Using HaMMLET

John Wiedenhoeft, Eric Brugel, Alexander Schliep
February 12, 2016

This document describes the usage of HAMMLET on the biorxiv branch at
https://github.com/wiedenhoeft/HaMMLET/tree/biorxiv.
The paper describing the method has been accepted for oral
presentation at RECOMB 2016'; a preprint can be found at
http://biorxiv.org/content/early/2015/07/31/023705.

1 Introduction

HaMMLET is a general-purpose implementation of a Bayesian Hidden Markov Model
(HMM) [1]. In contrast to frequentist HMM using the Baum-Welch algorithm [2, 3]
for parameter estimation and the Viterbi path [4] to derive the most likely state
sequence, HaMMLET provides a full marginal distribution of states for each data
point, thus allowing for alternative interpretations of the data. This is achieved using
a Markov Chain Monte Carlo technique called Forward-Backward Gibbs sampling
[5, 6], which is typically computationally expensive. HaMMLET therefor uses the
Haar wavelet transform to dynamically compress the data into different levels of
spatially localized resolution (in plain English, it dynamically “zooms in” on what it
considers “interesting” regions and treats “boring” regions in a summary fashion),
thereby drastically reducing running times and improving convergence behavior.
The name of the software is a portmanteau of “HMM” and “wavelet”.

Presently, only univariate Gaussian emissions are supported, additional function-
ality for multivariate data and non-Gaussian emissions will be provided in the near
future. A typical biological application for HaMMLET would be the segmentation of
array-based Comparative Genomic Hybridization (aCGH) data into segments that
can be explained statistically as being noisy measurements of a shared underlying
log, intensity ratio. Segments of different log, indicate the presence of genomic
copy-number variants.

2 Preliminaries and Installation

Requirements HaMMLET is implemented in C++ and should compile on all mod-
ern platforms (Linux, Mac, Windows). The wrapper script requires Python? (at least

Ihttp://recomb2016.bioinformatics.ucla.edu/accepted-papers/
2https://www.python.org/


https://github.com/wiedenhoeft/HaMMLET/tree/biorxiv
http://biorxiv.org/content/early/2015/07/31/023705
http://recomb2016.bioinformatics.ucla.edu/accepted-papers/
https://www.python.org/

12 B N

1

I L . I N R O

-
o

version 2.6, tested with 2.7.3 and 2.7.6) with NumPy® (tested with 1.6.2 and 1.8.2).
For plotting, Matplotlib* is required (tested with 1.1.1 and 1.3.1).

HaMMLET is distributed as a Git> repository and currently hosted on GitHub
(https://github.com/wiedenhoeft/HaMMLET/tree/biorxiv). It is recom-
mended to have Git installed, in order to benefit from all the advantages of a
distributed version control system. To pull the repository, open a shell and run

git clone https://github.com/wiedenhoeft/HaMMLET.git
cd HaMMLET

git checkout biorxiv

make .

cd evaluation

Alternatively, if Git is not installed, ignore the first line and download the files
directly as a zip archive from https://github.com/wiedenhoeft/HaMMLET/
zipball/biorxiv into a directory called HaMMLET instead.

After running the commands above, the directory contains a compiled executable
named HaMMLET. However, this file should not be called directly. Instead, the direc-
tory contains a Python wrapper script (hammlet.py) which allows for conveniently
passing options to the executable, handles the plotting etc.; to get a short manpage,
simply run

python hammlet.py -h

3 Data Preparation

The input to HaAMMLET consists of s simple text file containing two tab-separated
columns. The first column is ignored by HaMMLET and can be used for annotations
such as probe identifiers etc.; the second column should contain a floating-point
number representing the value of a data point, cf. the included file sample.csv
for example:

o

0.623454
-0.538821
0.092649
-0.155161
0.456472
-0.748464
0.362765
-0.189305
-0.409891
0.372456

© 00N O WN -

To pass model hyperparameters, a model file can be used. For instance, HaMMLET
includes an example (sample_model.txt) to be used with sample.csv:

Shttp://www.numpy.org/
“http://matplotlib.org/
Shttps://git-scm.com/


https://github.com/wiedenhoeft/HaMMLET/tree/biorxiv
https://github.com/wiedenhoeft/HaMMLET/zipball/biorxiv
https://github.com/wiedenhoeft/HaMMLET/zipball/biorxiv
http://www.numpy.org/
http://matplotlib.org/
https://git-scm.com/

1 AutoNormal,.2,.9,sl
2> AutoNormal, .2,.9,s2
3 AutoNormal, .2,.9,s3
4+ AutoNormal,.2,.9,s4

s AutoNormal,.2,.9,sb

s AutoNormal, .2,.9,s6

7 Categorical,6,100,10,10,10,10,10,al

s Categorical,6,10,100,10,10,10,10,a2

s Categorical,6,10,10,100,10,10,10,a3

10 Categorical,6,10,10,10,100,10,10,a4

un Categorical,6,10,10,10,10,100,10,a5

12 Categorical,6,10,10,10,10,10,100,a6

13 Categorical,6,10,10,10,10,10,10,pi

14+ HMM,6,pi,al,a2,a3,a4,ab,a6,sl,s2,s3,s4,s5,s6

The last line defines an HMM in terms of the number of states (6), followed by
an identifier for the initial state distribution (pi), identifiers for the rows of the
transition matrix (al,...,a6) in order (the i-th entry is the row representing
transitions out of state i), and emission states (s1, . . .,s6); the number of matrix
rows and states must match the one given after HMM. Identifiers can be assigned
arbitrarily, but must be unique for each entry.

The other lines define those entities; note that at the end of each line, the
identifiers (id) used below are assigned. These can be arbitrary alphanumeric
strings, but must be unique for each line.

1 AutoNormal,var,p,id

defines a Normal distribution id using automatic priors with P(0? < var) = p.
Alternatively, a Normal-Inverse Gamma prior NIT'(u, = muO, v =nu,a = alpha, § =
beta) can be assigned manually using

1 Normal,muO,nu,alpha,beta,0,id

The penultimate entry O indicates whether muO represents an actually known mean;
this is used for testing and debugging purposes, and the value should always be set
to 0.

1 Categorical,M,alphal,...,alphaM,id

defines a Dirichlet prior of dimension M (the number of states) with hyperparameters
(ay,...,ay) =(alphal,...,alphaM).
With the data and model files in place, we can now run HaMMLET using

1 python hammlet.py -s6 -i 100 sample_model.txt sample.csv

-1i denotes the number of iterations for the sampler, and —s6 denotes that the model
uses 6 states®. Instead of using a model file, hyperparameters can be passed to the
command line directly if all states are supposed to use automatic priors, and all

®Note that this option will be deprecated in future releases.



-

self-transitions, other transitions and initial state hyperparameters are each equal,
using the option

-aMVPSTI

to create a model with M states, automatic priors P(c2 < V) = P, prior transitions
T, prior self-transitions S and initial state prior (I,...,I). For instance, instead of
using the model file above, we could simply run

python hammlet.py -i 100 -a 6 0.2 0.9 100 10 10 \
modelout.txt sample.csv

indicating that the model file modelout . txt should be created automatically from
the values passed to the option -a. Notice that HaMMLET, by virtue of compression,
is rather robust against choices of hyperparameters for the initial state distribution
(pi) and transitions (al, . .. ,a6), so the last three of those numbers don’t matter
too much, unless they are very high, indicating strong prior belief.

4 Output

HaMMLET’s output is pretty straightforward. For the example above, it creates a file
sample_statesequence.csv (notice that the prefix sample derives from the
input filename, sample.csv), containing a matrix representation of the marginal
counts for each state, separated by whitespace. Each line represents one state,
in the order specified in the model file, and columns contain their respective
counts for each position’. Another file, sample_last_statesequence.csv con-
tains the last sampled state sequence as a single whitespace-separated row. Lastly,
sample_compression_ratio.csv contains the average compression ratio dur-
ing sampling.

5 Plotting

The result of a sampling run can be plotted using the option -p, cf. Fig. 1. Each state
is represented by a color. The top graph shows a scatterplot of the data itself, and
each point is labeled with the color of the state with the highest marginal probability.
The bottom graph shows the marginal distribution of each state; it is a graphical
representation of the matrix in sample_statesequence.csv.

Sometimes, one might wish to get a more detailed picture of what is going on
during sampling. The -P (uppercase) option outputs all sampled values for the
parameters specified in the model file, in text files such as sample_s3.txt, which
contains the sampled means and variances for state s3. These are then plotted to a
file called sample_parameters.png (Fig. 2), which allows to assess the state of
convergence of the Gibbs sampler.

7In future releases, this matrix is likely to be transposed, so that columns represent the states. It has
been kept in this version for reproducibility.



Measurement
o
o

[=]

o
Ll

;

o
'S
Ll

Marginal probabilities

o

¥
Ll

;

o
=]

1 1 1 1 1
5000 10000 15000 20000 25000 30000
Position

o

Figure 1: Example of HaMMLET's output plot (option -p) for sample.csv.

6 Future releases

Future versions of HaMMLET will include support for multivariate data, non-Gaussian
emissions and different priors. Specialized implementations for SNP arrays, read-
depth data from exome sequencing and WGS are underway. We also plan to imple-
ment Dirichlet process priors, so the number of states does not have to be set in
advance. While HaMMLET appears to work well treating aCGH data as equidistant,
more advanced transition kernels are also planned. Notice that the input format
and command line options are likely to change to reflect these extensions.

References

[1] Baum LE, Petrie T. Statistical Inference for Probabilistic Functions of Finite State Markov
Chains. The Annals of Mathematical Statistics. 1966;37(6):1554-1563. Available from:
http://www.jstor.org/stable/2238772.

[2] Bilmes J. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Es-
timation for Gaussian Mixture and Hidden Markov Models; 1998. Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.613.


http://www.jstor.org/stable/2238772
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.613

20 . means . .

LSS v s ‘
0.0 W | L ] ha f

Figure 2: Example of parameter plots using the -P option, for running HaMMLET with
a 6-states on data containing only 5 true states (Fig. 1). Notice that five of the means
and variances converge almost instantly, while the sixth moves around randomly. This
indicates that no observations are assigned to this state and it is sampled solely from
its prior. In other words, superfluous states are ignored in HaMMLET (or any Bayesian
HMM for that matter).

[3] Rabiner LR. A tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE. 1989;77:257-286. Available from: http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=18626.

[4] Viterbi A. Error bounds for convolutional codes and an asymptotically optimum de-
coding algorithm. IEEE Transactions on Information Theory. 1967 Apr;13(2):260-269.
Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1054010.

[5] Chib S. Calculating posterior distributions and modal estimates in Markov mixture
models. Journal of Econometrics. 1996;75(1):79-97. Available from: http://www.
sciencedirect.com/science/article/pii/0304407695017704.

[6] Scott SL. Bayesian Methods for Hidden Markov Models: Recursive Computing in the
21st Century. Journal of the American Statistical Association. 2002;97(457):337-351.
Available from: http://www. jstor.org/stable/3085787.


http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=18626
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=18626
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1054010
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1054010
http://www.sciencedirect.com/science/article/pii/0304407695017704
http://www.sciencedirect.com/science/article/pii/0304407695017704
http://www.jstor.org/stable/3085787

	Introduction
	Preliminaries and Installation
	Data Preparation
	Output
	Plotting
	Future releases

