution of the aggregation
length used by the ML models in each scenario. The single
frame transmission and the standard A-MSDU aggregation
mechanisms are omitted since their frame length does not
vary. As can be seen, both ML models select smaller lengths
under heterogeneous channel conditions in Scenario 1 (Fig. 8a
and Fig. 8b). Conversely, Fig. 8d shows that RFR chooses
frame lengths greater than 2048 bytes in 60% of the cases
under good channel conditions. However, in both scenarios and
regardless of the number of stations, M5P is more conservative
than RFR and tends to select frame lengths below 1024 bytes.
This analysis demonstrates again how the RFR model is more
adequate than the M5P tree for being applied in problems with
high variance as it is the case of wireless networks.

VII. CONCLUSIONS

This paper aims at lowering the barrier for deploying
AI-based control applications in SD-WLANs. To this end, we
have proposed aiOS as an intelligence plane that is at the same
time driven by ML and capable of driving ML applications.
aiOS embeds several ML functionalities that are exposed for
automated network management towards self-driven networks.
The capabilities of aiOS in practical settings have been proved
by implementing several ML models for user-adaptive frame
length selection in SD-WLANs. Experimental results have
shown considerable improvements over standard frame aggre-
gation mechanisms, especially when user channel conditions
are substantially diverse. Our future work aims at extending
aiOS to support a wider range of ML models (including
reinforced learning) and network configurations. Moreover, we
plan to extend aiOS to account for 4G and 5G networks.
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