A strengthened form of the strong Goldbach conjecture

Ralf Wüsthofen

Abstract. This paper shows that a strengthened form of the strong Goldbach conjecture as well as its negation are true. The paper thus constitutes an antinomy within ZFC.

Notations. Let \mathbb{N} denote the natural numbers starting from 1, let \mathbb{N}_n denote the natural numbers starting from n > 1 and let \mathbb{P}_3 denote the prime numbers starting from 3.

Strengthened strong Goldbach conjecture (SSGB): Every even integer greater than 6 can be expressed as the sum of two different primes.

Theorem. Both SSGB and the negation ¬SSGB hold.

Proof. We define the set $S_g := \{ (pk, mk, qk) \mid k, m \in \mathbb{N}; p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \}.$

SSGB is equivalent to saying that every integer $x \ge 4$ is the arithmetic mean of two different odd primes and so it is equivalent to saying that all integers $x \ge 4$ appear as m in a middle component mk of S_g.

There are two possibilities for S_g , exactly one of which must occur: Either there is an $n \in \mathbb{N}_4$ in addition to all the numbers m defined in S_g or there is not. The latter corresponds to SSGB and the former corresponds to the negation \neg SSGB.

The set S_g has the following property: The whole range of \mathbb{N}_3 can be expressed by the triple components of S_g, since every integer $x \ge 3$ can be written as some pk with k = 1 when x is prime, as some pk with $k \ne 1$ when x is composite and not a power of 2, or as (3 + 5)k / 2 when x is a power of 2; $p \in \mathbb{P}_3$, $k \in \mathbb{N}$.

We can split S_g into two complementary subsets: For any $y \in \mathbb{N}_3$, S_g = S_g+(y) \cup S_g-(y), with

 $S_g+(y) = \{ (pk', mk', qk') \in S_g \mid \exists k \in \mathbb{N} | pk' = yk \lor mk' = yk \lor qk' = yk \}$ and

 $S_g(y) = \{ (pk', mk', qk') \in S_g \mid \forall k \in \mathbb{N} \ pk' \neq yk \land mk' \neq yk \land qk' \neq yk \}.$

In the case of \neg SSGB, there is at least one $n \in \mathbb{N}_4$ different from all the numbers m that are defined in S₉. In the case of SSGB, there is no such n. The following steps work regardless of the choice of n if there is more than one n.

According to the above three types of expression by Sg triple components, for n we have

(C) $\forall k \in \mathbb{N} \exists (pk', mk', qk') \in S_g \quad nk = pk' \lor nk = mk' = 4k'.$

Moreover, due to the definition of Sg, we have

(M)
$$\nexists$$
 p, q ∈ \mathbb{P}_3 , p < q n = (p + q) / 2.

Because the properties (C) and (M) hold for any n given by \neg SSGB, under the assumption \neg SSGB the set S_g can be written as the union of the following triples, which would otherwise be impossible.

(i) S₉ triples of the form (pk' = nk, mk', qk') with k' = k in case n is prime, due to (C)

(ii) S_g triples of the form (pk' = nk, mk', qk') with k' \neq k in case n is composite and not a power of 2, due to (C)

(iii) S_g triples of the form (3k', 4k' = nk, 5k') in case n is a power of 2, due to (C)

(iv) all remaining S_g triples of the form (pk' = nk, mk', qk'), (pk', mk' = nk, qk') or (pk', mk', qk' = nk)

and

(v) S₉ triples of the form (pk' \neq nk, mk' \neq nk, qk' \neq nk), i.e. those S₉ triples where none of the nk's equals a component.

Let S_g + be shorthand for S_g +(n) and let S_g - be shorthand for S_g -(n). Then, as S_g + denotes the union of the triples of types (i) to (iv) and S_g - denotes the union of the triples of type (v), we can state

 \neg SSGB => ((S_g = S_g+ \cup S_g-) or \neg (C) or \neg (M)).

Since (C) and (M) are true, we get

(*) \neg SSGB => Sg = Sg+ \cup Sg-.

Therefore,

 $\forall S (\neg SSGB \Rightarrow S_g + \cup S_g = S) < \Rightarrow (\neg SSGB \Rightarrow S_g = S).$

Since under \neg SSGB Sg equals Sg+ \cup Sg-, we obtain

 $\forall S (\neg SSGB \Rightarrow S_g + \cup S_g = S) < \Rightarrow (S_g + \cup S_g = S)$

<=>

(NG) \forall S (\neg SSGB => S_g = S) <=> (S_g = S),

which is equivalent to \neg SSGB, because (NG) is true if \neg SSGB is true, and false if SSGB is true. So, \neg SSGB is proven.

Now, let us return to the step (*) above. There, $S_g + \cup S_g$ - is independent of n since for every n it equals S_g . So, based on (*) we have

 $\forall y \in \mathbb{N}_3 \quad \neg SSGB \implies S_g = S_g + (y) \cup S_g - (y).$

Since ¬SSGB is true, we also have

 $\forall y \in \mathbb{N}_3$ SSGB => Sg = Sg+(y) \cup Sg-(y).

Therefore,

 $\forall y \in \mathbb{N}_3 \quad (\forall S \quad (SSGB \Longrightarrow S_g + (y) \cup S_g - (y) = S) \iff (SSGB \Longrightarrow S_g = S)).$

Since under SSGB S_g equals S_g+(y) \cup S_g-(y) for every y \in N₃, we obtain

$$\forall y \in \mathbb{N}_3 \quad (\forall S \quad (SSGB \Longrightarrow S_g + (y) \cup S_g - (y) = S) \iff (S_g + (y) \cup S_g - (y) = S))$$

<=>

 \forall S (SSGB => S_g = S) <=> (S_g = S),

which is equivalent to SSGB.

So, we have also shown SSGB.

Note. The above splitting of all the S_g triples into two complementary subsets S_g + and S_g - is independent of our information about S_g and it is also independent of the property behind n. The splitting works solely on the basis of the existence of n.

The main reason for the antinomy above is the formula (NG) which in classical logic is equivalent to \neg SSGB, whereas an intuitionistic interpretation would say: If the set Sg under the assumption of an n ≥ 4 additional to all m equals Sg without this assumption, then that n does not exist, and therefore SSGB holds.