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Abstract. This paper shows that a strengthened form of the strong Goldbach conjecture as 
well as its negation are true. The paper thus constitutes an antinomy within ZFC. 
 
Notations. Let  denote the natural numbers starting from 1, let n denote the natural 
numbers starting from n > 1 and let 3 denote the prime numbers starting from 3. 

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can 
be expressed as the sum of two different primes. 
 
 
Theorem. Both SSGB and the negation SSGB hold. 
 
Proof. We define the set Sg := { (pk, mk, qk) | k, m  ; p, q  3, p < q; m = (p + q) / 2 }. 
 
SSGB is equivalent to saying that every integer x ≥ 4 is the arithmetic mean of two different 
odd primes and so it is equivalent to saying that all integers x ≥ 4 appear as m in a middle 
component mk of Sg. 
 
There are two possibilities for Sg, exactly one of which must occur: Either there is an n  4 
in addition to all the numbers m defined in Sg or there is not. The latter corresponds to 
SSGB and the former corresponds to the negation SSGB. 
 
The set Sg has the following property: The whole range of 3 can be expressed by the 
triple components of Sg, since every integer x ≥ 3 can be written as some pk with k = 1 
when x is prime, as some pk with k ≠ 1 when x is composite and not a power of 2, or as     
(3 + 5)k / 2 when x is a power of 2; p  3, k  . 
 
We can split Sg into two complementary subsets: For any y  3, Sg = Sg+(y) ∪ Sg-(y), with 

Sg+(y) = { (pk', mk', qk')  Sg | Ǝ k     pk' = yk    mk' = yk    qk' = yk } and  

Sg-(y) = { (pk', mk', qk')  Sg |  k     pk' ≠ yk    mk' ≠ yk    qk' ≠ yk }. 
 
 
In the case of SSGB, there is at least one n  4 different from all the numbers m that are 
defined in Sg. In the case of SSGB, there is no such n. The following steps work regardless 
of the choice of n if there is more than one n. 
 
According to the above three types of expression by Sg triple components, for n we have 
 
(C)   k     Ǝ (pk', mk', qk')  Sg     nk = pk'    nk = mk' = 4k'. 

 

http://en.wikipedia.org/wiki/Even_and_odd_numbers
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Prime_number


   
 

2 
 

Moreover, due to the definition of Sg, we have 

(M)  ∄ p, q  3, p < q     n = (p + q) / 2. 

 

Because the properties (C) and (M) hold for any n given by SSGB, under the assumption 
SSGB the set Sg can be written as the union of the following triples, which would 

otherwise be impossible. 

(i) Sg triples of the form (pk' = nk, mk', qk') with k' = k in case n is prime, due to (C) 

(ii) Sg triples of the form (pk' = nk, mk', qk') with k' ≠ k in case n is composite and not a 
power of 2, due to (C) 

(iii) Sg triples of the form (3k', 4k' = nk, 5k') in case n is a power of 2, due to (C) 

(iv) all remaining Sg triples of the form (pk' = nk, mk', qk'), (pk', mk' = nk, qk') or (pk', mk', qk' 
= nk) 

and 

(v) Sg triples of the form (pk' ≠ nk, mk' ≠ nk, qk' ≠ nk), i.e. those Sg triples where none of the 
nk’s equals a component. 

 

Let Sg+ be shorthand for Sg+(n) and let Sg- be shorthand for Sg-(n). Then, as Sg+ denotes 
the union of the triples of types (i) to (iv) and Sg- denotes the union of the triples of type (v), 
we can state 

SSGB  =>  ((Sg = Sg+ ∪ Sg-)  or  (C)  or  (M)). 

Since (C) and (M) are true, we get 

(*)  SSGB  =>  Sg = Sg+ ∪ Sg-. 

Therefore, 

 S   ( SSGB => Sg+ ∪ Sg- = S)  <=>  ( SSGB => Sg = S). 

 

Since under SSGB  Sg equals Sg+ ∪ Sg-, we obtain 

 S   ( SSGB => Sg+ ∪ Sg- = S)  <=>  (Sg+ ∪ Sg- = S) 

<=> 

(NG)   S   ( SSGB => Sg = S)  <=>  (Sg = S), 

which is equivalent to SSGB, because (NG) is true if SSGB is true, and false if SSGB is 
true. So, SSGB is proven. 
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Now, let us return to the step (*) above. There, Sg+ ∪ Sg- is independent of n since for every 
n it equals Sg. So, based on (*) we have 

 y  3   SSGB  =>  Sg = Sg+(y) ∪ Sg-(y). 

 

Since SSGB is true, we also have 

 y  3   SSGB  =>  Sg = Sg+(y) ∪ Sg-(y). 

Therefore, 

 y  3   (  S   (SSGB => Sg+(y) ∪ Sg-(y) = S)  <=>  (SSGB => Sg = S)). 

 

Since under SSGB  Sg equals Sg+(y) ∪ Sg-(y) for every y  3, we obtain 

 y  3   (  S   (SSGB => Sg+(y) ∪ Sg-(y) = S)  <=>  (Sg+(y) ∪ Sg-(y) = S)) 

<=> 

 S   (SSGB => Sg = S)  <=>  (Sg = S), 

which is equivalent to SSGB. 

So, we have also shown SSGB.                                                                                           □ 

 

 

Note. The above splitting of all the Sg triples into two complementary subsets Sg+ and Sg- is 
independent of our information about Sg and it is also independent of the property behind n. 
The splitting works solely on the basis of the existence of n. 

The main reason for the antinomy above is the formula (NG) which in classical logic is 
equivalent to SSGB, whereas an intuitionistic interpretation would say: If the set Sg under 
the assumption of an n ≥ 4 additional to all m equals Sg without this assumption, then that n 
does not exist, and therefore SSGB holds. 


