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Abstract—Recent studies have shown the promising direction
of deep learning based bug detection, which relieves human
experts from the tedious and subjective task of manually summa-
rizing features. Simple one-statement bugs (i.e., SStuBs), which
occur relatively often in Java projects, cannot be well spotted
by existing static analysis tools. In this paper, we make effort
to empirically analyze whether deep learning based techniques
could be used to detecting SStuBs. We have re-implemented
two state-of-the-art techniques in approximately 3,000 lines of
code and adopted them to detecting Java SStuBs. Experiments
on large-scale datasets suggest that although deep vulnerability
detectors can achieve much better results than existing static
analyzers, the SStuBs cannot be well flagged when comparing
with traditional complex vulnerabilities. We further look in detail
on the per bug category basis, observing that deep learning based
methods perform better when detecting some specific types of
bugs (e.g., “Same Function Change Caller”), which have strong
data flow and control flow semantic. Our observations could offer
implications on the automated detection and repair of SStuBs.

I. INTRODUCTION

Bug detection and program repair are indispensable in soft-
ware maintenance. Detecting and fixing bugs at the early stage
of software development cycle will reduce software mainte-
nance cost. In order to alleviate manual effort of locating and
repairing bugs, many tools and techniques are proposed to
detect bugs automatically, e.g., SpotBugs [1], PMD [2] and
CheckStyle [3]. However, these traditional static analysis tools
need experts to define specific detection rules for different
types of bugs in advance, which is still labour-intensive and
time-consuming, and may incur high false positive/negative
rates. To deal with this limitation, some researchers turn their
attention to deep learning based techniques. Recent studies
have shown that deep learning can boost the performance
of detecting data-flow-related vulnerabilities [4], control-flow-
related vulnerabilities [5] and a wide range of vulnerabil-
ities [6, 7], comparing to well-known conventional static
detectors. For example, VulDeePecker [4] claims to achieve an
F1-measure of over 90% when detecting buffer errors, which is
much better than other static pattern based analyzers, including
Flawfinder [8], RATS [9] and Checkmarx [10].

Simple one-statement bugs, or the so-called simple stupid
bugs (SStuBs), are bugs that appear on a single statement and
the corresponding fix is within that statement. Prior work [11]
showed that SStuBs are relatively common in Java projects
with a frequency of about one bug per 1,600-2,500 lines of
code. They also provided a dataset, ManySStuBs4J, which
has 153,652 SStuBs fix changes mined from 1,000 popular
open-source Java projects in GitHub. They also classified

fixes into 16 bug templates, such as “change identifier used”,
“change caller in function call” and “overload method more
args”. Since deep learning based bug detection methods show
high performance on traditional complex vulnerabilities, the
question arises whether these methods can be used to detect
SStuBs and achieve promising results.

This Work. In this paper, we seek to empirically analyze the
performance of deep learning based bug detection techniques
on locating SStuBs. Specifically, we make a huge effort to re-
implement two state-of-the-art techniques, VulDeePecker [4]
and SySeVR [6] for analyzing Java source code. Note that
these two techniques are originally designed for C/C++ code,
and VulDeePecker [4] is not open source. We implemented
these two detectors in approximately 3,000 lines of code to
demonstrate their performance on Java SStuBs bugs. VulDeeP-
ecker [4] considers the data dependency of program and
performs program slicing based on key library/API function
calls. It then assembles the program slices obtained into code
gadgets for training and detecting. SySeVR [6] extracts both
data dependency and control dependency information extend-
ing from vulnerability syntax characteristics for model training
and detecting. These two deep learning based techniques are
considered in this paper because they perform excellently in
bug detection tasks and they have a finer granularity (i.e., at
program slice level) when pinpointing bugs, which is more
practical in real world scenarios.

To compare the effectiveness of these two approaches on
detecting both complex Java code vulnerabilities and SStuBs,
we first built benchmarks for two representative vulnerabilities
(i.e., CWE-22 and CWE-79), and then applied the two deep
learning based methods to them. Both methods can achieve
a detection accuracy over 90%, which suggests that our re-
implementation is correct and traditional complex vulnera-
bilities like CWE-22 and CWE-79 can be well flagged by
these two deep learning based methods. As a comparison,
we next applied these two deep learning based techniques
to the ManySStuBs4J dataset, where the detection accuracy
is only around 70% for VulDeePecker detector and 66% for
SySeVR detector. Although these two approaches can achieve
much better results than existing static analysis tools, the
results showed that SStuBs cannot be well flagged comparing
to traditional complex vulnerabilities. We further analyze the
results for the 16 types of bugs, finding that the effectiveness
of deep vulnerability detectors vary among different types of
SStuBs. The detecting accuracy of some types of SStuBs is
obviously higher than other bug types. This is mainly because
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Fig. 1. Overview of the deep learning based bug detection.

some kinds of bugs only involve minor changes, which have
little relationship with data flow and control flow information.
Our findings suggest that different kinds of approaches should
be combined together for better detecting SStuBs. We have
released our crafted benchmark and experiment results to the
research community at:

https://doi.org/10.5281/zenodo.4609689

II. DEEP VULNERABILITY DETECTORS

We first introduce the overview of the methodology we
have implemented to detecting SStuBs. Then we illustrate the
process step by step with a real example.

A. Overview

As shown in Fig.1, deep vulnerability detectors in general
consist of two phases, training phase and detecting phase.
The inputs to training phase are the source code with ground
truth information (i.e., vulnerable and correct). After feature
extraction, the source code is represented in vectors and used
to train bug detection models. In detecting phase, unknown
source code is transferred into vectors through the same steps
as training phase. The output of detecting phase is “correct”
or “vulnerable” for each code snippet.

B. Training phase

Training phase consists of four main steps, including 1)
locating sensitive points, 2) code snippets generation and
labeling, 3) vector representation and 4) model training.

1) Locating Sensitive Points: Sensitive point is the syntax
characteristics where most simple stupid bugs manifest, which
is similar as “key point” mentioned in VulDeePecker [4] and
“SyVCs” defined in SySeVR [6]. Here we choose the flowing
syntax characteristics as sensitive points: object construction,
method invocation, expression statement, conditional state-
ment and loop statement. In this step, we first create abstract
syntax trees (ASTs) of each source code files and then extract
all sensitive points. Fig. 2 shows an example of a simple
SStuB. The developer wants to build e jb client in line 18 but
build ejb twice by error. The sensitive points we extracted
from the code snippet are highlighted by boxes.

2) Code Snippets Generation and Labeling: A code snippet
consists of a number of semantically related lines of code. As
aforementioned, we have implemented two different detectors
to generate code snippets, the VulDeePecker detector and
SySeVR detector. (1) VulDeePecker detector. For each sensi-
tive point, we trace the backward data flow of corresponding
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Fig. 2. An example of locating sensitive points.
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Fig. 3. An example of code snippets generation.

identifiers (e.g., operand, arguments and caller of a method),
and assemble the lines of code obtained into code snippets.
As shown in Fig. 3, method invocation in line 18 is a
sensitive point, and “archiver”, “project” and “archive” are
three corresponding identifiers. We get the data flow slices of
the three identifiers and assemble them according to the order
of the statements’ appearance in code. The final code snippet
is shown in Fig.3 (a). (2) SySeVR detector. For each sensitive
point, we first generate program dependency graph (PDG) for
each method, then generate the inter-procedural backward and
forward slice, finally assemble the corresponding code of lines
into code snippets. For example, in Fig. 3, sensitive point in
line 18 has data dependency on line 4 and control dependency
on line 12, line 4 and line 12 further have control dependency
on line 1 and line 7, separately. Therefore the code snippet
consists of line 1,4,7,12,18, as shown in Fig. 3 (b).

3) Vector Representation: We use the word2vec [12] to
transform code tokens into vectors. A code snippet will be
divided into a sequence of tokens and then transformed into
integers using a well-trained word2vec model. Since deep
learning models usually take equal-length vectors as input, the
vector representation of code snippets need some adjustment.
Let [ denotes the length of vectors that we should input to the
models. For vectors that are shorter than [, we pad zeros in
the beginning of the vector. For vectors that are longer than [,
we delete the begin part of the vector.

4) Model Training: The bug detection task can be formu-
lated as a binary classification problem. We select Bidirec-
tional Long Short-Term Memory (BLSTM) as detecting model
because it can catch the information of both earlier statements



and later statements in the program which may affect sensitive
points [4]. The input of the training process is the vectors of
length [ and ground truth. Our model consists of an embedding
layer, a BLSTM layer, a dense layer and a softmax layer. For
each bug type, we randomly choose 80% code snippets as
training dataset, 20% code snippets for evaluation.

C. Detecting phase

Similar to the training phase, given a target source code, we
first extract sensitive points, then generate code snippets for
each sensitive point. Next, we transform code snippets into
vectors and input them to the trained BLSTM model. The
output of the model is “0” (the code snippet does not have
SStuB) or “1” (the code snippet has SStuB).

III. EXPERIMENTS AND RESULTS
A. Study Design

1) Research Questions: Our evaluation is driven by the
following research questions (RQs):

RQ1 What is the performance of deep learning based methods
on detecting traditional complex Java vulnerabilities and
SStuBs?

RQ2 Do the deep learning based methods achieve consistent
performance on different types of SStuBs?

2) Datasets: To compare the effectiveness of these two
approaches on detecting both complex vulnerabilities and
SStuBs, we use three large-scale datasets, including CWE-
22, CWE-79 and ManySStuBs4J [11] for evaluation. First,
for the traditional complex vulnerabilities, We make effort to
craft a benchmark dataset of 3,776 samples for CWE-22 Path
Traversal and a dataset of 4,827 samples for CWE-79 XSS
(Cross-Site Scripting) from SARD [13] and OWASP [14].
We choose CWE-22 and CWE-79 mainly because they are
common vulnerabilities and have more available samples. In
each item of the datasets, the buggy or fixing line number,
bug type, and the path of the source codes are provided.
Following previous work[4, 6], we choose the invocation of
file reading and writing methods as sensitive points for CWE-
22 and invocation of method that sending information to client
as sensitive points for CWE-79. Furthermore, we evaluate the
performance of detecting SStuBs basing on the ManySStuBs4J
dataset [11]. In each item of the dataset, it provides the line
in which the bug exists in the buggy version of the file, the
hash of the commit fixing the bug and the hash of the last
commit containing the bug. We harvest related source code
files according to the commit hashes.

For both datasets, we deem the code snippets generated from
the source code lines before fixing as “1” (has bug), after
fixing as “0” (no bug). To ensure the correctness of samples,
we only saved code snippets generated from sensitive points
of which the line numbers are “bug line num” or “fix line
num”. For CWE-22 and CWE-79, we got over 4,400 and 5,700
code snippets, respectively. The proportion of positive and
negative samples is around 1:2. For ManySStuBs4J, We finally
got 61,667 code snippets for VulDeePecker based method
and 68,768 code snippets for SySeVR based method with

TABLE I
EVALUATION RESULTS ON TRADITIONAL COMPLEX VULNERABILITIES
VS. SSTUBS

dataset metrics | VulDeePecker based | SySeVR based
FPR 6% 3%
CWE-22 P 91% 94%
FNR 2% 12%
ACC 95% 94%
FPR 4% 3%
CWE-79 P 90% 94%
FNR 7% 1%
ACC 95% 98%
FPR 31% 33%
ManySStuBs4]J P 70% 66%
FNR 28% 38%
ACC 71% 65%

a proportion of around 1:1 between positive and negative
samples. The test sets (roughly 20% of the dataset) consist
of 12,338 code snippets for VulDeePecker based method and
13,761 code snippets for SySeVR based method.

3) Model Training: Overall, we have trained six different
models on the three datasets. For each dataset, we have trained
two models for the two deep learning based techniques. The
length of input vectors [ is set to 50. The hidden size, dropout
and recurrent dropout of BLSTM layer are set to 64, 0.5 and
0.5, respectively. The binary crossentropy loss and ADAMAX
with default parameters are used for training. The batch size
is 64 and the number of epochs is 50.

4) Metrics: We use four widely used metrics including
accuracy (ACC), false positive rate (FPR), false negative rate
(FNR), and precision (P) to evaluate the performance of bug
detection. Let 7P be the number of samples with bugs that
are detected correctly, F'P be the number of samples without
bugs while are detected as vulnerable, TN be the number
of clean samples that are detected correctly and F'N be the
number of clean samples that are detected as vulnerable. The
ACC measures the correctness of all detected samples and
can be denote as ACC = %. The FPR means
proportion of false-positive samples in the total samples that
are not vulnerable and can be calculate by FPR = 22

P . FP+TN"
FNR = means the proportion of false-negative sam-

Y= TPYFN>
ples in the total samples that are vulnerable. P measures the
TP
correctness of detected vulnerable samples and P = 757 -

B. RQI: Traditional complex vulnerabilities VS. SStuBs

Performance on Complex Vulnerabilities. Table I shows
the overall results. Obviously, both methods can achieve a
detection accuracy of 95% with relatively low FPR and FNR.
This result is inline with previous studies on C/C++ vulner-
abilities [4, 6], which suggests that our re-implementation
of these approaches in Java is accurate, and these two deep
vulnerability detectors are able to well flag traditional complex
vulnerabilities like CWE-22 and CWE-79.

Performance on SStuBs The result is shown in Tab.l.
The VulDeePecker based method achieves a P of 70% and
ACC of 71%, which is obviously lower than the performance
of detecting traditional vulnerabilities. The SySeVR based
method has 66% precision detecting SStuBs, and incurs a FPR



of 33% and FNR of 38%. Previous work also measured the
proportion of bugs in ManySStuBs4J that can be identified
by popular static analysis tools such as SpotBugs [1], Error
Prone [15] and Infer [16]. The overall bug detection rate of
all three bug detectors together on their studied bugs is only
4.5% [17]. In another work, researches find that SpotBugs
could only locate about 12% of SStuBs while also reporting
more than 200 million possible false positives. The results
show that deep-learning based method may not perform as
well as traditional complex vulnerabilities in detecting simple
bugs like SStuBs, but can outperform existing static analysis
tools. Moreover, the VulDeePecker based method performs
slightly better than SySeVR based method, which suggests
that data flow information is more sensitive than control-flow
information to detecting SStuBs.

C. RQ2: Performance on different types of SStuBs

We further look in detail on a per-category basis, which is
shown in Tab. II (The bug types that can be better detected
are shown in bold). Note that bug types “DELETE THROWS
EXCEPTION” and “ADD THROWS EXCEPTION” are not
shown in the table for the sample sizes are small and the
sensitive points we defined cannot cover all syntax char-
acteristics of these two bug types. Interestingly, we find
that the effectiveness of our detecting methods vary among
different types of SStuBs. Both methods are better at de-
tecting “CHANGE OPERAND”, “CHANGE IDENTIFIER”,
“CHANGE CALLER IN FUNCTION CALL”, “DIFFERENT
METHOD SAME ARGS”, “MORE SPECIFIC IF” and “LESS
SPECIFIC IF” bugs, which can reach a precision of roughly
80% with FNR less than 20%. This is because the sensitive
point related identifiers (e.g, method caller) are changed be-
fore and after fixing, thus leading more differences in code
snippets. We also notice that similar bugs may appear many
times in one project, and there are some patterns in bug repair
(e.g, using LinkedHashMap instead of HashMap), thus leading
to better detecting performance. The performance on type
“OVERLOAD METHOD MORE ARGS” and “OVERLOAD
METHOD DELETED ARGS” are not as good as our antici-
pation. We look into the dataset and find that many arguments
added or deleted are string, “null” value, Boolean value
and number that are hard to handle by our methods. Also,
bug types, such as “CHANGE OPERATOR” and “CHANGE
NUMERAL” encounter similar problem. The rest kinds of
bugs, “SWAP ARGUMENTS”, cannot be well detected mainly
because the code snippets before and after fixing are almost
same, for the sensitive point related identifiers would not be
changed by the order of occurrence.

IV. RELATED WORK

A number of static analysis tools and research works have
been proposed to detect software vulnerabilities. These tools
and research works can be divided into two main categories.
The first category is traditional static analyzers which de-
tecting vulnerabilities based on predefined patterns, such as
SpotBugs [1] and PMD [2]. But these traditional tools often

TABLE II
PERFORMANCE ON DETECTING DIFFERENT TYPES OF SSTUBS

Bug Type ‘VulDeePecker based SySeVR based
P

FPR P FNR [ ACC | FPR FNR | ACC

CHANGE_OPERATOR 67% | 36% | 66% | 34% | 55% | 35% | 74% | 35%
CHANGE_OPERAND 14% | 87% 9% 88% | 20% | 80% | 24% | 78%
CHANGE_IDENTIFIER 25% | 75% | 22% | 71% | 28% | 72% | 33% | 70%
CHANGE_MODIFIER 68% | 12% | 89% | 22% | 61% | 19% | 78% | 32%
CHANGE_NUMERAL 58% | 43% | 53% | 44% | 53% | 46% | 59% | 44%
CHANGE_CALLER_IN_FUNCTION_CALL | 10% [ 89% | 17% | 87% | 18% | 80% | 19% | 81%
CHANGE_UNARY_OPERATOR 53% | 50% | 43% | 52% | 51% | 50% | 51% | 49%

OVERLOAD_METHOD_MORE_ARGS 46% | 58% | 36% | 59% | 41% | 50% | 49% | 52%

OVERLOAD_METHOD_DELETED_ARGS 58% | 52% | 48% | 48% | 47% | 51% | 57% | 48%

DIFFERENT_METHOD_SAME_ARGS 19% | 81% | 15% | 83% | 20% | 79% | 23% | 8%
MORE_SPECIFIC_IF 20% | 8% | 25% | T1% | 24% | 77% | 32% | 2%
LESS_SPECIFIC_IF 14% | 86% | 19% | 84% | 28% | 73% | 25% | 74%
SWAP_ARGUMENTS 54% | 51% | 38% | 54% | 36% | 56% | 56% | 54%
SWAP_BOOLEAN_LITERAL 86% | 24% | 70% | 22% | 67% | 27% | 76% | 29%

incur high false positive rate or false negative rate. The second
category is machine learning based approaches. Some ap-
proaches detecting vulnerabilities according to code similarity,
which obtaining abstract representations of code fragments and
comparing the similarity between pairs of the representations
[18, 19, 20]. There are also many approaches to detecting well-
defined vulnerabilities using machine learning techniques. For
example, Yan et al. [21] introduced a static use-After-free
detector that bridges the gap between typestate and pointer
analyses by a Support Vector Machine. Li et al. [4] designed
VulDeePecker, embedding codes using data flow information
to detecting resource management errors and buffer overflows.
Moreover, some researches also pay attention to simple bugs
like simple one-statement bugs. Pradel et al. [22] presented
DeepBugs, a learning approach to name-based bug detection.
They focused on three kinds of bugs, including accidentally
swapped function arguments, incorrect binary operators, and
incorrect operands in binary operations.

V. CONCLUSION AND DISCUSSION

In this paper, we empirically analyzed the effectiveness
of deep learning based bug detection techniques on locating
SStuBs. The experimental results on ManySStubs4] show
that the effectiveness of detecting some types of SStuBs is
obviously better than others. One main reason why other kinds
of bugs cannot be well flagged is that those bugs only involve
tiny changes on operator, Boolean value, string and so on,
which are hard to trace corresponding semantic information
by the implemented methods that rely on mainly control-
flow and data-flow information. To better detect other types of
SStuBs, it may be helpful to analyze code intent or function
from source codes and annotations. Moreover, at present we
just directly choose all aforementioned syntax characteristics
as sensitive points, which probably introduce some useless
information. Refining the sensitive points, e.g, identifying what
kinds of functions are more likely to incur SStuBs, might
be a useful way for improvement. Our findings suggest that
different kinds of approaches should be combined together
for better detecting SStuBs, while our study offers practical
implications on this direction.
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