
Isabelle/DOF
User and Implementation Manual

Achim D. Brucker Burkhart Wolff

March 20, 2021

Department of Computer Science
University of Exeter
Exeter, EX4 4QF
UK

Laboratoire en Recherche en Informatique (LRI)
Université Paris-Saclay

91405 Orsay Cedex
France

Copyright © 2019–2021 University of Exeter, UK
2018–2021 Université Paris-Saclay, France
2018–2019 The University of Sheffield, UK

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANYWAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

SPDX-License-Identifier: BSD-2-Clause

This manual describes Isabelle/DOF version 1.1.0/Isabelle2020. The latest official release is
1.1.0/Isabelle2020 (doi:10.5281/zenodo.4625170). The DOI 10.5281/zenodo.3370482 will
allways point to the latest release. The latest development version as well as official releases
are available at https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF.

Contributors. We would like to thank the following contributors to Isabelle/DOF (in al-
phabetical order): Idir Ait-Sadoune, Paolo Crisafulli, Chantal Keller, and Nicolas Méric.

Acknowledgments. This work has been partially supported by IRT SystemX, Paris-Saclay,
France, and therefore granted with public funds of the Program “Investissements d’Avenir.”

https://doi.org/10.5281/zenodo.4625170
https://doi.org/10.5281/zenodo.3370482
https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF

Contents

1 Introduction 7

2 Background 11
2.1 The Isabelle System Architecture . 11
2.2 The Document Model Required by DOF . 11
2.3 Implementability of the Required Document Model 13

3 Isabelle/DOF: A Guided Tour 17
3.1 Getting Started . 17

3.1.1 Installation . 17
3.1.2 Creating an Isabelle/DOF Project 19

3.2 Writing Academic Publications in scholarly_paper 21
3.2.1 Writing Academic Papers . 21
3.2.2 A Bluffers Guide to the scholarly_paper Ontology 22
3.2.3 Writing Academic Publications I : A Freeform Mathematics Text . . . 23
3.2.4 More Freeform Elements, and Resulting Navigation 26

3.3 Writing Certification Documents (CENELEC_50128) 28
3.3.1 The CENELEC 50128 Example . 28
3.3.2 Modeling CENELEC 50128 . 29
3.3.3 Editing Support for CENELEC 50128 30

3.4 Writing Technical Reports in technical_report 31
3.4.1 A Technical Report with Tight Checking 32

3.5 Style Guide . 33

4 Ontologies and their Development 35
4.1 The Ontology Definition Language (ODL) 36

4.1.1 Some Isabelle/HOL Specification Constructs Revisited 37
4.1.2 Defining Document Classes . 39

4.2 Fundamental Commands of the Isabelle/DOF Core 42
4.2.1 Syntax . 42
4.2.2 Ontologic Text-Elements and their Management 44
4.2.3 Status and Query Commands . 44
4.2.4 Macros . 44

4.3 The Standard Ontology Libraries . 45
4.3.1 Common Ontology Library (COL) 45
4.3.2 The Ontology Isabelle_DOF .scholarly_paper 47
4.3.3 The Ontology Isabelle_DOF .technical_report 51

3

Contents

4.3.4 A Domain-Specific Ontology: Isabelle_DOF .CENELEC_50128 51
4.4 Advanced ODL Concepts . 55

4.4.1 Meta-types as Types . 55
4.4.2 ODL Monitors . 55
4.4.3 ODL Class Invariants . 56

4.5 Technical Infrastructure . 57
4.5.1 Developing Ontologies and their Representation Mappings 57
4.5.2 Document Templates . 58

4.6 Defining Document Templates . 59
4.6.1 The Core Template . 59
4.6.2 Tips, Tricks, and Known Limitations 60

5 Extending Isabelle/DOF 65
5.1 Isabelle/DOF: A User-Defined Plugin in Isabelle/Isar 65
5.2 Programming Antiquotations . 67
5.3 Implementing Second-level Type-Checking 68
5.4 Programming Class Invariants . 68
5.5 Implementing Monitors . 69
5.6 The LATEX-Core of Isabelle/DOF . 69

4

Abstract

Isabelle/DOF provides an implementation of DOF on top of Isabelle/HOL. DOF itself is a
novel framework for defining ontologies and enforcing them during document development
and document evolution. Isabelle/DOF targets use-cases such as mathematical texts refer-
ring to a theory development or technical reports requiring a particular structure. A major
application of DOF is the integrated development of formal certification documents (e. g.,
for Common Criteria or CENELEC 50128) that require consistency across both formal and
informal arguments.
Isabelle/DOF is integrated into Isabelle’s IDE, which allows for smooth ontology devel-

opment as well as immediate ontological feedback during the editing of a document. Its
checking facilities leverage the collaborative development of documents required to be con-
sistent with an underlying ontological structure.
In this user-manual, we give an in-depth presentation of the design concepts of DOF’s

Ontology Definition Language (ODL) and describe comprehensively its major commands.
Many examples show typical best-practice applications of the system.
It is an unique feature of Isabelle/DOF that ontologies may be used to control the link

between formal and informal content in documents in a machine checked way. These links can
connect both text elements as well as formal modelling elements such as terms, definitions,
code and logical formulas, alltogether integrated in a state-of-the-art interactive theorem
prover.

Contents

6

1 Introduction

The linking of the formal to the informal is perhaps the most pervasive challenge in
the digitization of knowledge and its propagation. This challenge incites numerous research
efforts summarized under the labels “semantic web,” “data mining,” or any form of advanced
“semantic” text processing. A key role in structuring this linking play document ontologies
(also called vocabulary in the semantic web community [20]), i. e., a machine-readable form
of the structure of documents as well as the document discourse.
Such ontologies can be used for the scientific discourse within scholarly articles, mathe-

matical libraries, and in the engineering discourse of standardized software certification doc-
uments [3, 7]: certification documents have to follow a structure. In practice, large groups
of developers have to produce a substantial set of documents where the consistency is noto-
riously difficult to maintain. In particular, certifications are centered around the traceability
of requirements throughout the entire set of documents. While technical solutions for the
traceability problem exists (most notably: DOORS [10]), they are weak in the treatment of
formal entities (such as formulas and their logical contexts).
Further applications are the domain-specific discourse in juridical texts or medical reports.

In general, an ontology is a formal explicit description of concepts in a domain of discourse
(called classes), properties of each concept describing attributes of the concept, as well as
links between them. A particular link between concepts is the is-a relation declaring the
instances of a subclass to be instances of the super-class.
To address this challenge, we present the Document Ontology Framework (DOF) and

an implementation of DOF called Isabelle/DOF. DOF is designed for building scalable and
user-friendly tools on top of interactive theorem provers. Isabelle/DOF is an instance of this
novel framework, implemented as extension of Isabelle/HOL, to model typed ontologies and
to enforce them during document evolution. Based on Isabelle’s infrastructures, ontologies
may refer to types, terms, proven theorems, code, or established assertions. Based on a novel
adaption of the Isabelle IDE (called PIDE, [21]), a document is checked to be conform to a
particular ontology—Isabelle/DOF is designed to give fast user-feedback during the capture
of content. This is particularly valuable in case of document evolution, where the coherence
between the formal and the informal parts of the content can be mechanically checked.
To avoid any misunderstanding: Isabelle/DOF is not a theory in HOL on ontologies and

operations to track and trace links in texts, it is an environment to write structured text which
may contain Isabelle/HOL definitions and proofs like mathematical articles, tech-reports and
scientific papers—as the present one, which is written in Isabelle/DOF itself. Isabelle/DOF
is a plugin into the Isabelle/Isar framework in the style of [25].

7

1 Introduction

How to Read This Manual

This manual can be read in different ways, depending on what you want to accomplish. We
see three different main user groups:

1. Isabelle/DOF users, i. e., users that just want to edit a core document, be it for a paper
or a technical report, using a given ontology. These users should focus on Chapter 3
and, depending on their knowledge of Isabelle/HOL, also Chapter 2.

2. Ontology developers, i. e., users that want to develop new ontologies or modify existing
document ontologies. These users should, after having gained acquaintance as a user,
focus on Chapter 4.

3. Isabelle/DOF developers, i. e., users that want to extend or modify Isabelle/DOF, e. g.,
by adding new text-elements. These users should read Chapter 5

Typographical Conventions

We acknowledge that understanding Isabelle/DOF and its implementation in all details re-
quires separating multiple technological layers or languages. To help the reader with this, we
will type-set the different languages in different styles. In particular, we will use

• a light-blue background for input written in Isabelle’s Isar language, e. g.:

Isarlemma refl ∶ x = x
by simp

• a green background for examples of generated document fragments (i. e., PDF output):

Document
The axiom refl

• a red background for (S)ML-code:

SML
fun id x = x

• a yellow background for LATEX-code:

LATEX
\newcommand{\refl}{$x = x$}

• a grey background for shell scripts and interactive shell sessions:

Bash
achim@logicalhacking:~$ ls
CHANGELOG.md CITATION examples install LICENSE README.md ROOTS src

8

How to Cite Isabelle/DOF

If you use or extend Isabelle/DOF in your publications, please use

• for the Isabelle/DOF system [5]:
A. D. Brucker, I. Ait-Sadoune, P. Crisafulli, and B. Wolff. Using the Isabelle ontol-
ogy framework: Linking the formal with the informal. In Conference on Intelligent
Computer Mathematics (CICM), number 11006 in Lecture Notes in Computer Sci-
ence. Springer-Verlag, Heidelberg, 2018. 10.1007/978-3-319-96812-4_3.

A BibTEX-entry is available at: https://www.brucker.ch/bibliography/abstract/
brucker.ea-isabelle-ontologies-2018.

• for the implementation of Isabelle/DOF [4]:
A. D. Brucker and B. Wolff. Isabelle/DOF: Design and implementation. In
P.C. Ölveczky and G. Salaün, editors, Software Engineering and Formal Methods
(SEFM), number 11724 in Lecture Notes in Computer Science. Springer-Verlag,
Heidelberg, 2019. 10.1007/978-3-030-30446-1_15.

A BibTEX-entry is available at: https://www.brucker.ch/bibliography/abstract/
brucker.ea-isabelledof-2019.

Availability

The implementation of the framework is available at https://git.logicalhacking.com/Isabelle_
DOF/Isabelle_DOF. The website also provides links to the latest releases. Isabelle/DOF is
licensed under a 2-clause BSD license (SPDX-License-Identifier: BSD-2-Clause).

9

https://doi.org/10.1007/978-3-319-96812-4_3
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://doi.org/10.1007/978-3-030-30446-1_15
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF
https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF

2 Background

2.1 The Isabelle System Architecture
While Isabelle [18] is widely perceived as an interactive theorem prover for HOL (Higher-

order Logic) [18], we would like to emphasize the view that Isabelle is far more than that:
it is the Eclipse of Formal Methods Tools. This refers to the “generic system framework
of Isabelle/Isar underlying recent versions of Isabelle. Among other things, Isar provides an
infrastructure for Isabelle plug-ins, comprising extensible state components and extensible
syntax that can be bound to ML programs. Thus, the Isabelle/Isar architecture may be
understood as an extension and refinement of the traditional ‘LCF approach’, with explicit
infrastructure for building derivative systems.” [25]
The current system framework offers moreover the following features:
• a build management grouping components into to pre-compiled sessions,

• a prover IDE (PIDE) framework [21] with various front-ends

• documentation-generation,

• code generators for various target languages,

• an extensible front-end language Isabelle/Isar, and,

• last but not least, an LCF style, generic theorem prover kernel as the most prominent
and deeply integrated system component.

The Isabelle system architecture shown in Figure 2.1 comes with many layers, with
Standard ML (SML) at the bottom layer as implementation language. The archi-
tecture actually foresees a Nano-Kernel (our terminology) which resides in the SML
structureContext. This structure provides a kind of container called context providing
an identity, an ancestor-list as well as typed, user-defined state for components (plu-
gins) such as Isabelle/DOF. On top of the latter, the LCF-Kernel, tactics, automated
proof procedures as well as specific support for higher specification constructs were
built.

2.2 The Document Model Required by DOF
In this section, we explain the assumed document model underlying our Document Ontol-

ogy Framework (DOF) in general. In particular we discuss the concepts integrated document,

11

2 Background

PIDE SCALA

PIDE SML

Editor Front-End

Isabelle
evaluation

approx. display

edits markup

Editor Front-End

Isabelle

(e.g., JEdit, VSCode, Eclipse)

PIDE

SML Environment

Integrators
(e.g., sledgehammer)

Project &
Dependency
Management

Code
Generator

Document
Generator

Components
(e.g., datatype, record)

Tactic Procedures
(e.g., simp, fast, metis)

Kernel
(e.g., typ, term, thm,thy)

Nano-Kernel
(e.g., context)

Z3
. . .
CVC4

PDF/LaTeX
. . .
HTML

Haskell
. . .
Scala

Figure 2.1: The system architecture of Isabelle (left-hand side) and the asynchronous com-
munication between the Isabelle system and the IDE (right-hand side).

sub-document, text-element, and semantic macros occurring inside text-elements. Further-
more, we assume two different levels of parsers (for outer and inner syntax) where the
inner-syntax is basically a typed 𝜆-calculus and some Higher-order Logic (HOL).

We assume a hierarchical document model, i. e., an integrated document consist of
a hierarchy sub-documents (files) that can depend acyclically on each other. Sub-
documents can have different document types in order to capture documentations con-
sisting of documentation, models, proofs, code of various forms and other techni-
cal artifacts. We call the main sub-document type, for historical reasons, theory-
files. A theory file consists of a header , a context definition, and a body consist-
ing of a sequence of commands (see Figure 2.2). Even the header consists of a se-
quence of commands used for introductory text elements not depending on any con-
text. The context-definition contains an import and a keyword section, for example:

Isar
theory Example — Name of the ’theory’

imports — Declaration of ’theory’ dependencies
Main — Imports a library called ’Main’

keywords — Registration of keywords defined locally
requirement — A command for describing requirements

where Example is the abstract name of the text-file, Main refers to an imported theory (re-
call that the import relation must be acyclic) and keywords are used to separate commands
from each other.

A text-element may look like this:
Isar

text⟨ According to the * ⟨reflexivity ⟩ axiom @{thm refl},
we obtain in Γ for @{term fac 5} the result @{value fac 5}.⟩

so it is a command text followed by an argument (here in ⟨ ... ⟩ paranthesis) which contains

12

2.3 Implementability of the Required Document Model

characters and and a special notation for semantic macros (here @{term fac 5}).

We distinguish fundamentally two different syntactic levels:
• the outer-syntax (i. e., the syntax for commands) is processed by a lexer-library and

parser combinators built on top, and

• the inner-syntax (i. e., the syntax for 𝜆-terms in HOL) with its own parametric poly-
morphism type checking.
On the semantic level, we assume a validation process for an integrated document,
where the semantics of a command is a transformation 𝜗 → 𝜗 for some system state
𝜗. This document model can be instantiated with outer-syntax commands for common
text elements, e. g., section⟨...⟩ or text⟨...⟩. Thus, users can add informal text to a
sub-document using a text command:

Isartext⟨This is a description.⟩

This will type-set the corresponding text in, for example, a PDF document. However,
this translation is not necessarily one-to-one: text elements can be enriched by formal,
i. e., machine-checked content via semantic macros, called antiquotations:

Isartext⟨ According to the * ⟨reflexivity ⟩ axiom @{thm refl}, we obtain in Γ
for @{term fac 5} the result @{value fac 5}.⟩

which is represented in the final document (e. g., a PDF) by:

Document
According to the reflexivity axiom x = x, we obtain in Γ
for fac 5 the result 120.

Semantic macros are partial functions of type 𝜗 → text; since they can use the system
state, they can perform all sorts of specific checks or evaluations (type-checks, exe-
cutions of code-elements, references to text-elements or proven theorems such as refl,
which is the reference to the axiom of reflexivity).
Semantic macros establish formal content inside informal content; they can be type-
checked before being displayed and can be used for calculations before being typeset.
They represent the device for linking the formal with the informal.

2.3 Implementability of the Required Document Model
Batch-mode checkers for DOF can be implemented in all systems of the LCF-style prover

family, i. e., systems with a type-checked term, and abstract thm-type for theorems (protected
by a kernel). This includes, e. g., ProofPower, HOL4, HOL-light, Isabelle, or Coq and its
derivatives. DOF is, however, designed for fast interaction in an IDE. If a user wants to
benefit from this experience, only Isabelle and Coq have the necessary infrastructure of

13

2 Background

context definition
A header

command
command
command context definition

C header

command
command
command

context definition
B header

command
command
command

context definition
D header

command
command
command

Figure 2.2: A Theory-Graph in the Document Model.

Figure 2.3: The Isabelle/DOF IDE (left) and the corresponding PDF (right), showing the
first page of [5].

asynchronous proof-processing and support by a PIDE [1, 9, 21, 22] which in many features
over-accomplishes the required features of DOF. For example, current Isabelle versions offer
cascade-syntaxes (different syntaxes and even parser-technologies which can be nested along
the ⟨...⟩ barriers), while DOF actually only requires a two-level syntax model.

We call the present implementation of DOF on the Isabelle platform Isabelle/DOF. Fig-
ure 2.3 shows a screen-shot of an introductory paper on Isabelle/DOF [5]: the Isabelle/DOF
PIDE can be seen on the left, while the generated presentation in PDF is shown on the right.

Isabelle provides, beyond the features required for DOF, a lot of additional benefits. Be-
sides UTF8-support for characters used in text-elements, Isabelle offers built-in already a
mechanism user-programmable antiquotations which we use to implement semantic macros
in Isabelle/DOF (We will actually use these two terms as synonym in the context of Is-
abelle/DOF). Moreover, Isabelle/DOF allows for the asynchronous evaluation and checking

14

2.3 Implementability of the Required Document Model

of the document content [1, 21, 22] and is dynamically extensible. Its PIDE provides a contin-
uous build, continuous check functionality, syntax highlighting, and auto-completion. It also
provides infrastructure for displaying meta-information (e. g., binding and type annotation)
as pop-ups, while hovering over sub-expressions. A fine-grained dependency analysis allows
the processing of individual parts of theory files asynchronously, allowing Isabelle to interac-
tively process large (hundreds of theory files) documents. Isabelle can group sub-documents
into sessions, i. e., sub-graphs of the document-structure that can be “pre-compiled” and
loaded instantaneously, i. e., without re-processing, which is an important means to scale up.

15

3 Isabelle/DOF: A Guided Tour
In this chapter, we will give a introduction into using Isabelle/DOF for users that want to

create and maintain documents following an existing document ontology.

3.1 Getting Started
As an alternative to installing Isabelle/DOF locally, the latest official release Isabelle/DOF

is also available on Docker Hub. Thus, if you have Docker installed and your installation of
Docker supports X11 application, you can start Isabelle/DOF as follows:

Bash
achim@logicalhacking:~$ docker run -ti --rm -e DISPLAY=$DISPLAY \

-v /tmp/.X11-unix:/tmp/.X11-unix \
logicalhacking/isabelle_dof-1.1.0_isabelle2020 \
isabelle jedit

3.1.1 Installation
In this section, we will show how to install Isabelle/DOF and its pre-requisites: Isabelle

and LATEX. We assume a basic familiarity with a Linux/Unix-like command line (i.e., a shell).
Isabelle/DOF requires Isabelle (Isabelle2020: April 2020) with a recent LATEX-distribution

(e.g., TexLive 2020 or later). Isabelle/DOF uses a two-part version system (e.g., 1.0.0/2020),
where the first part is the version of Isabelle/DOF (using semantic versioning) and the second
part is the supported version of Isabelle. Thus, the same version of Isabelle/DOF might be
available for different versions of Isabelle.
Installing Isabelle. Please download and install Isabelle (version: Isabelle2020) from the
Isabelle website (https://isabelle.in.tum.de/website-Isabelle2020/). After the successful in-
stallation of Isabelle, you should be able to call the isabelle tool on the command line:

Bash
achim@logicalhacking:~$ isabelle version
Isabelle2020: April 2020

Depending on your operating system and depending if you put Isabelle’s bin directory in
your PATH, you will need to invoke isabelle using its full qualified path, e. g.:

Bash
achim@logicalhacking:~$ /usr/local/IsabelleIsabelle2020

/bin/isabelle version
Isabelle2020: April 2020

17

https://cloud.docker.com/u/logicalhacking/
https://www.docker.com
https://isabelle.in.tum.de/website-Isabelle2020/
https://isabelle.in.tum.de/website-Isabelle2020/

3 Isabelle/DOF: A Guided Tour

Installing TEXLive. Modern Linux distribution will allow you to install TEXLive using their
respective package managers. On a modern Debian system or a Debian derivative (e. g.,
Ubuntu), the following command should install all required LATEX packages:

Bash
achim@logicalhacking:~$ sudo aptitude install texlive-latex-extra \

texlive-fonts-extra

Installing Isabelle/DOF

In the following, we assume that you already downloaded the Isabelle/DOF dis-
tribution (Isabelle_DOF-1.1.0_Isabelle2020.tar.xz) from the Isabelle/DOF web site.
The main steps for installing are extracting the Isabelle/DOF distribution and
calling its install script. We start by extracting the Isabelle/DOF archive:

Bash
achim@logicalhacking:~$ tar xf Isabelle_DOF-1.1.0_Isabelle2020.tar.xz

This will create a directory Isabelle_DOF-1.1.0_Isabelle2020 containing Is-
abelle/DOF distribution. Next, we need to invoke the install script. If necessary,
the installations automatically downloads additional dependencies from the AFP (https:
//www.isa-afp.org), namely the AFP entries “Functional Automata” [16] and “Regular Sets
and Expressions” [14]. This might take a few minutes to complete. Moreover, the installa-
tion script applies a patch to the Isabelle system, which requires write permissions for the
Isabelle system directory and registers Isabelle/DOF as Isabelle component.

If the isabelle tool is not in your PATH, you need to call the install script with the
--isabelle option, passing the full-qualified path of the isabelle tool (install --help
gives you an overview of all available configuration options):

Bash
achim@logicalhacking:~$ cd Isabelle_DOF-1.1.0_Isabelle2020
achim@logicalhacking:~/Isabelle_DOF-1.1.0_Isabelle2020$./install \

--isabelle /usr/local/IsabelleIsabelle2020/bin/isabelle

Isabelle/DOF Installer
======================
* Checking Isabelle version:
Success: found supported Isabelle version (Isabelle2020: April 2020)

* Checking (La)TeX installation:
Success: pdftex supports \expanded{} primitive.

* Check availability of Isabelle/DOF patch:
Warning: Isabelle/DOF patch is not available or outdated.

Trying to patch system
Applied patch successfully, Isabelle/HOL will be rebuilt during
the next start of Isabelle.

* Checking availability of AFP entries:

18

https://artifacts.logicalhacking.com/releases/Isabelle_DOF/Isabelle_DOF/Isabelle_DOF-1.1.0_Isabelle2020.tar.xz
https://artifacts.logicalhacking.com/releases/Isabelle_DOF/Isabelle_DOF/Isabelle_DOF-1.1.0_Isabelle2020.tar.xz
https://www.isa-afp.org
https://www.isa-afp.org

3.1 Getting Started

Bash
Warning: could not find AFP entry Regular-Sets.
Warning: could not find AFP entry Functional-Automata.

Trying to install AFP (this might take a few *minutes*)
Registering Regular-Sets in

/home/achim/.isabelle/IsabelleIsabelle2020/ROOTS
Registering Functional-Automata in

/home/achim/.isabelle/IsabelleIsabelle2020/ROOTS
AFP installation successful.

* Searching for existing installation:
No old installation found.

* Installing Isabelle/DOF
- Installing Tools in

/home/achim/.isabelle/IsabelleIsabelle2020/DOF/Tools
- Installing document templates in

/home/achim/.isabelle/IsabelleIsabelle2020/DOF/document-template
- Installing LaTeX styles in

/home/achim/.isabelle/IsabelleIsabelle2020/DOF/latex
- Registering Isabelle/DOF
* Registering tools in

/home/achim/.isabelle/IsabelleIsabelle2020/etc/settings
* Installation successful. Enjoy Isabelle/DOF, you can build the session
Isabelle/DOF and all example documents by executing:
/usr/local/IsabelleIsabelle2020/bin/isabelle build -D .

After the successful installation, you can explore the examples (in the sub-directory
examples or create your own project. On the first start, the session Isabelle_DOF will be
built automatically. If you want to pre-build this session and all example documents, execute:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.1.0_Isabelle2020$ isabelle build -D \

.

3.1.2 Creating an Isabelle/DOF Project

Isabelle/DOF provides its own variant of Isabelle’s mkroot tool, called mkroot_DOF:
Bash

achim@logicalhacking:~$ isabelle mkroot_DOF myproject

Preparing session "myproject" in "myproject"
creating "myproject/ROOT"
creating "myproject/document/root.tex"

Now use the following command line to build the session:
isabelle build -D myproject

The created project uses the default configuration (the ontology for writing academic
papers (scholarly_paper) using a report layout based on the article class (scrartcl) of

19

3 Isabelle/DOF: A Guided Tour

the KOMA-Script bundle [12]. The directory myproject contains the Isabelle/DOF-setup
for your new document. To check the document formally, including the generation of the
document in PDF, you only need to execute

Bash
achim@logicalhacking:~$ isabelle build -d . myproject

The dictory myproject contains the following files and directories:

myproject
document

build...Build Script
isadof.cfg......................Isabelle/DOF configuraiton
preamble.tex......................Manual LATEX-configuration

ROOT..............................Isabelle build-configuration

The Isabelle/DOF configuration (isadof.cfg) specifies the required ontologies and the
document template using a YAML syntax.1 The main two configuration files for users are:

• The file ROOT, which defines the Isabelle session. New theory files as well as new
files required by the document generation (e. g., images, bibliography database using
BibTEX, local LATEX-styles) need to be registered in this file. For details of Isabelle’s
build system, please consult the Isabelle System Manual [24].

• The file preamble.tex, which allows users to add additional LATEX-packages or to
add/modify LATEX-commands.

Creating a new document setup requires two decisions:

• which ontologies (e. g., scholarly_paper) are required and

• which document template (layout) should be used (e. g., scrartcl). Some templates
(e. g., lncs) require that the users manually obtains and adds the necessary LATEX class
file (e. g., llncs.cls. This is due to licensing restrictions).

This can be configured by using the command-line options of of mkroot_DOF. In Particular,
-o allows selecting the ontology and -t allows to selecting the document template. The
built-in help (using -h) shows all available options as well as a complete list of the available
document templates and ontologies:

1Isabelle power users will recognize that Isabelle/DOF’s document setup does not make use of a file root.
tex: this file is replaced by built-in document templates.

20

3.2 Writing Academic Publications in scholarly_paper

Bash
achim@logicalhacking:~$ isabelle mkroot_DOF -h

Usage: isabelle mkroot_DOF [OPTIONS] [DIR]

Options are:
-h print this help text and exit
-n NAME alternative session name (default: DIR base name)
-o ONTOLOGY (default: scholarly_paper)

Available ontologies:
* CENELEC_50128
* math_exam
* scholarly_paper
* technical_report

-t TEMPLATE (default: scrartcl)
Available document templates:
* lncs
* scrartcl
* scrreprt-modern
* scrreprt

Prepare session root DIR (default: current directory).

3.2 Writing Academic Publications in scholarly_paper
3.2.1 Writing Academic Papers
The ontology scholarly_paper is an ontology modeling academic/scientific papers, with a
slight bias to texts in the domain of mathematics and engineering. We explain first the
principles of its underlying ontology, and then we present two ”real” examples from our own
publication practice.

1. The iFM 2020 paper [19] is a typical mathematical text, heavy in definitions with com-
plex mathematical notation and a lot of non-trivial cross-referencing between state-
ments, definitions and proofs which is ontologically tracked. However, wrt. the possible
linking between the underlying formal theory and this mathematical presentation, it
follows a pragmatic path without any “deep” linking to types, terms and theorems,
deliberately not exploiting Isabelle/DOF’s full potential with this regard.

2. In the CICM 2018 paper [5], we deliberately refrain from integrating references to formal
content in order demonstrate that Isabelle/DOF is not a framework from Isabelle users
to Isabelle users only, but people just avoiding as much as possible LATEX notation.
The Isabelle/DOF distribution contains both examples using the ontology
scholarly_paper in the directory examples/scholarly_paper/2018-cicm-isabelle_
dof-applications/ or examples/scholarly_paper/2020-ifm-csp-applications/.

21

3 Isabelle/DOF: A Guided Tour

You can inspect/edit the example in Isabelle’s IDE, by either

• starting Isabelle/jedit using your graphical user interface (e. g., by clicking on the
Isabelle-Icon provided by the Isabelle installation) and loading the file examples/
scholarly_paper/2018-cicm-isabelle_dof-applications/IsaDofApplications.thy.

• starting Isabelle/jedit from the command line by,e. g., calling:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.1.0_Isabelle2020$
isabelle jedit -d . examples/scholarly_paper/2020-iFM-CSP/paper.thy

You can build the PDF-document at the command line by calling:

Bash
achim@logicalhacking:~$ isabelle build -d . 2020-iFM-csp

3.2.2 A Bluffers Guide to the scholarly_paper Ontology
In this section we give a minimal overview of the ontology formalized in Is-
abelle_DOF .scholarly_paper.

We start by modeling the usual text-elements of an academic paper: the title and author
information, abstract, and text section:

Isardoc_class title =
short_title ∶∶ string option <= None

doc_class subtitle =
abbrev ∶∶ string option <= None

doc_class author =
email ∶∶ string <= ′′′′

http_site ∶∶ string <= ′′′′

orcid ∶∶ string <= ′′′′

affiliation ∶∶ string

doc_class abstract =
keywordlist ∶∶ string list <= []
principal_theorems ∶∶ thm list

Note short_title and abbrev are optional and have the default None (no value). Note
further, that abstracts may have a principal_theorems list, where the built-in Isabelle/DOF
type thm list which contain references to formally proven theorems that must exist in the
logical context of this document; this is a decisive feature of Isabelle/DOF that conventional
ontological languages lack.

22

3.2 Writing Academic Publications in scholarly_paper

We continue by the introduction of a main class: the text-element text_section (in contrast
to figure or table or similar). Note that the main_author is typed with the class author,
a HOL type that is automatically derived from the document class definition author shown
above. It is used to express which author currently “owns” this text_section, an information
that can give rise to presentational or even access-control features in a suitably adapted
front-end.

Isar
doc_class text_section = text_element +
main_author ∶∶ author option <= None
fixme_list ∶∶ string list <= []
level ∶∶ int option <= None

The level-attibute enables doc-notation support for headers, chapters, sections, and sub-
sections; we follow here the LATEX terminology on levels to which Isabelle/DOF is currently
targeting at. The values are interpreted accordingly to the LATEX standard. The correspon-
dance between the levels and the structural entities is summarized as follows:

• part Some −1
• chapter Some 0
• section Some 1
• subsection Some 2
• subsubsection Some 3

Additional means assure that the following invariant is maintained in a document con-
forming to scholarly_paper:

level > 0

The rest of the ontology introduces concepts for introductions, conclusion, related_work,
bibliography etc. More details can be found in scholarly_paper contained ion the theory
Isabelle_DOF .scholarly_paper.

3.2.3 Writing Academic Publications I : A Freeform Mathematics Text
We present a typical mathematical paper focussing on its form, not refering in any sense
to its content which is out of scope here. As mentioned before, we chose the paper [19]
for this purpose, which is written in the so-called free-form style: Formulas are superficially
parsed and type-setted, but no deeper type-checking and checking with the underlying logical
context is undertaken.

The integrated source of this paper-except is shown in Figure 3.1, while the document
build process converts this to the corresponding PDF-output shown in Figure 3.2.

23

3 Isabelle/DOF: A Guided Tour

Figure 3.1: A mathematics paper as integrated document source ...

Figure 3.2: …and as corresponding PDF-output.

24

3.2 Writing Academic Publications in scholarly_paper

Recall that the standard syntax for a text-element in Isabelle/DOF is
text∗[<id>∶∶<class_id>,<attrs>]⟨ ... text ...⟩, but there are a few built-in abbrevia-
tions like title∗[<id>,<attrs>]⟨ ... text ...⟩ that provide special command-level syntax for
text-elements. The other text-elements provide the authors and the abstract as specified by
their class-id referring to the doc_classes of scholarly_paper; we say that these text
elements are instances of the doc_classes of the underlying ontology.

The paper proceeds by providing instances for introduction, technical sections, examples,
etc. We would like to concentrate on one — mathematical paper oriented — detail in the
ontology scholarly_paper:

Isardoc_class technical = text_section + . . .

type_synonym tc = technical

datatype math_content_class = defn ∣ axm ∣ thm ∣ lem ∣ cor ∣ prop ∣ ...

doc_class math_content = tc + ...

doc_class definition = math_content +
mcc ∶∶ math_content_class <= defn ...

doc_class theorem = math_content +
mcc ∶∶ math_content_class <= thm ...

The class technical regroups a number of text-elements that contain typical ”technical
content” in mathematical or engineering papers: code, definitions, theorems, lemmas, exam-
ples. From this class, the more stricter class of math_content is derived, which is grouped
into definitions and theorems (the details of these class definitions are omitted here). Note,
however, that class identifiers can be abbreviated by standard type_synonyms for conve-
nience and enumeration types can be defined by the standard inductive datatype definition
mechanism in Isabelle, since any HOL type is admitted for attibute declarations. Vice-versa,
document class definitions imply a corresponding HOL type definition.

An example for a sequence of (Isabelle-formula-) texts, their ontological declarations as
definitions in terms of the scholarly_paper-ontology and their type-conform referencing
later is shown in Figure 3.3 in its presentation as the integrated source.
Note that the use in the ontology-generated antiquotation @{definition X4} is type-

checked; referencing X4 as theorem would be a type-error and be reported directly by Is-
abelle/DOF in Isabelle/jEdit. Note further, that if referenced correctly wrt. the sub-typing
hierarchy makes X4 navigable in Isabelle/jedit; a click will cause the IDE to present the
defining occurrence of this text-element in the integrated source.

25

3 Isabelle/DOF: A Guided Tour

Figure 3.3: A screenshot of the integrated source with definitions ...

Figure 3.4: ... and the corresponding pdf-oputput.

Note, further, how Isabelle/DOF-commands like text∗ interact with standard Isabelle
document antiquotations described in the Isabelle Isar Reference Manual in Chapter 4.2 in
great detail. We refrain ourselves here to briefly describe three freeform antiquotations used
her in this text:

• the freeform term antiquotation, also called cartouche, written by @{cartouche
[style−parms] ⟨. . .⟩ or just by ⟨...⟩ if the list of style parameters is empty,

• the freeform antiquotation for theory fragments written @{theory_text [style−parms]
⟨...⟩ or just \<^theory_text> \<open>...\<close> if the list of style parameters is
empty,

• the freeform antiquotations for verbatim, emphasized, bold, or footnote text elements.

Isabelle/DOF text-elements such as text∗ allow to have such standard term-
antiquotations inside their text, permitting to give the whole text entity a formal, referen-
tiable status with typed meta- information attached to it that may be used for presentation
issues, search, or other technical purposes. The corresponding output of this snippet in the
integrated source is shown in Figure 3.4.

3.2.4 More Freeform Elements, and Resulting Navigation
In the following, we present some other text-elements provided by the Common Ontology
Library in Isabelle_DOF .Isa_COL. It provides a document class for figures:

26

3.2 Writing Academic Publications in scholarly_paper

Figure 3.5: Declaring figures in the integrated source …

Isar
datatype placement = h ∣ t ∣ b ∣ ht ∣ hb
doc_class figure = text_section +
relative_width ∶∶ int
src ∶∶ string
placement ∶∶ placement
spawn_columns ∶∶ bool <= True

The document class figure (supported by the Isabelle/DOF command abbreviation
figure∗) makes it possible to express the pictures and diagrams as shown in Figure 3.5,
which presents its own representation in the integrated source as screenshot.
Finally, we define a monitor class that enforces a textual ordering in the document core

by a regular expression:

Isar
doc_class article =
style_id ∶∶ string <= ′′LNCS ′′

version ∶∶ (int × int × int) <= (0,0,0)
where (title ∼∼ [[subtitle]] ∼∼ {∣author ∣}$^+$+ ∼∼ abstract ∼∼

introduction ∼∼ {∣technical ∣∣ example∣}$^+$ ∼∼ conclusion ∼∼

bibliography)

In a integrated document source, the body of the content can be paranthesized into:

Isar
open_monitor∗ [this∶∶article]
...
close_monitor∗[this]

which signals to Isabelle/DOF begin and end of the part of the integrated source in which
the text-elements instances are expected to appear in the textual ordering defined by article.
From these class definitions, Isabelle/DOF also automatically generated editing support

for Isabelle/jedit. In Figure 3.6a and Figure 3.6b we show how hovering over links permits
to explore its meta-information. Clicking on a document class identifier permits to hyperlink
into the corresponding class definition (Figure 3.7a); hovering over an attribute-definition
(which is qualified in order to disambiguate; Figure 3.7b) shows its type.
An ontological reference application in Figure 3.8: the ontology-dependant antiquotation

@ {example ...} refers to the corresponding text-elements. Hovering allows for inspection,

27

3 Isabelle/DOF: A Guided Tour

(a) Exploring a reference of a text-element. (b) Exploring the class of a text element.

Figure 3.6: Exploring text elements.

(a) Hyperlink to class-definition. (b) Exploring an attribute.

Figure 3.7: Navigation via generated hyperlinks.

clicking for jumping to the definition. If the link does not exist or has a non-compatible type,
the text is not validated,i. e., Isabelle/jEdit will respond with an error.

3.3 Writing Certification Documents (CENELEC_50128)

3.3.1 The CENELEC 50128 Example

The ontology “CENELEC_50128” is a small ontology modeling documents for a certification
following CENELEC 50128 [3]. The Isabelle/DOF distribution contains a small example using
the ontology “CENELEC_50128” in the directory examples/CENELEC_50128/mini_odo/.
You can inspect/edit the integrated source example by either

• starting Isabelle/jedit using your graphical user interface (e. g., by clicking on the
Isabelle-Icon provided by the Isabelle installation) and loading the file examples/
CENELEC_50128/mini_odo/mini_odo.thy.

• starting Isabelle/jedit from the command line by calling:

Figure 3.8: Exploring an attribute (hyperlinked to the class).

28

3.3 Writing Certification Documents (CENELEC_50128)

Bash
achim@logicalhacking:~/Isabelle_DOF-1.1.0_Isabelle2020$
isabelle jedit examples/CENELEC_50128/mini_odo/mini_odo.thy

Finally, you

• can build the PDF-document by calling:

Bash
achim@logicalhacking:~$ isabelle build mini_odo

3.3.2 Modeling CENELEC 50128
Documents to be provided in formal certifications (such as CENELEC 50128 [3] or Common
Criteria [7]) can much profit from the control of ontological consistency: a substantial amount
of the work of evaluators in formal certification processes consists in tracing down the links
from requirements over assumptions down to elements of evidence, be it in form of semi-
formal documentation, models, code, or tests. In a certification process, traceability becomes
a major concern; and providing mechanisms to ensure complete traceability already at the
development of the integrated source can in our view increase the speed and reduce the
risk certification processes. Making the link-structure machine-checkable, be it between
requirements, assumptions, their implementation and their discharge by evidence (be it tests,
proofs, or authoritative arguments), has the potential in our view to decrease the cost of
software developments targeting certifications.
As in many other cases, formal certification documents come with an own terminology

and pragmatics of what has to be demonstrated and where, and how the traceability of
requirements through design-models over code to system environment assumptions has to
be assured.
In the sequel, we present a simplified version of an ontological model used in a case-

study [2]. We start with an introduction of the concept of requirement:

Isar
doc_class requirement = long_name ∶∶ string option

doc_class requirement_analysis = no ∶∶ nat
where requirement_item +

doc_class hypothesis = requirement +
hyp_type ∶∶ hyp_type <= physical

datatype ass_kind = informal ∣ semiformal ∣ formal

doc_class assumption = requirement +
assumption_kind ∶∶ ass_kind <= informal

29

3 Isabelle/DOF: A Guided Tour

Such ontologies can be enriched by larger explanations and examples, which may help the
team of engineers substantially when developing the central document for a certification, like
an explication of what is precisely the difference between an hypothesis and an assumption
in the context of the evaluation standard. Since the PIDE makes for each document class
its definition available by a simple mouse-click, this kind on meta-knowledge can be made
far more accessible during the document evolution.

For example, the term of category assumption is used for domain-specific assumptions. It
has formal, semi-formal and informal sub-categories. They have to be tracked and discharged
by appropriate validation procedures within a certification process, be it by test or proof. It
is different from a hypothesis, which is globally assumed and accepted.

In the sequel, the category exported constraint (or ec for short) is used for formal as-
sumptions, that arise during the analysis, design or implementation and have to be tracked
till the final evaluation target, and discharged by appropriate validation procedures within
the certification process, be it by test or proof. A particular class of interest is the category
safety related application condition (or SRAC for short) which is used for ec’s that establish
safety properties of the evaluation target. Their traceability throughout the certification is
therefore particularly critical. This is naturally modeled as follows:

Isar
doc_class ec = assumption +

assumption_kind ∶∶ ass_kind <= formal

doc_class SRAC = ec +
assumption_kind ∶∶ ass_kind <= formal

We now can, e. g., write

Isar
text∗[ass123∶∶SRAC]⟨

The overall sampling frequence of the odometer subsystem is therefore
14 khz, which includes sampling , computing and result communication
times \ldots

⟩

This will be shown in the PDF as follows:

SRAC 1. The overall sampling frequence of the odometer subsystem is therefore 14
khz, which includes sampling, computing and result communication times …

Note that this pdf-output is the result of a specific setup for ”SRAC”s.

3.3.3 Editing Support for CENELEC 50128
The corresponding view in Figure 3.9 shows core part of a document conforming to the
CENELEC 50128 ontology. The first sample shows standard Isabelle antiquotations [23] into

30

3.4 Writing Technical Reports in technical_report

Figure 3.9: Standard antiquotations referring to theory elements.

Figure 3.10: Defining a ”SRAC” in the integrated source …

formal entities of a theory. This way, the informal parts of a document get “formal content”
and become more robust under change.

TODO: The screenshot (figures/srac-definition) of the figure figfig5 should be updated to
have a SRAC type in uppercase.

The subsequent sample in Figure 3.10 shows the definition of an safety-related application
condition, a side-condition of a theorem which has the consequence that a certain calcula-
tion must be executed sufficiently fast on an embedded device. This condition can not be
established inside the formal theory but has to be checked by system integration tests. Now
we reference in Figure 3.11 this safety-related condition; however, this happens in a context
where general exported constraints are listed. Isabelle/DOF’s checks establish that this is
legal in the given ontology.

3.4 Writing Technical Reports in technical_report
While it is perfectly possible to write documents in the technical_report ontology in freeform-
style (the present manual is mostly an example for this category), we will briefly explain here

Figure 3.11: Using a ”SRAC” as ”EC” document element.

31

3 Isabelle/DOF: A Guided Tour

the tight-checking-style in which most Isabelle reference manuals themselves are written.
The idea has already been put forward by Isabelle itself; besides the general infrastructure

on which this work is also based, current Isabelle versions provide around 20 built-in document
and code antiquotations described in the Reference Manual pp.75 ff. in great detail.

Most of them provide strict-checking, i. e. the argument strings where parsed and machine-
checked in the underlying logical context, which turns the arguments into formal content in
the integrated source, in contrast to the free-form antiquotations which basically influence
the presentation.

We still mention a few of these document antiquotations here:

• @{thm ⟨refl ⟩} or @{thm [display] ⟨refl ⟩} check that refl is indeed a reference to a
theorem; the additional ”style” argument changes the presentation by printing the
formula into the output instead of the reference itself,

• @{lemma ⟨prop⟩ } by ⟨method ⟩ allows to derive prop on the fly, thus garantee that it
is a corrollary of the current context,

• @{term ⟨term⟩ } parses and type-checks term,

• @{value ⟨term⟩ } performs the evaluation of term,

• @{ML ⟨ml−term⟩ } parses and type-checks ml−term,

• @{ML_file ⟨ml−file⟩ } parses the path for ml−file and verifies its existance in the
(Isabelle-virtual) file-system.

There are options to display sub-parts of formulas etc., but it is a consequence of tight-
checking that the information must be given complete and exactly in the syntax of Isabelle.
This may be over-precise and a burden to readers not familiar with Isabelle, which may
motivate authors to choose the aforementioned freeform-style.

3.4.1 A Technical Report with Tight Checking
An example of tight checking is a small programming manual developed by the second author
in order to document programming trick discoveries while implementing in Isabelle. While
not necessarily a meeting standards of a scientific text, it appears to us that this information
is often missing in the Isabelle community.

So, if this text addresses only a very limited audience and will never be famous for its
style, it is nevertheless important to be exact in the sense that code-snippets and interface
descriptions should be accurate with the most recent version of Isabelle in which this doc-
ument is generated. So its value is that readers can just reuse some of these snippets and
adapt them to their purposes.

TR_MyCommentedIsabelle is written according to the Isabelle_DOF .technical_report on-
tology. Figure 3.12 shows a snippet from this integrated source and gives an idea why its
tight-checking allows for keeping track of underlying Isabelle changes: Any reference to an

32

3.5 Style Guide

Figure 3.12: A table with a number of SML functions, together with their type.

SML operation in some library module is type-checked, and the displayed SML-type really
corresponds to the type of the operations in the underlying SML environment. In the pdf
output, these text-fragments were displayed verbatim.

3.5 Style Guide
The document generation of Isabelle/DOF is based on Isabelle’s document generation frame-
work, using LATEX as the underlying back-end. As Isabelle’s document generation framework,
it is possible to embed (nearly) arbitrary LATEX-commands in text-commands, e. g.:

Isar
text⟨ This is \emph{emphasized} and this is a

citation∼\cite{brucker .ea∶isabelle−ontologies∶2018}⟩

In general, we advise against this practice and, whenever positive, use the Isabelle/DOF
(respetively Isabelle) provided alternatives:

Isar
text⟨ This is ∗⟨emphasized ⟩ and this is a

citation @{cite brucker .ea∶isabelle−ontologies∶2018}.⟩

Clearly, this is not always possible and, in fact, often Isabelle/DOF documents will con-
tain LATEX-commands, this should be restricted to layout improvements that otherwise are
(currently) not possible. As far as possible, the use of LATEX-commands should be restricted
to the definition of ontologies and document templates (see Chapter 4).
Restricting the use of LATEX has two advantages: first, LATEX commands can circumvent

the consistency checks of Isabelle/DOF and, hence, only if no LATEX commands are used,
Isabelle/DOF can ensure that a document that does not generate any error messages in
Isabelle/jedit also generated a PDF document. Second, future version of Isabelle/DOF
might support different targets for the document generation (e. g., HTML) which, naturally,
are only available to documents not using too complex native LATEX-commands.
Similarly, (unchecked) forward references should, if possible, be avoided, as they also

might create dangling references during the document generation that break the document
generation.

33

3 Isabelle/DOF: A Guided Tour

Finally, we recommend to use the check_doc_global command at the end of your doc-
ument to check the global reference structure.

34

4 Ontologies and their Development
In this chapter, we explain the concepts of Isabelle/DOF in a more systematic way, and

give guidelines for modeling new ontologies, present underlying concepts for a mapping to a
representation, and give hints for the development of new document templates.
Isabelle/DOF is embedded in the underlying generic document model of Isabelle as de-

scribed in Section 2.2. Recall that the document language can be extended dynamically,
i. e., new user−defined can be introduced at run-time. This is similar to the definition of
new functions in an interpreter. Isabelle/DOF as a system plugin provides a number of new
command definitions in Isabelle’s document model.
Isabelle/DOF consists consists basically of five components:
• the DOF-core providing the ontology definition language (called ODL) which allow for

the definitions of document-classes and necessary auxiliary datatypes,

• the DOF-core also provides an own family of commands such as text∗,
declare_reference∗, etc.; They allow for the annotation of text-elements with meta-
information defined in ODL,

• the Isabelle/DOF library of ontologies providing ontological concepts as well as sup-
porting infrastructure,

• an infrastructure for ontology-specific layout definitions, exploiting this meta-
information, and

• an infrastructure for generic layout definitions for documents following, e. g., the format
guidelines of publishers or standardization bodies.

Similarly to Isabelle, which is based on a core logic Pure and then extended by libraries to
major systems like HOL, Isabelle/DOF has a generic core infrastructure DOF and then presents
itself to users via major library extensions, which add domain-specific system-extensions. On-
tologies in Isabelle/DOF are not just a sequence of descriptions in Isabelle/DOF’s Ontology
Definition Language (ODL). Rather, they are themselves presented as integrated sources that
provide textual decriptions, abbreviations, macro-support and even ML-code. Conceptually,
the library of Isabelle/DOF is currently organized as follows1:

COL..The Common Ontology Library
scholarly_paper..Scientific Papers

technical_report......................................Extended Papers
CENELEC_50128................Papers according to CENELEC_50128
CC_v3_1_R5 Papers according to Common Criteria
…

1Note that the technical organisation is slightly different and shown in Section 4.5.

35

4 Ontologies and their Development

These libraries not only provide ontological concepts, but also syntactic sugar in Isabelle’s
command language Isar that is of major importance for users (and may be felt as Is-
abelle/DOF key features by many authors). In reality, they are derived concepts from more
generic ones; for example, the commands title∗, section∗, subsection∗, etc, are in real-
ity a kind of macros for text∗[<label>∶∶title]..., text∗[<label>∶∶section]..., respectively.
These example commands are defined in the COL.

As mentioned earlier, our ontology framework is currently particularly geared towards
document editing, structuring and presentation (future applications might be advanced
”knowledge-based” search procedures as well as tool interaction). For this reason, ontologies
are coupled with layout definitions allowing an automatic mapping of an integrated source
into LATEX and finally PDF. The mapping of an ontology to a specific representation in LATEX
is steered via associated LATEX stylefiles which were included during Isabelle’s document gen-
eration process. This mapping is potentially a one-to-many mapping; this implies a certain
technical organisation and some resulting restrictions described in Section 4.5 in more detail.

4.1 The Ontology Definition Language (ODL)
ODL shares some similarities with meta-modeling languages such as UML class models:
It builds upon concepts like class, inheritance, class-instances, attributes, references to in-
stances, and class-invariants. Some concepts like advanced type-checking, referencing to
formal entities of Isabelle, and monitors are due to its specific application in the Isabelle
context. Conceptually, ontologies specified in ODL consist of:

• document classes (doc_class) that describe concepts;

• an optional document base class expressing single inheritance class extensions;

• attributes specific to document classes, where

– attributes are HOL-typed;
– attributes of instances of document elements are mutable;
– attributes can refer to other document classes, thus, document classes must also

be HOL-types (such attributes are called links);
– attribute values were denoted by HOL-terms;

• a special link, the reference to a super-class, establishes an is-a relation between classes;

• classes may refer to other classes via a regular expression in a where clause;

• attributes may have default values in order to facilitate notation.

The Isabelle/DOF ontology specification language consists basically on a notation for
document classes, where the attributes were typed with HOL-types and can be instanti-
ated by HOL-terms, i. e., the actual parsers and type-checkers of the Isabelle system were

36

4.1 The Ontology Definition Language (ODL)

reused. This has the particular advantage that Isabelle/DOF commands can be arbitrarily
mixed with Isabelle/HOL commands providing the machinery for type declarations and term
specifications such as enumerations. In particular, document class definitions provide:

• a HOL-type for each document class as well as inheritance,

• support for attributes with HOL-types and optional default values,

• support for overriding of attribute defaults but not overloading, and

• text-elements annotated with document classes; they are mutable instances of docu-
ment classes.

Attributes referring to other ontological concepts are called links. The HOL-types inside
the document specification language support built-in types for Isabelle/HOL typ’s, term’s,
and thm’s reflecting internal Isabelle’s internal types for these entities; when denoted in HOL-
terms to instantiate an attribute, for example, there is a specific syntax (called inner syntax
antiquotations) that is checked by Isabelle/DOF for consistency.
Document classes support where-clauses containing a regular expression over class names.

Classes with a where were called monitor classes. While document classes and their inher-
itance relation structure meta-data of text-elements in an object-oriented manner, monitor
classes enforce structural organization of documents via the language specified by the regular
expression enforcing a sequence of text-elements.
A major design decision of ODL is to denote attribute values by HOL-terms and HOL-

types. Consequently, ODL can refer to any predefined type defined in the HOL library, e. g.,
string or int as well as parameterized types, e. g., _ option, _ list, _ set, or products _ ×
_. As a consequence of the document model, ODL definitions may be arbitrarily intertwined
with standard HOL type definitions. Finally, document class definitions result in themselves
in a HOL-type in order to allow links to and between ontological concepts.

4.1.1 Some Isabelle/HOL Specification Constructs Revisited

As ODL is an extension of Isabelle/HOL, document class definitions can therefore be arbitrar-
ily mixed with standard HOL specification constructs. To make this manual self-contained,
we present syntax and semantics of the specification constructs that are most likely relevant
for the developer of ontologies (for more details, see [23]. Our presentation is a simplification
of the original sources following the needs of ontology developers in Isabelle/DOF:

• name: with the syntactic category of name’s we refer to alpha-numerical identifiers
(called short_ident’s in [23]) and identifiers in ... which might contain certain “quasi-
letters” such as _, −, . (see [23] for details).

• tyargs:

37

4 Ontologies and their Development

typefree�
� (

����
� typefree�

� ,
���

�

�

)
���

�

typefree denotes fixed type variable(′a, ′b, ...) (see [23])

• dt_name:

�
� tyargs

�

name �
�mixfix

�

The syntactic entity name denotes an identifier, mixfix denotes the usual parenthesized
mixfix notation (see [23]). The name’s referred here are type names such as int,
string, list, set, etc.

• type_spec:

�
� tyargs

�

name

The name’s referred here are type names such as int, string, list, set, etc.

• type:

�
� (

����
� type�

� ,
���

�

�

)
���

�

name�

� typefree

�

• dt_ctor :

name �
� type

�

�
�mixfix

�

• datatype_specification:

38

4.1 The Ontology Definition Language (ODL)

datatype
�� �dt-name =

����
� dt-ctor�

� |
���

�

�

• type_synonym_specification:

type_synonym
�� �type-spec =

���type

• constant_definition :

definition
�� �name ::

�� �type where
�� �"

���name =
����

�
� expr "

���
• expr : the syntactic category expr here denotes the very rich “inner-syntax” language

of mathematical notations for 𝜆-terms in Isabelle/HOL. Example expressions are: 1+2
(arithmetics), [1,2 ,3] (lists), ab c (strings), {1,2 ,3} (sets), (1,2 ,3) (tuples), ∀ x. P(x)
∧ Q x = C (formulas). For details, see [17].

Advanced ontologies can, e. g., use recursive function definitions with pattern-
matching [13], extensible record specifications [23], and abstract type declarations.

Note that Isabelle/DOF works internally with fully qualified names in order to avoid con-
fusions occurring otherwise, for example, in disjoint class hierarchies. This also extends to
names for doc_classes, which must be representable as type-names as well since they can
be used in attribute types. Since theory names are lexically very liberal (0.thy is a legal theory
name), this can lead to subtle problems when constructing a class: foo can be a legal name
for a type definition, the corresponding type-name 0.foo is not. For this reason, additional
checks at the definition of a doc_class reject problematic lexical overlaps.

4.1.2 Defining Document Classes

A document class can be defined using the doc_class keyword:

• class_id : a type-name that has been introduced via a doc_class_specification.

• doc_class_specification: We call document classes with an accepts_clause monitor
classes or monitors for short.

39

4 Ontologies and their Development

doc_class
�� �class-id =

����
� class-id +

���
�

attribute-decl�
�

�

�
�

��
� invariant-decl

�

�
� accepts-clause �

� rejects-clause

�

�

• attribute_decl :

name ::
�� �"

���type "
����

� default-clause

�

• invariant_decl : Invariants can be specified as predicates over document classes repre-
sented as records in HOL. Note that sufficient type information must be provided in
order to disambiguate the argument of the 𝜆-expression.

inv
�� ��

� name ::
�� �

�

"
���term "

���

• accepts_clause:

accepts
�� �"

���regexpr "
���

• rejects_clause:

rejects
�� ��

� class-id�
� ,

���
�

�

• default_clause:

<=
�� �"

���expr "
���

• regexpr :

40

4.1 The Ontology Definition Language (ODL)

⌊
���class-id ⌋

����
� (

���regexpr)
���� regexpr ||

�� �regexpr

� regexpr ~~
�� �regexpr

� {∣
���regexpr ∣}

���� {∣
���regexpr ∣}∗

�� �

�

Regular expressions describe sequences of class_ids (and indirect sequences of docu-
ment items corresponding to the class_ids). The constructors for alternative, sequence,
repetitions and non-empty sequence follow in the top-down order of the above diagram.

Isabelle/DOF provides a default document representation (i. e., content and layout of the
generated PDF) that only prints the main text, omitting all attributes. Isabelle/DOF provides
the \newisadof[]{} command for defining a dedicated layout for a document class in LATEX.
Such a document class-specific LATEX-definition can not only provide a specific layout (e. g.,
a specific highlighting, printing of certain attributes), it can also generate entries in the table
of contents or an index. Overall, the \newisadof[]{} command follows the structure of the
doc_class-command:

LATEX
\newisadof{class_id}[label=,type=, attribute_decl][1]{%
% LATEX-definition of the document class representation
\begin{isamarkuptext}%
#1%
\end{isamarkuptext}%
}

The class_id is the full-qualified name of the document class and the list of attribute_decl
needs to declare all attributes of the document class. Within the LATEX-definition of the
document class representation, the identifier #1 refers to the content of the main text of
the document class (written in ⟨ ... ⟩) and the attributes can be referenced by their name
using the \commandkey{...}-command (see the documentation of the LATEX-package “key-
command” [6] for details). Usually, the representations definition needs to be wrapped in a
\begin{isarmarkup}...\end{isamarkup}-environment, to ensure the correct context within
Isabelle’s LATEX-setup. (* *) Moreover, Isabelle/DOF also provides the following two variants
of \newisadof{}[]{}:

• \renewisadof{}[]{} for re-defining (over-writing) an already defined command, and

• \provideisadof{}[]{} for providing a definition if it is not yet defined.

41

4 Ontologies and their Development

While arbitrary LATEX-commands can be used within these commands, special care is re-
quired for arguments containing special characters (e. g., the underscore “_”) that do have a
special meaning in LATEX. Moreover, as usual, special care has to be taken for commands that
write into aux-files that are included in a following LATEX-run. For such complex examples,
we refer the interested reader to the style files provided in the Isabelle/DOF distribution. In
particular the definitions of the concepts title∗ and author∗ in the file ../../../src/
ontologies/scholarly_paper/DOF-scholarly_paper.sty show examples of protecting
special characters in definitions that need to make use of a entries in an aux-file.

4.2 Fundamental Commands of the Isabelle/DOF Core

Besides the core-commands to define an ontology as presented in the previous section, the
Isabelle/DOF core provides a number of mechanisms to use the resulting data to annotate
text-elements and, in some cases, terms.

4.2.1 Syntax

In the following, we formally introduce the syntax of the core commands as supported on
the Isabelle/Isar level. Note that some more advanced functionality of the Core is currently
only available in the SML API’s of the kernel.

• meta_args :

obj-id ::
�� �class-id �

� term =
���attribute ,

���
�

• upd_meta_args :

obj-id ::
�� �class-id �

� term =
����

� +=
�� �

�

attribute ,
���

�

• annotated_text_element :

42

4.2 Fundamental Commands of the Isabelle/DOF Core

text*
�� �[

���meta-args]
��� ⟨

���text ⟩
����

� open_monitor*
�� ��

� close_monitor*
�� �� declare_reference*
�� �

�

[
���meta-args]

���
�

�

� change-status-command

� inspection-command

�macro-command

�

• Isabelle/DOF change_status_command :

update_instance*
�� �[

���upd-meta-args]
����

� declare_reference*
�� �obj-id ::

�� �class-id

�

• Isabelle/DOF inspection_command :

print_doc_classes
�� ��

� print_doc_items
�� �� check_doc_global
�� �

�

• Isabelle/DOF macro_command :

define_shortcut*
�� �name ⇌

�� ��
� ==

�� �
�

⟨
���string ⟩

����
� define_macro*

�� �name ⇌
�� ��

� ==
�� �

�

�
�

� ⟨
���string ⟩

���_
��� ⟨

���string ⟩
���

�

Recall that with the exception of text∗ … , all Isabelle/DOF commands were mapped to

visible layout (such as LATEX); these commands have to be wrapped into (*<*) ... (*>*)
brackets if this is undesired.

43

4 Ontologies and their Development

4.2.2 Ontologic Text-Elements and their Management
text∗[oid ∶∶cid , ...] ⟨ … text … ⟩ is the core-command of Isabelle/DOF: it permits to create
an object of meta-data belonging to the class cid. This is viewed as the definition of an
instance of a document class. This instance object is attached to the text-element and makes
it thus ”trackable” for Isabelle/DOF, i. e., it can be referenced via the oid, its attributes can
be set by defaults in the class-definitions, or set at creation time, or modified at any point
after creation via update_instance∗[oid , ...]. The class_id is syntactically optional; if
ommitted, an object belongs to an anonymous superclass of all classes. The class_id is used
to generate a class-type in HOL; note that this may impose lexical restrictions as well as to
name-conflicts in the surrounding logical context. In many cases, it is possible to use the
class-type to denote the class_id ; this also holds for type-synonyms on class-types.

References to text-elements can occur textually before creation; in these cases, they must
be declared via declare_reference∗[...] in order to compromise to Isabelle’s fundamental
”declaration-before-use” linear-visibility evaluation principle. The forward-declared class-type
must be identical with the defined class-type.

For a declared class cid, there exists a text antiquotation of the form @{cid ⟨oid ⟩}. The pre-
cise presentation is decided in the layout definitions, for example by suitable LATEX-template
code. Declared but not yet defined instances must be referenced with a particular pragma
in order to enforce a relaxed checking @{cid (unchecked) ⟨oid ⟩}.

4.2.3 Status and Query Commands
Isabelle/DOF provides a number of inspection commands.

• print_doc_classes allows to view the status of the internal class-table resulting from
ODL definitions,

• DOF_core.print_doc_class_tree allows for presenting (fragments) of class-
inheritance trees (currently only available at ML level),

• print_doc_items allows to view the status of the internal object-table of text-
elements that were tracked, and

• check_doc_global checks if all declared object references have been defined, all mon-
itors are in a final state, and checks the final invariant on all objects (cf. Section 4.4)

4.2.4 Macros
There is a mechanism to define document-local macros which were PIDE-supported but lead
to an expansion in the integrated source; this feature can be used to define

• shortcuts, i. e., short names that were expanded to, for example, LATEX-code,

• macro’s (= parameterized short-cuts), which allow for passing an argument to the
expansion mechanism.

44

4.3 The Standard Ontology Libraries

The argument can be checked by an own SML-function with respect to syntactic as well
as semantic regards; however, the latter feature is currently only accessible at the SML level
and not directly in the Isar language. We would like to stress, that this feature is basically
an abstract interface to existing Isabelle functionality in the document generation.

Examples

• common short-cut hiding LATEX code in the integrated source:

define_shortcut∗ eg ⇌ ⟨\eg ⟩

clearpage ⇌ ⟨\clearpage{}⟩

• non-checking macro:

define_macro∗ index ⇌ ⟨\index{⟩ _ ⟨}⟩

• checking macro:

setup⟨ DOF_lib.define_macro binding ⟨vs ⟩ \\vspace{ } (check_latex_measure) ⟩

where check_latex_measure is a hand-programmed function that checks the input
for syntactical and static semantic constraints.

4.3 The Standard Ontology Libraries
We will describe the backbone of the Standard Library with the already mentioned hierar-
chy COL (the common ontology library), scholarly_paper (for MINT-oriented scientific
papers), technical_report (for MINT-oriented technical reports), and the example for a
domain-specific ontology CENELEC_50128.

4.3.1 Common Ontology Library (COL)
Isabelle/DOF provides a Common Ontology Library (COL) 2 that introduces several ontology
concepts; its overall class-tree it provides looks as follows:

2contained in Isabelle_DOF .Isa_COL

45

4 Ontologies and their Development

Isa_COL.text_element
Isa_COL.chapter
Isa_COL.section
Isa_COL.subsection
Isa_COL.subsubsection

Isa_COL.figure
Isa_COL.side_by_side_figure

Isa_COL.figure_group
…

In particular it defines the super-class text_element: the root of all text-elements:

Isar
doc_class text_element =
level ∶∶ int option <= None
referentiable ∶∶ bool <= False
variants ∶∶ String .literal set <= {STR ′′outline ′′, STR ′′document ′′}

As mentioned in Section 3.2.2 (without explaining the origin of text_element) , level de-
fines the section-level (e. g., using a LATEX-inspired hierarchy: from Some −1 (corresponding
to \part) to Some 0 (corresponding to \chapter, respectively, chapter∗) to Some 3 (corre-
sponding to \subsubsection, respectively, subsubsection∗). Using an invariant, a derived
ontology could, e. g., require that any sequence of technical-elements must be introduced by
a text-element with a higher level (this requires that technical text section are introduce by
a section element).

The attribute tech_example.referentiable captures the information if a text-element can
be target for a reference, which is the case for sections or subsections, for example, but
not arbitrary elements such as, i. e., paragraphs (this mirrors restrictions of the target LATEX
representation). The attribute variants refers to an Isabelle-configuration attribute that
permits to steer the different versions a LATEX-presentation of the integrated source.

For further information of the root classes such as figure’s, please consult the ontology
Isabelle_DOF .Isa_COL directly. COL finally provides macros that extend the command-
language of the DOF-core by the following abbreviations:

• derived_text_element :

46

4.3 The Standard Ontology Libraries

chapter*
�� ��

� section*
�� �� subsection*
�� �� subsubsection*
�� �� paragraph*
�� �� subparagraph*
�� �� figure*
�� �� side_by_side_figure*
�� �

�

�

�
� [

���meta-args]
��� ⟨

���text ⟩
���

Note that the command syntax follows the implicit convention to add a ”*” to the com-
mand in order to distinguish them from the standard Isabelle text-commands which are not
”ontology-aware” but function similar otherwise.

4.3.2 The Ontology Isabelle_DOF .scholarly_paper

The scholarly_paper ontology is oriented towards the classical domains in science:

1. mathematics

2. informatics

3. natural sciences

4. technology and/or engineering

It extends COL by the following concepts:

47

4 Ontologies and their Development

scholarly_paper.title
scholarly_paper.subtitle
scholarly_paper.author......................An Author Entity Declaration
scholarly_paper.abstract
Isa_COL.text_element

scholarly_paper.text_section...............Major Paper Text-Elements
scholarly_paper.introduction...
scholarly_paper.conclusion...

scholarly_paper.related_work.....................................
scholarly_paper.bibliography...
scholarly_paper.annex...
scholarly_paper.example...................Example in General Sense
scholarly_paper.technical..............Root for Technical Content

scholarly_paper.math_content.....................................
scholarly_paper.definition...........................Freeform
scholarly_paper.lemma.................................Freeform
scholarly_paper.theorem...............................Freeform
scholarly_paper.corollary............................Freeform
scholarly_paper.math_example.........................Freeform
scholarly_paper.math_semiformal.....................Freeform
scholarly_paper.math_formal.......Formal(=Checked) Content

scholarly_paper.assertion......................Assertions
scholarly_paper.tech_example.....................................
scholarly_paper.math_motivation..................................
scholarly_paper.math_explanation................................
scholarly_paper.engineering_content.............................

scholarly_paper.data
scholarly_paper.evaluation
scholarly_paper.experiment

..
..
scholarly_paper.article..................................The Paper Monitor
…

A pivotal abstract class in the hierarchy is:

Isar
doc_class text_section = text_element +
main_author ∶∶ author option <= None
fixme_list ∶∶ string list <= []
level ∶∶ int option <= None

Besides attributes of more practical considerations like a fixme-list, that can be modified
during the editing process but is only visible in the integrated source but usually ignored in the

48

4.3 The Standard Ontology Libraries

LATEX, this class also introduces the possibility to assign an ”ownership” or ”responsibility”
of a text-element to a specific author. Note that this is possible since Isabelle/DOF assigns
to each document class also a class-type which is declared in the HOL environment.

Recall that concrete authors can be denoted by term-antiquotations generated by Is-
abelle/DOF; for example, this may be for a text fragment like

Isartext∗[… ∶∶example, main_author = Some(@{docitem ′′bu ′′}∶∶author)] ⟨⟨⟩ … ⟨⟩⟩

or

Isartext∗[… ∶∶example, main_author = Some(@{docitem ⟨bu⟩}∶∶author)] ⟨⟨⟩ … ⟨⟩⟩

where ′′bu ′′ is a string presentation of the reference to the author text element (see below
in Section 4.3.1).

Some of these concepts were supported as command-abbreviations leading to the extension
of the Isabelle/DOF language:

• derived_text_elements :

author*
�� ��

� abstract*
�� �� Definition*
�� �� Lemma*
�� �� Theorem*
�� �

�

�

�
� [

���meta-args]
��� ⟨

���text ⟩
���

�

� assert*
�� �[

���meta-args]
��� ⟨

���term ⟩
���

�

Usually, command macros for text elements will assign to the default class corresponding
for this class. For pragmatic reasons, Definition∗, Lemma∗ and Theorem∗ represent an ex-
ception of this rule and are set up such that the default class is the super class math_content
(rather than to the class definition). This way, it is possible to use these macros for several
different sorts of the very generic concept ”definition”, which can be used as a freeform
mathematical definition but also for a freeform terminological definition as used in certifica-
tion standards. Moreover, new subclasses of math_content might be introduced in a derived
ontology with an own specific layout definition.

While this library is intended to give a lot of space to freeform text elements in order
to counterbalance Isabelle’s standard view, it should not be forgot that the real strength of

49

4 Ontologies and their Development

Isabelle is its ability to handle both - and to establish links between both worlds. Therefore
the formal assertion command has been integrated to capture some form of formal content.

Examples

While the default user interface for class definitions via the text∗⟨ ... ⟩-command allow to
access all features of the document class, Isabelle/DOF provides short-hands for certain,
widely-used, concepts such as title∗⟨ ... ⟩ or section∗⟨ ... ⟩, e. g.:

Isar
title∗[title∶∶title]⟨Isabelle/DOF ⟩

subtitle∗[subtitle∶∶subtitle]⟨User and Implementation Manual ⟩

author∗[adb∶∶author , email=⟨a.brucker@exeter .ac.uk ⟩,
orcid=⟨0000−0002−6355−1200 ⟩, http_site=⟨https∶//brucker .ch/⟩,
affiliation=⟨University of Exeter , Exeter , UK ⟩] ⟨Achim D. Brucker ⟩

author∗[bu∶∶author , email = ⟨wolff @lri .fr ⟩,
affiliation = ⟨Université Paris−Saclay , LRI, Paris, France⟩]⟨Burkhart Wolff ⟩

Assertions allow for logical statements to be checked in the global context). This is
particularly useful to explore formal definitions wrt. to their border cases.
assert∗[ass1∶∶assertion, short_name = ⟨This is an assertion⟩] ⟨last [3] < (4∶∶int)⟩

We want to check the consequences of this definition and can add the following statements:

Isar
text∗[claim∶∶assertion]⟨For non−empty lists, our definition yields indeed

the last element of a list.⟩

assert∗[claim1∶∶assertion] last[4∶∶int] = 4
assert∗[claim2 ∶∶assertion] last[1,2 ,3,4∶∶int] = 4

As mentioned before, the command macros of Definition∗, Lemma∗ and Theorem∗ set
the default class to the super-class of definition. However, in order to avoid the somewhat
tedious consequence:

IsarTheorem∗[T1∶∶theorem, short_name=⟨DF definition captures deadlock−freeness ⟩] ⟨⟨⟩ … ⟨⟩⟩

the choice of the default class can be influenced by setting globally an attribute such as

Isardeclare[[Definition_default_class = definition]]
declare[[Theorem_default_class = theorem]]

which allows the above example be shortened to:

IsarTheorem∗[T1, short_name=⟨DF definition captures deadlock−freeness ⟩] ⟨⟨⟩ … ⟨⟩⟩

50

4.3 The Standard Ontology Libraries

4.3.3 The Ontology Isabelle_DOF .technical_report

The technical_report ontology extends scholarly_paper by concepts needed for larger
reports in the domain of mathematics and engineering. The concepts are fairly high-level
arranged at root-class level,

technical_report.front_matter..
technical_report.table_of_contents
Isa_COL.text_element...

scholarly_paper.text_section..
technical_report.code

technical_report.SML...
technical_report.ISAR..
technical_report.LATEX...

technical_report.index...
..
technical_report.report..

4.3.4 A Domain-Specific Ontology: Isabelle_DOF .CENELEC_50128

The CENELEC_50128 is qn exqmple of q domqin-specific ontology. It is based on
technical_report since we assume that this kind of format will be most appropriate for
this type of long-and-tedious documents,

51

4 Ontologies and their Development

CENELEC_50128.judgement..
CENELEC_50128.test_item..

CENELEC_50128.test_case..
CENELEC_50128.test_tool..
CENELEC_50128.test_result..
CENELEC_50128.test_adm_role...
CENELEC_50128.test_environment..
CENELEC_50128.test_requirement..
CENELEC_50128.test_specification.......................................

CENELEC_50128.objectives..
CENELEC_50128.design_item...

CENELEC_50128.interface..
CENELEC_50128.sub_requirement..
CENELEC_50128.test_documentation...
Isa_COL.text_element...

CENELEC_50128.requirement..
CENELEC_50128.AC...

CENELEC_50128.EC
CENELEC_50128.SRAC..

CENELEC_50128.TC...
CENELEC_50128.FnI..
CENELEC_50128.SIR..
CENELEC_50128.CoAS...
CENELEC_50128.HtbC...
CENELEC_50128.SILA...
CENELEC_50128.assumption...
CENELEC_50128.hypothesis...

CENELEC_50128.security_hyp..
CENELEC_50128.safety_requirement....................................

CENELEC_50128.cenelec_text
CENELEC_50128.SWAS...
[...]

scholarly_paper.text_section..
scholarly_paper.technical..

scholarly_paper.math_content.....................................
CENELEC_50128.semi_formal_content............................

..

Examples

The category “exported constraint (EC)” is, in the file ../../../src/ontologies/
CENELEC_50128/CENELEC_50128.thy defined as follows:

52

4.3 The Standard Ontology Libraries

Isar
doc_class requirement = text_element +
long_name ∶∶ string option
is_concerned ∶∶ role set

doc_class AC = requirement +
is_concerned ∶∶ role set <= UNIV

doc_class EC = AC +
assumption_kind ∶∶ ass_kind <= formal

We now define the document representations, in the file ../../../src/ontologies/
CENELEC_50128/DOF-CENELEC_50128.sty. Let us assume that we want to register the
definition of EC’s in a dedicated table of contents (tos) and use an earlier defined environ-
ment \begin{EC}...\end{EC} for their graphical representation. Note that the \newisadof
{}[]{}-command requires the full-qualified names, e. g., text.CENELEC_50128 .EC for the
document class and CENELEC_50128 .requirement.long_name for the attribute long_name,
inherited from the document class requirement. The representation of EC’s can now be de-
fined as follows:

LATEX
\newisadof{text.CENELEC_50128.EC}%
[label=,type=%
,Isa_COL.text_element.level=%
,Isa_COL.text_element.referentiable=%
,Isa_COL.text_element.variants=%
,CENELEC_50128.requirement.is_concerned=%
,CENELEC_50128.requirement.long_name=%
,CENELEC_50128.EC.assumption_kind=][1]{%
\begin{isamarkuptext}%

\ifthenelse{\equal{\commandkey{CENELEC_50128.requirement.long_name}}{}}{%
% If long_name is not defined, we only create an entry in the table tos
% using the auto-generated number of the EC
\begin{EC}%

\addxcontentsline{tos}{chapter}[]{\autoref{\commandkey{label}}}%
}{%
% If long_name is defined, we use the long_name as title in the
% layout of the EC, in the table "tos" and as index entry. .
\begin{EC}[\commandkey{CENELEC_50128.requirement.long_name}]%
\addxcontentsline{toe}{chapter}[]{\autoref{\commandkey{label}}: %

\commandkey{CENELEC_50128.requirement.long_name}}%
\DOFindex{EC}{\commandkey{CENELEC_50128.requirement.long_name}}%

}%
\label{\commandkey{label}}% we use the label attribute as anchor
#1% The main text of the EC

\end{EC}
\end{isamarkuptext}%
}

53

4 Ontologies and their Development

For Isabelle Hackers: Defining New Top-Level Commands

Defining such new top-level commands requires some Isabelle knowledge as well as extending
the dispatcher of the LATEX-backend. For the details of defining top-level commands, we refer
the reader to the Isar manual [23]. Here, we only give a brief example how the section∗-
command is defined; we refer the reader to the source code of Isabelle/DOF for details.

First, new top-level keywords need to be declared in the keywords-section of the theory
header defining new keywords:

Isar
theory

...
imports

...
keywords
section∗

begin
...
end

Second, given an implementation of the functionality of the new keyword (implemented
in SML), the new keyword needs to be registered, together with its parser, as outer syntax:

SML
val _ =
Outer_Syntax.command ("section*", @{here}) "section heading"
(attributes -- Parse.opt_target -- Parse.document_source --| semi
>> (Toplevel.theory o (enriched_document_command (SOME(SOME 1))

{markdown = false})));

Finally, for the document generation, a new dispatcher has to be defined in LATEX—this
is mandatory, otherwise the document generation will break. These dispatcher always follow
the same schemata:

LATEX
%%
% begin: section*-dispatcher
\NewEnviron{isamarkupsection*}[1][]{\isaDof[env={section},#1]{\BODY}}
% end: section*-dispatcher
%%

After the definition of the dispatcher, one can, optionally, define a custom representation
using the newisadof-command, as introduced in the previous section:

54

4.4 Advanced ODL Concepts

LATEX
\newisadof{section}[label=,type=][1]{%
\isamarkupfalse%
\isamarkupsection{#1}\label{\commandkey{label}}%

\isamarkuptrue%
}

4.4 Advanced ODL Concepts

4.4.1 Meta-types as Types

To express the dependencies between text elements to the formal entities, e. g., term (𝜆-
term), typ, or thm, we represent the types of the implementation language inside the HOL
type system. We do, however, not reflect the data of these types. They are just declared
abstract types, “inhabited” by special constant symbols carrying strings, for example of the
format @{thm <string>}. When HOL expressions were used to denote values of doc_class
instance attributes, this requires additional checks after conventional type-checking that this
string represents actually a defined entity in the context of the system state 𝜗. For example,
the establish attribute in the previous section is the power of the ODL: here, we model a
relation between claims and results which may be a formal, machine-check theorem of type
thm denoted by, for example: property = [@{thm system_is_safe}] in a system context 𝜗
where this theorem is established. Similarly, attribute values like property = @{term ⟨A
↔ B⟩} require that the HOL-string A ↔ B is again type-checked and represents indeed a
formula in 𝜗. Another instance of this process, which we call second−level type−checking,
are term-constants generated from the ontology such as @{definition <string>}.

4.4.2 ODL Monitors

We call a document class with an accept-clause a monitor. Syntactically, an accept-clause
contains a regular expression over class identifiers. For example:

Isar
doc_class article = style_id ∶∶ string <= ′′CENELEC_50128 ′′

accepts (title ∼∼ {∣author ∣}+ ∼∼ abstract ∼∼ {∣introduction∣}+ ∼∼

{∣technical ∣∣ example∣}+ ∼∼ {∣conclusion∣}+)

Semantically, monitors introduce a behavioral element into ODL:

Isar
open_monitor∗[this∶∶article]

...
close_monitor∗[this]

55

4 Ontologies and their Development

Inside the scope of a monitor, all instances of classes mentioned in its accept-clause (the
accept-set) have to appear in the order specified by the regular expression; instances not
covered by an accept-set may freely occur. Monitors may additionally contain a reject-clause
with a list of class-ids (the reject-list). This allows specifying ranges of admissible instances
along the class hierarchy:

• a superclass in the reject-list and a subclass in the accept-expression forbids instances
superior to the subclass, and

• a subclass 𝑆 in the reject-list and a superclass T in the accept-list allows instances of
superclasses of T to occur freely, instances of T to occur in the specified order and
forbids instances of S.

Monitored document sections can be nested and overlap; thus, it is possible to combine
the effect of different monitors. For example, it would be possible to refine the example
section by its own monitor and enforce a particular structure in the presentation of examples.

Monitors manage an implicit attribute trace containing the list of “observed” text element
instances belonging to the accept-set. Together with the concept of ODL class invariants,
it is possible to specify properties of a sequence of instances occurring in the document
section. For example, it is possible to express that in the sub-list of introduction-elements,
the first has an introduction element with a level strictly smaller than the others. Thus, an
introduction is forced to have a header delimiting the borders of its representation. Class
invariants on monitors allow for specifying structural properties on document sections.

4.4.3 ODL Class Invariants
Ontological classes as described so far are too liberal in many situations. For example, one
would like to express that any instance of a result class finally has a non-empty property list,
if its kind is proof, or that the establish relation between claim and result is surjective.

In a high-level syntax, this type of constraints could be expressed, e. g., by:

Isar
∀ x ∈ result. x@kind = pr$$oof ↔ x@kind ≠ []
∀ x ∈ conclusion. ∀ y ∈ Domain(x@establish)

→ ∃ y ∈ Range(x@establish). (y ,z) ∈ x@establish
∀ x ∈ introduction. finite(x@authored_by)

where result, conclusion, and introduction are the set of all possible instances of these
document classes. All specified constraints are already checked in the IDE of DOF while
editing; it is however possible to delay a final error message till the closing of a monitor
(see next section). The third constraint enforces that the user sets the authored_by set,
otherwise an error will be reported.

For the moment, there is no high-level syntax for the definition of class invariants. A
formulation, in SML, of the first class-invariant in Section 4.4.3 is straight-forward:

56

4.5 Technical Infrastructure

SML
fun check_result_inv oid {is_monitor:bool} ctxt =
let val kind = compute_attr_access ctxt "kind" oid @{here} @{here}

val prop = compute_attr_access ctxt "property" oid @{here} @{here}
val tS = HOLogic.dest_list prop

in case kind_term of
@{term "proof"} => if not(null tS) then true

else error("class result invariant violation")
| _ => false

end
val _ = Theory.setup (DOF_core.update_class_invariant

"tiny_cert.result" check_result_inv)

The Theory.setup-command (last line) registers the check_result_inv function into the
Isabelle/DOF kernel, which activates any creation or modification of an instance of result. We
cannot replace compute_attr_access by the corresponding antiquotation @{docitem_value
kind ∶∶oid}, since oid is bound to a variable here and can therefore not be statically expanded.

4.5 Technical Infrastructure
The list of fully supported (i. e., supporting both interactive ontological modeling and docu-
ment generation) ontologies and the list of supported document templates can be obtained by
calling isabelle mkroot_DOF -h (see Section 3.1.2). Note that the postfix -UNSUPPORTED
denotes experimental ontologies or templates for which further manual setup steps might be
required or that are not fully tested. Also note that the LATEX-class files required by the
templates need to be already installed on your system. This is mostly a problem for pub-
lisher specific templates (e. g., Springer’s llncs.cls), which cannot be re-distributed due
to copyright restrictions.

4.5.1 Developing Ontologies and their Representation Mappings
The document core may, but must not use Isabelle definitions or proofs for checking the
formal content—this manual is actually an example of a document not containing any proof.
Consequently, the document editing and checking facility provided by Isabelle/DOF addresses
the needs of common users for an advanced text-editing environment, neither modeling nor
proof knowledge is inherently required.
We expect authors of ontologies to have experience in the use of Isabelle/DOF, basic

modeling (and, potentially, some basic SML programming) experience, basic LATEX knowl-
edge, and, last but not least, domain knowledge of the ontology to be modeled. Users with
experience in UML-like meta-modeling will feel familiar with most concepts; however, we ex-
pect no need for insight in the Isabelle proof language, for example, or other more advanced
concepts.
Technically, ontologies are stored in a directory src/ontologies and consist of a Isabelle

theory file and a LATEX -style file:

57

4 Ontologies and their Development

src
ontologies...Ontologies

ontologies.thy.............................Ontology Registration
scholarly_paper...................................scholarly_paper

scholarly_paper.thy
DOF-scholarly_paper.sty

technical_report..................................technical_paper
technical_report.thy
DOF-technical_report.sty

CENELEC_50128..CENELEC_50128
CENELEC_50128.thy
DOF-CENELEC_50128.sty

…

Developing a new ontology “foo” requires, from a technical perspective, the following
steps:

• create a new sub-directory foo in the directory src/ontologies

• definition of the ontological concepts, using Isabelle/DOF’s Ontology Definition Lan-
guage (ODL), in a new theory file src/ontologies/foo/foo.thy.

• definition of the document representation for the ontological concepts in a LATEX-style
file src/ontologies/foo/DOF-foo.sty

• registration (as import) of the new ontology in the file. src/ontologies/
ontologies.thy.

• activation of the new document setup by executing the install script. You can skip the
lengthy checks for the AFP entries and the installation of the Isabelle patch by using
the --skip-patch-and-afp option:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.1.0_Isabelle2020$./install \

--skip-patch-and-afp

4.5.2 Document Templates
Document-templates define the overall layout (page size, margins, fonts, etc.) of the gener-
ated documents and are the the main technical means for implementing layout requirements
that are, e. g., required by publishers or standardization bodies. Document-templates are
stored in a directory src/document-templates:

58

4.6 Defining Document Templates

src
document-templates................................Document templates

root-lncs.tex
root-scrartcl.tex
root-scrreprt-modern.tex
root-scrreprt.tex

Developing a new document template “bar” requires the following steps:

• develop a new LATEX-template src/document-templates/root-bar.tex

• activation of the new document template by executing the install script. You can skip
the lengthy checks for the AFP entries and the installation of the Isabelle patch by
using the --skip-patch-and-afp option:

Bash
achim@logicalhacking:~/Isabelle_DOF-1.1.0_Isabelle2020$./install \

--skip-patch-and-afp

As the document generation of Isabelle/DOF is based on LATEX, the Isabelle/DOF docu-
ment templates can (and should) make use of any LATEX-classes provided by publishers or
standardization bodies.

4.6 Defining Document Templates

4.6.1 The Core Template

Document-templates define the overall layout (page size, margins, fonts, etc.) of the gener-
ated documents and are the the main technical means for implementing layout requirements
that are, e. g., required by publishers or standardization bodies. If a new layout is already
supported by a LATEX-class, then developing basic support for it is straight forwards: after
reading the authors guidelines of the new template, Developing basic support for a new doc-
ument template is straight forwards In most cases, it is sufficient to replace the document
class in Line 1 of the template and add the LATEX-packages that are (strictly) required by
the used LATEX-setup. In general, we recommend to only add LATEX-packages that are always
necessary fro this particular template, as loading packages in the templates minimizes the
freedom users have by adapting the preample.tex. Moreover, you might want to add/-
modify the template specific configuration (Line 22-24). The new template should be stored
in src/document-templates and its file name should start with the prefix root-. After
adding a new template, call the install script (see Section 4.5 The common structure of
an Isabelle/DOF document template looks as follows:

59

4 Ontologies and their Development

LATEX
1 \documentclass{article} % The LaTeX-class of your template
2 %% The following part is (mostly) required by Isabelle/DOF, do not modify
3 \usepackage[T1]{fontenc} % Font encoding
4 \usepackage[utf8]{inputenc} % UTF8 support
5 \usepackage{xcolor}
6 \usepackage{isabelle,isabellesym,amssymb} % Required (by Isabelle)
7 \usepackage{amsmath} % Used by some ontologies
8 \bibliographystyle{abbrv}
9 \IfFileExists{DOF-core.sty}{}{ % Required by Isabelle/DOF

10 \PackageError{DOF-core}{The document preparation
11 requires the Isabelle/DOF framework.}{For further help, see
12 https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF
13 }
14 \input{ontologies} % This will include the document specific
15 % ontologies from isadof.cfg
16 \IfFileExists{preamble.tex}{\input{preamble.tex}}{}
17 \usepackage{graphicx} % Required for images.
18 \usepackage[caption]{subfig}
19 \usepackage[size=footnotesize]{caption}
20 \usepackage{hyperref} % Required by Isabelle/DOF
21

22 %% Begin of template specific configuration
23 \urlstyle{rm}
24 \isabellestyle{it}
25

26 %% Main document, do not modify
27 \begin{document}
28 \maketitle\input{session}
29 \IfFileExists{root.bib}{\bibliography{root}}{}
30 \end{document}

4.6.2 Tips, Tricks, and Known Limitations
In this section, we will discuss several tips and tricks for developing new or adapting existing
document templates or LATEX-representations of ontologies.

Getting Started

In general, we recommend to create a test project (e. g., using isabelle mkroot_DOF) to
develop new document templates or ontology representations. The default setup of the
Isabelle/DOF build system generated a output/document directory with a self-contained
LATEX-setup. In this directory, you can directly use LATEX on the main file, called root.tex:

Bash
achim@logicalhacking:~/MyProject/output/document$ pdflatex root.tex

60

https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF

4.6 Defining Document Templates

This allows you to develop and check your LATEX-setup without the overhead of running
isabelle build after each change of your template (or ontology-style). Note that the
content of the output directory is overwritten by executing isabelle build.

Truncated Warning and Error Messages

By default, LATEX cuts of many warning or error messages after 79 characters. Due to the
use of full-qualified names in Isabelle/DOF, this can often result in important information
being cut off. Thus, it can be very helpful to configure LATEX in such a way that it prints
long error or warning messages. This can easily be done for individual LATEX invocations:

Bash
achim@logicalhacking:~/MyProject/output/document$ max_print_line=200 \

error_line=200 half_error_line=100 pdflatex root.tex

Deferred Declaration of Information

During document generation, sometimes, information needs to be printed prior to its decla-
ration in a Isabelle/DOF theory. This violation the declaration-before-use-principle requires
that information is written into an auxiliary file during the first run of LATEX so that the
information is available at further runs of LATEX. While, on the one hand, this is a stan-
dard process (e. g., used for updating references), implementing it correctly requires a solid
understanding of LATEX’s expansion mechanism. In this context, the recently introduced \
expanded{}-primitive (see https://www.texdev.net/2018/12/06/a-new-primitive-expanded)
is particularly useful. Examples of its use can be found, e. g., in the ontology-styles ../../
../src/ontologies/scholarly_paper/DOF-scholarly_paper.sty or ../../../src/
ontologies/CENELEC_50128/DOF-CENELEC_50128.sty. For details about the expansion
mechanism in general, we refer the reader to the LATEX literature (e. g., [8, 11, 15]).

Authors and Affiliation Information

In the context of academic papers, the defining the representations for the author and af-
filiation information is particularly challenges as, firstly, they inherently are breaking the
declare-before-use-principle and, secondly, each publisher uses a different LATEX-setup for
their declaration. Moreover, the mapping from the ontological modeling to the document
representation might also need to bridge the gap between different common modeling styles
of authors and their affiliations, namely: affiliations as attributes of authors vs. authors and
affiliations both as entities with a many-to-many relationship.
The ontology representation ../../../src/ontologies/scholarly_paper/DOF-

scholarly_paper.sty contains an example that, firstly, shows how to write the author
and affiliation information into the auxiliary file for re-use in the next LATEX-run and, sec-
ondly, shows how to collect the author and affiliation information into an \author and a
\institution statement, each of which containing the information for all authors. The
collection of the author information is provided by the following LATEX-code:

61

https://www.texdev.net/2018/12/06/a-new-primitive-expanded

4 Ontologies and their Development

LATEX
\def\dof@author{}%
\newcommand{\DOFauthor}{\author{\dof@author}}
\AtBeginDocument{\DOFauthor}
\def\leftadd#1#2{\expandafter\leftaddaux\expandafter{#1}{#2}{#1}}
\def\leftaddaux#1#2#3{\gdef#3{#1#2}}
\newcounter{dof@cnt@author}
\newcommand{\addauthor}[1]{%
\ifthenelse{\equal{\dof@author}{}}{%
\gdef\dof@author{#1}%

}{%
\leftadd\dof@author{\protect\and #1}%

}
}

The new command \addauthor and a similarly defined command \addaffiliation
can now be used in the definition of the representation of the concept

text.scholarly_paper .author, which writes the collected information in the job’s aux-file. The
intermediate step of writing this information into the job’s aux-file is necessary, as the author
and affiliation information is required right at the begin of the document while Isabelle/DOF
allows to define authors at any place within a document:

LATEX
\provideisadof{text.scholarly_paper.author}%
[label=,type=%
,scholarly_paper.author.email=%
,scholarly_paper.author.affiliation=%
,scholarly_paper.author.orcid=%
,scholarly_paper.author.http_site=%
][1]{%
\stepcounter{dof@cnt@author}
\def\dof@a{\commandkey{scholarly_paper.author.affiliation}}
\ifthenelse{\equal{\commandkey{scholarly_paper.author.orcid}}{}}{%
\immediate\write\@auxout%

{\noexpand\addauthor{#1\noexpand\inst{\thedof@cnt@author}}}%
}{%
\immediate\write\@auxout%

{\noexpand\addauthor{#1\noexpand%
\inst{\thedof@cnt@author}%

\orcidID{\commandkey{scholarly_paper.author.orcid}}}}%
}
\protected@write\@auxout{}{%

\string\addaffiliation{\dof@a\\\string\email{%
\commandkey{scholarly_paper.author.email}}}}%

}

Finally, the collected information is used in the \author command using the
AtBeginDocument-hook:

62

4.6 Defining Document Templates

LATEX
\newcommand{\DOFauthor}{\author{\dof@author}}
\AtBeginDocument{%
\DOFauthor

}

Restricting the Use of Ontologies to Specific Templates

As ontology representations might rely on features only provided by certain templates (LATEX-
classes), authors of ontology representations might restrict their use to specific classes. This
can, e. g., be done using the \@ifclassloaded{} command:

LATEX
\@ifclassloaded{llncs}{}%
{% LLNCS class not loaded

\PackageError{DOF-scholarly_paper}
{Scholarly Paper only supports LNCS as document class.}{}\stop%

}

For a real-world example testing for multiple classes, see ../../../src/ontologies/
scholarly_paper/DOF-scholarly_paper.sty:
We encourage this clear and machine-checkable enforcement of restrictions while, at the

same time, we also encourage to provide a package option to overwrite them. The latter
allows inherited ontologies to overwrite these restrictions and, therefore, to provide also
support for additional document templates. For example, the ontology technical_report
extends the scholarly_paper ontology and its LATEX supports provides support for the scrrept
-class which is not supported by the LATEX support for scholarly_paper.

Outdated Version of comment.sty

Isabelle’s LATEX-setup relies on an ancient version of comment.sty that, moreover, is used
in plainTEX-mode. This is known to cause issues with some modern LATEX-classes such as
LPICS. Such a conflict might require the help of an Isabelle wizard.

63

5 Extending Isabelle/DOF
In this chapter, we describe the basic implementation aspects of Isabelle/DOF, which is

based on the following design-decisions:
• the entire Isabelle/DOF is a “pure add-on,” i. e., we deliberately resign on the possibility

to modify Isabelle itself.

• we made a small exception to this rule: the Isabelle/DOF package modifies in its
installation about 10 lines in the LATEX-generator (src/patches/thy_output.ML).

• we decided to make the markup-generation by itself to adapt it as well as possible to
the needs of tracking the linking in documents.

• Isabelle/DOF is deeply integrated into the Isabelle’s IDE (PIDE) to give immediate
feedback during editing and other forms of document evolution.

Semantic macros, as required by our document model, are called document antiquotations
in the Isabelle literature [23]. While Isabelle’s code-antiquotations are an old concept going
back to Lisp and having found via SML and OCaml their ways into modern proof systems,
special annotation syntax inside documentation comments have their roots in documentation
generators such as Javadoc. Their use, however, as a mechanism to embed machine-checked
formal content is usually very limited and also lacks IDE support.

5.1 Isabelle/DOF: A User-Defined Plugin in Isabelle/Isar
A plugin in Isabelle starts with defining the local data and registering it in the framework.
As mentioned before, contexts are structures with independent cells/compartments having
three primitives init, extend and merge. Technically this is done by instantiating a functor
Generic_Data, and the following fairly typical code-fragment is drawn from Isabelle/DOF:

SML
structure Data = Generic_Data
(type T = docobj_tab * docclass_tab * ...

val empty = (initial_docobj_tab, initial_docclass_tab, ...)
val extend = I
fun merge((d1,c1,...),(d2,c2,...)) = (merge_docobj_tab (d1,d2,...),

merge_docclass_tab(c1,c2,...))
);

where the table docobj_tab manages document classes and docclass_tab the environ-
ment for class definitions (inducing the inheritance relation). Other tables capture, e. g.,

65

5 Extending Isabelle/DOF

the class invariants, inner-syntax antiquotations. Operations follow the MVC-pattern, where
Isabelle/Isar provides the controller part. A typical model operation has the type:

SML
val opn :: <args_type> -> Context.generic -> Context.generic

representing a transformation on system contexts. For example, the operation of declaring
a local reference in the context is presented as follows:

SML
fun declare_object_local oid ctxt =
let fun decl {tab,maxano} = {tab=Symtab.update_new(oid,NONE) tab,

maxano=maxano}
in (Data.map(apfst decl)(ctxt)
handle Symtab.DUP _ =>

error("multiple declaration of document reference"))
end

where Data.map is the update function resulting from the instantiation of the functor
Generic_Data. This code fragment uses operations from a library structure Symtab that
were used to update the appropriate table for document objects in the plugin-local state.
Possible exceptions to the update operation were mapped to a system-global error reporting
function.

Finally, the view-aspects were handled by an API for parsing-combinators. The library
structure Scan provides the operators:

SML
op || : ('a -> 'b) * ('a -> 'b) -> 'a -> 'b
op -- : ('a -> 'b * 'c) * ('c -> 'd * 'e) -> 'a -> ('b * 'd) * 'e
op >> : ('a -> 'b * 'c) * ('b -> 'd) -> 'a -> 'd * 'c
op option : ('a -> 'b * 'a) -> 'a -> 'b option * 'a
op repeat : ('a -> 'b * 'a) -> 'a -> 'b list * 'a

for alternative, sequence, and piping, as well as combinators for option and repeat. Parsing
combinators have the advantage that they can be smoothlessly integrated into standard
programs, and they enable the dynamic extension of the grammar. There is a more high-
level structure Parse providing specific combinators for the command-language Isar:

66

5.2 Programming Antiquotations

SML
val attribute = Parse.position Parse.name

-- Scan.optional(Parse.$$$ "=" |-- Parse.!!! Parse.name)"";
val reference = Parse.position Parse.name

-- Scan.option (Parse.$$$ "::" |-- Parse.!!!
(Parse.position Parse.name));

val attributes =(Parse.$$$ "[" |-- (reference
-- (Scan.optional(Parse.$$$ ","

|--(Parse.enum ","attribute)))[]))--| Parse.$$$ "]"

The “model” declare_reference_opn and “new” attributes parts were combined via the
piping operator and registered in the Isar toplevel:

SML
fun declare_reference_opn (((oid,_),_),_) =

(Toplevel.theory (DOF_core.declare_object_global oid))
val _ = Outer_Syntax.command @{command_keyword "declare_reference"}

"declare document reference"
(attributes >> declare_reference_opn);

Altogether, this gives the extension of Isabelle/HOL with Isar syntax and semantics for
the new command :

Isar
declare_reference [lal ∶∶requirement, alpha=main, beta=42]

The construction also generates implicitly some markup information; for example, when
hovering over the declare_reference command in the IDE, a popup window with the text:
“declare document reference” will appear.

5.2 Programming Antiquotations
The definition and registration of text antiquotations and ML-antiquotations is similar in
principle: based on a number of combinators, new user-defined antiquotation syntax and
semantics can be added to the system that works on the internal plugin-data freely. For
example, in

SML
val _ = Theory.setup(

Thy_Output.antiquotation @{binding docitem}
docitem_antiq_parser
(docitem_antiq_gen default_cid) #>

ML_Antiquotation.inline @{binding docitem_value}
ML_antiq_docitem_value)

67

5 Extending Isabelle/DOF

the text antiquotation docitem is declared and bounded to a parser for the argument
syntax and the overall semantics. This code defines a generic antiquotation to be used in
text elements such as

Isar
text⟨as defined in <@>{docitem ⟨d1⟩} ...⟩

The subsequent registration docitem_value binds code to a ML-antiquotation usable in
an ML context for user-defined extensions; it permits the access to the current “value” of
document element, i. e.; a term with the entire update history.

It is possible to generate antiquotations dynamically, as a consequence of a class definition
in ODL. The processing of the ODL class definition also generates a text antiquotation
@{definition ⟨d1⟩}, which works similar to @{docitem ⟨d1⟩} except for an additional type-
check that assures that d1 is a reference to a definition. These type-checks support the
subclass hierarchy.

5.3 Implementing Second-level Type-Checking

On expressions for attribute values, for which we chose to use HOL syntax to avoid that users
need to learn another syntax, we implemented an own pass over type-checked terms. Stored
in the late-binding table ISA_transformer_tab, we register for each inner-syntax-annotation
(ISA’s), a function of type

SML
theory -> term * typ * Position.T -> term option

Executed in a second pass of term parsing, ISA’s may just return None. This is adequate
for ISA’s just performing some checking in the logical context theory; ISA’s of this kind
report errors by exceptions. In contrast, transforming ISA’s will yield a term; this is adequate,
for example, by replacing a string-reference to some term denoted by it. This late-binding
table is also used to generate standard inner-syntax-antiquotations from a doc_class.

5.4 Programming Class Invariants

For the moment, there is no high-level syntax for the definition of class invariants. A formu-
lation, in SML, of the first class-invariant in Section 4.4.3 is straight-forward:

68

5.5 Implementing Monitors

SML
fun check_result_inv oid {is_monitor:bool} ctxt =
let val kind = compute_attr_access ctxt "kind" oid @{here} @{here}

val prop = compute_attr_access ctxt "property" oid @{here} @{here}
val tS = HOLogic.dest_list prop

in case kind_term of
@{term "proof"} => if not(null tS) then true

else error("class result invariant violation")
| _ => false

end
val _ = Theory.setup (DOF_core.update_class_invariant

"tiny_cert.result" check_result_inv)

The setup-command (last line) registers the check_result_inv function into the Is-
abelle/DOF kernel, which activates any creation or modification of an instance of result. We
cannot replace compute_attr_access by the corresponding antiquotation @{docitem_value
kind ∶∶oid}, since oid is bound to a variable here and can therefore not be statically expanded.

5.5 Implementing Monitors

Since monitor-clauses have a regular expression syntax, it is natural to implement them
as deterministic automata. These are stored in the docobj_tab for monitor-objects in the
Isabelle/DOF component. We implemented the functions:

SML
val enabled : automaton -> env -> cid list

val next : automaton -> env -> cid -> automaton

where env is basically a map between internal automaton states and class-id’s (cid ’s).
An automaton is said to be enabled for a class-id, iff it either occurs in its accept-set or
its reject-set (see Section 4.4.2). During top-down document validation, whenever a text-
element is encountered, it is checked if a monitor is enabled for this class; in this case, the
next-operation is executed. The transformed automaton recognizing the rest-language is
stored in docobj_tab if possible; otherwise, if next fails, an error is reported. The automata
implementation is, in large parts, generated from a formalization of functional automata [16].

5.6 The LATEX-Core of Isabelle/DOF

The LATEX-implementation of Isabelle/DOF heavily relies on the “keycommand” [6] package.
In fact, the core Isabelle/DOF LATEX-commands are just wrappers for the corresponding
commands from the keycommand package:

69

5 Extending Isabelle/DOF

LATEX
\newcommand\newisadof[1]{%
\expandafter\newkeycommand\csname isaDof.#1\endcsname}%

\newcommand\renewisadof[1]{%
\expandafter\renewkeycommand\csname isaDof.#1\endcsname}%

\newcommand\provideisadof[1]{%
\expandafter\providekeycommand\csname isaDof.#1\endcsname}%

The LATEX-generator of Isabelle/DOF maps each doc_item to an LATEX-environment (recall
Section 4.3.2). As generic doc_item are derived from the text element, the enviornment {
isamarkuptext*} builds the core of Isabelle/DOF’s LATEX implementation. For example, the
SRAC 1 from page 30 is mapped to

LATEX
\begin{isamarkuptext*}%
[label = {ass122},type = {CENELEC_50128.SRAC},
args={label = {ass122}, type = {CENELEC_50128.SRAC},

CENELEC_50128.EC.assumption_kind = {formal}}
] The overall sampling frequence of the odometer subsystem is therefore
14 khz, which includes sampling, computing and result communication
times ...
\end{isamarkuptext*}

This environment is mapped to a plain LATEXcommand via (again, recall Section 4.3.2):

LATEX
\NewEnviron{isamarkuptext*}[1][]{\isaDof[env={text},#1]{\BODY}}

For the command-based setup, Isabelle/DOF provides a dispatcher that selects the most
specific implementation for a given doc_class:

70

5.6 The LATEX-Core of Isabelle/DOF

LATEX
%% The Isabelle/DOF dispatcher:
\newkeycommand+[\|]\isaDof[env={UNKNOWN},label=,type={dummyT},args={}][1]{%
\ifcsname isaDof.\commandkey{type}\endcsname%

\csname isaDof.\commandkey{type}\endcsname%
[label=\commandkey{label},\commandkey{args}]{#1}%

\else\relax\fi%
\ifcsname isaDof.\commandkey{env}.\commandkey{type}\endcsname%

\csname isaDof.\commandkey{env}.\commandkey{type}\endcsname%
[label=\commandkey{label},\commandkey{args}]{#1}%

\else%
\message{Isabelle/DOF: Using default LaTeX representation for concept %
"\commandkey{env}.\commandkey{type}".}%

\ifcsname isaDof.\commandkey{env}\endcsname%
\csname isaDof.\commandkey{env}\endcsname%

[label=\commandkey{label}]{#1}%
\else%
\errmessage{Isabelle/DOF: No LaTeX representation for concept %
"\commandkey{env}.\commandkey{type}" defined and no default %
definition for "\commandkey{env}" available either.}%

\fi%
\fi%

}

71

Bibliography

[1] B. Barras, L. D. C. González-Huesca, H. Herbelin, Y. Régis-Gianas, E. Tassi, M. Wen-
zel, and B. Wolff. Pervasive parallelism in highly-trustable interactive theorem proving
systems. In MKM, pages 359–363, 2013. doi: 10.1007/978-3-642-39320-4_29.

[2] S. Bezzecchi, P. Crisafulli, C. Pichot, and B. Wolff. Making agile development processes
fit for v-style certification procedures. In ERTS’18, ERTS Conference Proceedings, 2018.

[3] J.-L. Boulanger. CENELEC 50128 and IEC 62279 Standards. Wiley-ISTE, Boston,
2015.

[4] A. D. Brucker and B. Wolff. Isabelle/DOF: Design and implementation. In P. C.
Ölveczky and G. Salaün, editors, Software Engineering and Formal Methods (SEFM),
number 11724 in Lecture Notes in Computer Science. Springer-Verlag, Heidelberg,
2019. ISBN 3-540-25109-X. doi: 10.1007/978-3-030-30446-1_15. URL https:
//www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019.

[5] A. D. Brucker, I. Ait-Sadoune, P. Crisafulli, and B. Wolff. Using the Isabelle ontology
framework: Linking the formal with the informal. In Conference on Intelligent Computer
Mathematics (CICM), number 11006 in Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, 2018. doi: 10.1007/978-3-319-96812-4_3. URL https://www.
brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018.

[6] F. Chervet. The free and open source keycommand package: key-value interface for
commands and environments in LATEX., 2010.

[7] Common Criteria. Common criteria for information technology security evaluation (ver-
sion 3.1), Part 3: Security assurance components, Sept. 2006. Available as document
CCMB-2006-09-003.

[8] V. Eijkhout. The Computer Science of TeX and LaTeX. Texas Advanced Computing
Center, 2012.

[9] A. Faithfull, J. Bengtson, E. Tassi, and C. Tankink. Coqoon. Int. J. Softw.
Tools Technol. Transf., 20(2):125–137, Apr. 2018. ISSN 1433-2779. doi: 10.1007/
s10009-017-0457-2.

[10] IBM. IBM engineering requirements management DOORS family, 2019. https://www.
ibm.com/us-en/marketplace/requirements-management.

[11] D. E. Knuth. The TeXbook. Addison-Wesley Professional, 1986. ISBN 0201134470.

73

https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelledof-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
https://www.brucker.ch/bibliography/abstract/brucker.ea-isabelle-ontologies-2018
http://www.commoncriteriaportal.org/public/files/CCPART3V3.1R1.pdf
https://www.ibm.com/us-en/marketplace/requirements-management
https://www.ibm.com/us-en/marketplace/requirements-management

Bibliography

[12] M. Kohm. KOMA-Script: a versatile LATEX2𝜀 bundle, 2019.

[13] A. Kraus. Defining recursive functions in isabelle/hol, 2020. https://isabelle.in.tum.de/
doc/functions.pdf.

[14] A. Krauss and T. Nipkow. Regular sets and expressions. Archive of Formal Proofs, May
2010. ISSN 2150-914x. http://isa-afp.org/entries/Regular-Sets.html, Formal proof
development.

[15] F. Mittelbach, M. Goossens, J. Braams, D. Carlisle, and C. Rowley. The LaTeX Com-
panion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
2004.

[16] T. Nipkow. Functional automata. Archive of Formal Proofs, Mar. 2004. ISSN
2150-914x. http://isa-afp.org/entries/Functional-Automata.html, Formal proof devel-
opment.

[17] T. Nipkow. What’s in main, 2020. https://isabelle.in.tum.de/doc/main.pdf.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002. doi: 10.1007/3-540-45949-9.

[19] S. Taha, B. Wolff, and L. Ye. Philosophers may dine — definitively! In International
Conference on Integrated Formal Methods (IFM), number to appear in Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, 2020.

[20] W3C. Ontologies, 2015. URL https://www.w3.org/standards/semanticweb/ontology.

[21] M. Wenzel. Asynchronous user interaction and tool integration in Isabelle/PIDE. In
G. Klein and R. Gamboa, editors, ITP, volume 8558 of LNCS, pages 515–530. Springer,
2014. doi: 10.1007/978-3-319-08970-6_33.

[22] M. Wenzel. System description: Isabelle/jEdit in 2014. In UITP, pages 84–94, 2014.
doi: 10.4204/EPTCS.167.10.

[23] M. Wenzel. The Isabelle/Isar Reference Manual, 2020. Part of the Isabelle distribution.

[24] M. Wenzel. The Isabelle system manual, 2020. Part of the Isabelle distribution.

[25] M. Wenzel and B. Wolff. Building formal method tools in the Isabelle/Isar framework.
In K. Schneider and J. Brandt, editors, TPHOLs 2007, number 4732 in LNCS, pages
352–367. Springer, 2007. doi: 10.1007/978-3-540-74591-4_26.

74

https://isabelle.in.tum.de/doc/functions.pdf
https://isabelle.in.tum.de/doc/functions.pdf
http://isa-afp.org/entries/Regular-Sets.html
http://isa-afp.org/entries/Functional-Automata.html
https://isabelle.in.tum.de/doc/main.pdf
https://www.w3.org/standards/semanticweb/ontology

Index

A
accept-clause, 55
accepts_clause, 40
antiquotation, 13
antiquotations, 14
attribute_decl, 40

C
chapter, 23
class

see document class, 37
see monitor class, 37

class_id, 39
COL, 45
see COL, 45
constant_definition, 39
context, 12

D
datatype_specification, 38
default_clause, 40
doc_class, 25
doc_class_specification, 39
document class, 37, 39

PDF, 41
document model, 12
document template, 20, 58, 59

directory structure, 58
dt_ctor, 38
dt_name, 38

E
expr, 39

H
header, 12
HOL, 11

I
inner syntax, see syntax, inner
instance, 25
integrated document, 11
invariant_decl, 40
Isabelle, 17

L
level, 23

M
mkroot_DOF, 19
monitor, 55
monitor class, 27, 37

N
name, 37
\newisadof , 41

O
ontology

CENELEC_50128, 28
directory structure, 57
scholarly_paper, 21

outer syntax, see syntax, outer

P
part, 23
preamble.tex, 20
\provideisadof , 41

R
regexpr, 40
rejects_clause, 40
\renewisadof , 41
ROOT, 20

S
scrartcl, 20

75

INDEX

section, 23
semantic macros, 11, 12, 14
sub-document, 11
subsection, 23
subsubsection, 23
syntax

inner, 13
outer, 13

T
text-element, 11, 12
theory

file, 12
tyargs, 37
type, 38
type_synonym_specification, 39
type_spec, 38

W
where clause, 37

76

	1 Introduction
	How to Read This Manual
	Typographical Conventions
	How to Cite Isabelle/DOF
	Availability

	2 Background
	2.1 The Isabelle System Architecture
	2.2 The Document Model Required by DOF
	2.3 Implementability of the Required Document Model

	3 Isabelle/DOF: A Guided Tour
	3.1 Getting Started
	3.1.1 Installation
	Installing Isabelle/DOF

	3.1.2 Creating an Isabelle/DOF Project

	3.2 Writing Academic Publications in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 scholarly_paper
	3.2.1 Writing Academic Papers
	3.2.2 A Bluffers Guide to the 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 scholarly`_paper Ontology
	3.2.3 Writing Academic Publications I : A Freeform Mathematics Text
	3.2.4 More Freeform Elements, and Resulting Navigation

	3.3 Writing Certification Documents (CENELEC_50128)
	3.3.1 The CENELEC 50128 Example
	3.3.2 Modeling CENELEC 50128
	3.3.3 Editing Support for CENELEC 50128

	3.4 Writing Technical Reports in 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 technical_report
	3.4.1 A Technical Report with Tight Checking

	3.5 Style Guide

	4 Ontologies and their Development
	4.1 The Ontology Definition Language (ODL)
	4.1.1 Some Isabelle/HOL Specification Constructs Revisited
	4.1.2 Defining Document Classes

	4.2 Fundamental Commands of the Isabelle/DOF Core
	4.2.1 Syntax
	4.2.2 Ontologic Text-Elements and their Management
	4.2.3 Status and Query Commands
	4.2.4 Macros
	Examples

	4.3 The Standard Ontology Libraries
	4.3.1 Common Ontology Library (COL)
	4.3.2 The Ontology 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Isabelle_DOF.scholarly_paper
	Examples

	4.3.3 The Ontology 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Isabelle_DOF.technical_report
	4.3.4 A Domain-Specific Ontology: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Isabelle_DOF.CENELEC_50128
	Examples
	For Isabelle Hackers: Defining New Top-Level Commands

	4.4 Advanced ODL Concepts
	4.4.1 Meta-types as Types
	4.4.2 ODL Monitors
	4.4.3 ODL Class Invariants

	4.5 Technical Infrastructure
	4.5.1 Developing Ontologies and their Representation Mappings
	4.5.2 Document Templates

	4.6 Defining Document Templates
	4.6.1 The Core Template
	4.6.2 Tips, Tricks, and Known Limitations
	Getting Started
	Truncated Warning and Error Messages
	Deferred Declaration of Information
	Authors and Affiliation Information
	Restricting the Use of Ontologies to Specific Templates
	Outdated Version of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 comment.sty

	5 Extending Isabelle/DOF
	5.1 Isabelle/DOF: A User-Defined Plugin in Isabelle/Isar
	5.2 Programming Antiquotations
	5.3 Implementing Second-level Type-Checking
	5.4 Programming Class Invariants
	5.5 Implementing Monitors
	5.6 The LaTeX-Core of Isabelle/DOF

