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Abstract

With the increase of research in self-adaptive systems, there is a growing
need to better understand the way research contributions are evaluated
and how these evaluations are reported. Such insights will support re-
searchers to better compare new findings, incrementally developing new
knowledge for the community. However, so far there is no clear overview
of the state of the art in how evaluations are performed in self-adaptive
systems. To address this gap, we conduct a mapping study. The study
focuses on experimental evaluations published at the prime venue of re-
search in software engineering for self-adaptive systems in the last decade
(2011-2020)—the International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). Guided by a widely ac-
cepted process for conducting experiments, our literature review is cen-
tered on (i) the scope and goals of experiments reported by the SEAMS
community, (ii) the way such experiments are designed and executed, and
(iii) the way the results of such experiments are analyzed and packaged.
This document provides the protocol of the study.

1 Motivation and Review Goal

Increasingly, we expect software-intensive systems be able to change their struc-
ture and behavior at runtime to continue meeting their goals while operating
under uncertainty—they need to become self-adaptive. Self-adaptation is typi-
cally realized via one or more feedback loops that continuously monitor a system
and enact changes to the system. Self-adaptation has been an active area of
research for over 20 years [28], initiated by the pioneering vision of IBM’s auto-
nomic computing [12] and the seminal work of Oreizy and colleagues [18].

Numerous novel approaches focusing on a variety of different aspects of en-
gineering self-adaptive systems (runtime models, goal models, feedback con-
trollers, modeling languages, verification at runtime, planning, etc.) have been
proposed and evaluated by the research community over the past years. To

1



that end, a number of testbeds, exemplars, and reusable artifacts have been
developed and released for use by the self-adaptive systems community.1

Given this substantial body of work in the area, it is important to obtain
a clear view of the state of the art related to both the contributions that have
been proposed and the way these contributions are evaluated. While literature
reviews have shed light on the contributions in the field [14, 19, 17, 16, 4, 9], the
evaluation aspect has been less investigated. In particular, evaluations have been
considered in self-adaptation reviews focusing on claims and evidence [30, 29]
and methodology [21]. Yet, to the best of our knowledge, no study has targeted
an in-depth analyze and characterization of the way experimental evaluations
have been conducted and reported.

However, evaluation is central to self-adaptive systems (as for any other
types of systems in software engineering), since contributions must be assessed
on their added value and contribution [2]. Yet, evaluating contributions of self-
adaptive systems may raise specific challenges due a high degree of automation
of these systems and their ability to deal wit uncertainty during operation.
Understanding the state of the art in conducting and reporting evaluations in
self-adaptive systems can support researchers to better compare new findings
to incrementally developing new knowledge for the community. Hence, it is
important to provide an overview of evaluations of self-adaptive systems, which
is currently missing.

To fill this gap, we perform a mapping study [20]. The goal of the study is
to structure the evaluation of self-adaptive systems, i.e., providing an overview
of the way evaluations are conducted in self-adaptive systems. We focus on ex-
perimental evaluations, i.e., evaluations that use one or more experiments, since
performing experiments is the most common evaluation method used in self-
adaptive systems. Concretely, the study is centered on (i) the scope and goals
of experiments, (ii) the way experiments are designed and operated, and (iii)
the way the results of such experiments are analyzed, packaged, and presented.

The remainder of this protocol is structured as follows. Section 2 provides
the background and explains the focus of the mapping study. In Section 3,
we define research questions, the searched sources, the inclusion and exclusion
criteria, the data items that will be collected for papers along with the data-
gathering procedure, and the approach we will use for analysis.

2 Background and Focus of the Mapping Study

2.1 Self-Adaptive Systems

This study focuses on what is commonly known as architecture-based adapta-
tion [?, 7, 13, 32]. Architecture-based adaptation is a widely applied approach
to realize self-adaptation, see [28] for an overview. Figure 1 shows the basic

1For an overview of exemplars published at the International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems (SEAMS) visit http://self-
adaptive.org/exemplars.
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decomposition of a self-adaptive system. A self-adaptive system comprises a
managed system that is controllable and subject to adaptation, and a managing
system that performs the adaptations of the managed system. The managed
system operates in an environment that is non-controllable.

Managing system

Managed system

Self-adaptive system

monitors

Environment 

outputinput

support

changes

Figure 1: Basic decomposition of a self-adaptive system.

The managing system forms a feedback loop that comprises four essential
functions: Monitor-Analyze-Plan-Execute that share Knowledge [12], MAPE or
MAPE-K in short. The monitor tracks the managed system and the environ-
ment in which the system operates and updates the knowledge. The analyzer
uses the up-to-date knowledge to evaluate the need for adaptation. If adaptation
is required, it analyses alternative configurations of the managed system. We
refer to these alternative configurations as the adaptation options. The plan-
ner then selects the best option based on the adaptation goals and generates
a plan to adapt the system from its current configuration to the new configu-
ration. Finally, the executor executes the adaptation actions of the plan. It is
important to highlight that MAPE provides a reference model that describes
a managing system’s essential functions and the interactions between them. A
concrete architecture maps the functions to corresponding components, which
can be a one-to-one mapping or any other mapping, such as a mapping of the
analysis and planning functions to one integrated decision-making component.

In this literature review, we consider papers that are based on the MAPE
reference model that maps the MAPE functions (or some of them) to a specific
component-based architecture.
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2.2 Focus of Study

The overall goal of this mapping study is to understand how novel proposed
engineering approaches for self-adaptation are evaluated in the International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS) papers. In order to get the focus of our review sharp, we performed
a preliminary analysis and looked at the evaluation methods that were applied
in full papers of SEAMS published from 2011 to 2020. After several iterations,
we labelled the evaluation methods according to the following categories: no
evaluation, survey, case study, proof, showcase, and experiment; see Table 1.
Note that a single paper may use several methods or instances of the same
method.

In our preliminary analysis, we found that more than 75% of the examined
papers contained at least one experiment. With experiment, we do not nec-
essarily mean controlled experiment as in [24], but a study with well-defined
objectives that systematically evaluates a new solution providing quantitative
results for more than one treatment. The other methods were far less used, with
showcase being the second most used method. Finally, we found only a handful
of papers containing a survey, case study2, or proof.

Since experiments are more frequently used and more data points could be
extracted from experimental evaluations to elicit significant reference guidelines,
we decided to focus in our study on the evaluation method of experiments.

2.3 Basic Concepts of Experiments

In this section, we explain the basic concepts that we use in the study design.
These concepts are based on the process and basic artifacts used in controlled
experiments. While we rely on these concepts, we are interested in all papers
that apply an experiment in the broad sense, meaning papers that include most
of the stages of the process of controlled experiments, explicitly or implicitly. In
particular, we focus on technology-oriented experiments that have systems and
software elements as subject of the study (in contrast to studies with humans).

According to Wholin et al. [33], a controlled experiment is a well-defined
empirical method that can be used to evaluate an idea or belief of a cause and
effect relationship between constructs. More specifically, a researcher may have
a theory or formulate a hypothesis that formalizes the idea or belief4, and an
experiment is used to test the theory or hypothesis.

For this purpose, an experiment studies the effect of manipulating one or
more independent variables (i.e., factors) of the studied setting. The other in-
dependent variables are kept constant during the experiment so that the effect

2We mean here a case study as an empirical enquiry as for instance in https://

iansommerville.com/software-engineering-book/case-studies/ – the term is often not
correctly used, which is a recurring issue also in other fields, see for instance [6].

3We consider a treatment to be a combination of factor values, contrary to Wohlin et al.
who consider a treatment as “one particular value of a factor” [33, p. 75].

4Often researchers formulate research questions rather than formal hypotheses to capture
the idea or belief of a cause and effect relationship between constructs.
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Table 1: Evaluation methods with descriptions and examples. The number of
papers with at least one occurrence of a certain method is shown in brackets
after the method’s name.

Evaluation method Description

No evaluation (5) The approach is not evaluated (i.e., no quantitative or
qualitative evidence is provided). A concrete example
may still be used, however, only for illustration and/or
motivation of the work. An example is [15].

Survey (1) An interview or a questionnaire has been used in the
evaluation. A survey is “a system for collecting infor-
mation from or about people to describe, compare or
explain their knowledge, attitudes and behavior” [33,
p. 10] and in our study takes the form of collecting
data either through interviews or questionnaires. An
example is [1].

Case study (0) A case study has been used in the evaluation. A case
study draws on multiple sources of evidence to investi-
gate one instance of a phenomenon within its real-life
context [33, p. 10]. We did not find an example of a
SEAMS paper, but [11] is another example.

Proof (2) A formal proof has been used in the evaluation. A
proof employs mathematical reasoning to show that
stated assumptions logically guarantee a conclusion
(e.g. a theorem). An example is [3].

Showcase (27) The evaluation presents results from a single treat-
ment.3 Such results can be quantitative or qualitative
and can stem e.g. from one or more runs of a pro-
totype realization of an approach or from a concrete
application of an approach. An example is [10].

Experiment (66) An experiment (Section 2.3) has been used in the eval-
uation. For an evaluation to qualify as experiment,
quantitative results for more than one treatment need
to be collected and presented. An example is [5]. A
controlled experiment is an experiment that follows a
rigorous well-defined process [33]. An example is [31].

on dependent variables caused by the manipulation of the factors can be mea-
sured [33]. Thus, an experiment considers multiple treatments (i.e., values of
a factor), which allows researchers to compare the outcomes of the different
treatments. This essentially tests the relationship between the treatment and
the outcome and allows researchers to draw conclusions about the cause and
effect relationship to which the theory or hypothesis refers.
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To support researchers in setting up and conducting a successful experiment
in software engineering, Wholin et al. [33] describe a process for experiments as
shown in Figure 2. This process captures several aspects that are all considered
relevant and important for experiments. The process starts with an idea that
an experiment would be a reasonable option for an evaluation, for instance,
evaluate a new analysis technique, and then comprises five steps:

Experiment
idea

Experiment scoping

Experiment planning

Experiment operation

Presentation & package

Goal definition

Experiment design

Analysis & interpretation
Experiment data

Conclusions

Report & package

Experiment process

Preparation
Execution
Data validation

Descriptive statistics
Data set reduction
Hypothesis testing

Context selection
Hypothesis formulation
Variables selection
Selection of subjects
Choice of design type
Instrumentation
Validity evaluation

Figure 2: Experiments process and artifacts [33].

1. Experiment scoping: To scope an experiment, the goals of the experiment
are defined. The goal definition comprises the object of the study, the
purpose of the experiment, the effect under study, the perspective from
which the results are interpreted, and the context in which the experiment
is performed.

2. Experiment planning: The planning step refines the goal definition by de-
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termining the experiment design that can be seen as the foundation of
an experiment. The design requires from researchers to (i) select a con-
text in which the experiment is carried out, (ii) formulate the hypothesis
to be tested by the experiment, (iii) select the independent and depen-
dent variables including the values they can take, (iv) select the subjects,
(v) choose a design type (especially the factors and their individual treat-
ments), (vi) determine the instrumentation by defining how the experi-
ment should be executed and monitored, and (vii) evaluate the validity of
the results and how threats could be mitigated by the experiment design.

3. Experiment operation: According to the experiment design, the exper-
iment is prepared and executed. Additionally, the validity of the data
collected during the experiment should be checked with respect to the
execution and design of the experiment.

4. Analysis & interpretation: In this step, the data collected from the ex-
periment is analyzed usually with descriptive statistics, then potentially
reduced (e.g., by removing outliers), and finally used for testing the hy-
pothesis with statistical tests. Then, the results of the analysis are inter-
preted to decide whether the hypothesis could be accepted or rejected and
to draw conclusions from the experiment based on this decision.

5. Presentation & package: Finally, the results of the experiment are pre-
sented (e.g., in a report or research paper), packaged and made available
for evaluation and to support replication.

3 Protocol Parts

This study uses the methodology of a mapping study, as described in [20]. The
methodology defines the way in which a mapping study should be performed
so that the relevant papers are properly identified, evaluated, and a map is
produced (a map displays extracted knowledge, typically in some visual way,
such as using flow charts, graphs, and Venn diagrams). The mapping study
is composed of three stages: planning, execution, and reporting. During the
planning stage, we define a protocol for the study. This protocol includes the
research questions of the study, the sources to search for papers, the search string
to collect papers, inclusion and exclusion criteria to select relevant papers, and
the data items that need to be collected from the selected papers to answer the
research questions. In the execution phase the search of the papers is applied
and data is collected. In the reporting phase we organize the collected data and
answer the research questions, document useful insights, and discuss potential
threats to the validity of the study.

We conduct the mapping study with four researchers that jointly developed
the protocol. To ensure the validity of the protocol, it will be reviewed by re-
searchers with expertise in self-adaptation and experts in experimental software
engineering. Since we collect all papers from SEAMS 2011 to 2020, we do not
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perform a search (see Section 3.2 for details). Two researchers filter the col-
lected papers according to the inclusion and exclusion criteria (see Section 3.3)
and extract the data from the included papers (see Section 3.5). To avoid bias,
these two researchers crosscheck each others’ results. If conflicts occur, the two
researchers discuss the corresponding papers to resolve the conflicts. If a conflict
cannot be resolved by the two researchers, the other two researchers are involved
in the discussion to reach a consensus. Finally, all of the four researchers process
the data, answer the research questions, and write a report.

3.1 Research Questions

We formulate the goal of the study using the classic Goal-Question-Metric
(GQM) approach [26]:

Purpose: Organize and characterize
Issue: the way experimental evaluations are performed
Object : in research on self-adaptation published at recent SEAMS
installments
Viewpoint : from a researcher’s viewpoint.

We translate the overall goal of the study in five concrete research questions
that correspond to the five phases of the experiment process proposed by Wohlin
et al. [33] (see Figure 2):

RQ1: What is the scope of experiments?

With RQ1, we want to characterize the scopes of the experiments. This
will help us better understanding the evaluated contributions, the pur-
pose and object of evaluations, and identify possible correlations between
these properties and other evaluation aspects.

RQ2: What is the experimental design of experiments?

With RQ2, we want to get a view on the design of experiments and
identify characteristics specific to self-adaptive systems. We are inter-
ested in an in-depth description of independent and dependent variables,
treatments, and designs (e.g. full factorial, partial factorial). This will
shed light on the complexity and variability of experiments and present
the different options a self-adaptive researcher has when designing their
experiments.

RQ3: How are experiments operated?

With RQ3, we want to characterize the operation of experiments, such as
how self-adaptive system-specific aspects are handled (e.g., the managed
system and its execution). This will provide an overview of the different
experiment environments and testbeds used so far.

RQ4: How is the experiment data analyzed?

With RQ4, we want to get insights of how experiment results are analyzed
(e.g., using descriptive or inferential statistics).
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RQ5: How are the results of experiments packaged?

With RQ5, we want to obtain an overview of how experiment results are
packaged (e.g., in replication packages).

3.2 Searched Strategy

In our study, we examine the studies published at the main venue on engineering
self-adaptive systems, i.e., the International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS), covering the topic of
experimental evaluations. To do so, we do not need to use a search string
since we can easily identify all papers published in the last ten years of SEAMS
(2011-2020). We do not use any expected technique to mitigate publication and
sampling bias (e.g. manual and keyword automated searches, backward and
forward snowballing searches, checking profiles of prolific authors in the area).
According to the ACM SIGSOFT Empirical Standards [22], which is currently
under development, this is an acceptable deviation to the way literature studies
should be performed when focusing on one specific venue.

Other important self-adaptation venues include the IEEE International Con-
ference on Autonomic Computing and Self-Organizing Systems (ACSOS) and
its precursors5 and ACM Transactions on Autonomous and Adaptive Systems
(TAAS). Yet, we focus our study on SEAMS for two reasons. First, there is a
normative justification. Studies presented at SEAMS provide a representative
sample of software engineering research of self-adaptive systems. Other stud-
ies have also chosen to focus on proceedings of specific venues, examples are
ICSE [35], WICSA [6], and SBES [25]. The ACM SIGSOFT Empirical Stan-
dards considers this also as an acceptable deviation of the general principles of
systematic literature studies [22]. Second, there is a qualitative justification. To
make a useful and accurate assessment of the features we target in this review
(the detailed data items are presented below), we need relevant data. Based
on our combined experience as active members of the SEAMS community, we
believe that studies presented at SEAMS provide a source of such relevant data.
In light of these two arguments, we acknowledge some degree of bias of the focus
on SEAMS. We will take this into account as a threat to validity.

3.3 Inclusion and Exclusion Criteria

We use the following inclusion criterion to select papers:

• IC1: The paper is published at SEAMS between 2011 and 2020
(inclusive).

We selected the period from 2011 to 2020 since SEAMS became a sym-
posium in 2011 (before it had been an ICSE workshop). Transforming

5ACSOS emerged in 2020 as a merger of the IEEE International Conference on Auto-
nomic Computing (ICAC) and the IEEE International Conference on Self-Adaptive and Self-
Organizing Systems (SASO).
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from a workshop to a symposium, we reckon that the rigor of the work
published at SEAMS starting with 2011 has increased significantly, which
reflects in an enhanced maturity level of the evaluations.

• IC2: The paper empirically evaluates an approach using one or
more experiments.

As mentioned in Sections 2.2 and 2.3, we focus on technology-centered
experiments as it is the most common evaluation method used in SEAMS
papers. As an example, by applying IC2, the paper [10] is excluded since
it contains only a showcase and not an experiment, and the paper [5] is
included as it includes an experiment.

We use the following exclusion criteria:

• EC1: The paper is not a full research paper.

The motivation of EC1 is to exclude certain types of papers published
at SEAMS, whose goal is typically not to propose and empirically eval-
uate an approach but rather presenting preliminary work (short papers),
experience reports of applying self-adaptation in practice (experience pa-
pers), artifacts (artifact papers), tools (tool demonstration papers), Ph.D.
projects (doctoral symposium papers), summaries of talks (keynote ab-
stracts), or positions in a panel or debate (community debate paper).
Although papers of these types may present parts of an experiment, they
do not provide sufficient data to draw reliable or complete knowledge.

• EC2: The paper presents a secondary study (e.g., literature
review, survey, or mapping study) or an overview of the field
(e.g., taxonomy, roadmap).

EC2 is motivated by our interest in primary studies that introduce (novel)
approaches that are empirically evaluated using experiments, and not in
secondary studies, such as literature reviews or surveys. Similarly, we are
not interested in papers providing overviews of the field or roadmaps, as
such work does not present and evaluate an approach. As an example,
papers [8] and [34] are excluded as surveys and paper [23] as taxonomy.

Given these criteria, a paper is selected if it meets all of the inclusion criteria
and does not meet any exclusion criterion.

3.4 Methodology

In conducting this study, we follow the six steps shown in the process of Fig-
ure 3. First, we create the initial set of primary studies by collecting all the
papers published at SEAMS within 2011-2020. Second, based on the metadata
associated with each paper, we exclude all papers that are not full research pa-
pers. Third, we examine all papers by first going through the title and abstract
and, when needed, then the rest of the paper to identify and filter out cases
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4. Select papers that contain at least
one experiment (IC2)

5. Extract data items for each
experiment

6. Structure data, generate map, and
report

1. Create initial set of primary studies
(SEAMS, 2011-2020) (IC1)

2. Filter out papers that are not full
research papers (EC1)

3. Filter out secondary studies and
overview papers (EC2)

Figure 3: Methodology of this study.

that are either secondary studies or overview papers. Fourth, we examine the
remaining papers, by scanning the whole papers to select papers that contain
at least one experiment. We read the remaining papers in full, focusing on the
evaluation sections, identify all the experiments contained in each paper, and
extract data items for each identified experiments. Finally, we structure the
collected data, generate the map, and write the final report of the study.

3.5 Data Items

To answer the research questions and create a map, we define a set of data items
to be extracted from the papers. Table 2 gives an overview of the data items.
We briefly describe each data item and present the concrete options for each
data item.

Since the data items refer to a single experiment and a paper may contain
more than one experiment, as a first step, we extract all the experiments that
are included in a paper and then extract data of each experiment independently.

F1 The target of evaluation: the main element that is subject of evaluation,
incl. the whole feedback loop and methods for distinct MAPE-K stages
and learning. Options are collected during data-gathering. Examples
may include: planning method, monitoring method, analysis technique,
learning approach.
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Table 2: Data extraction items

ID Item Use

F1 Target of evaluation RQ1

F2 Objectives of evaluation RQ1

F3 Explicit formulation of evaluation problem RQ2

F4 Constant independent variables RQ2

F5 Blocking factors RQ2

F6 Factors RQ2

F7 Dependent variables RQ2

F8 Counts of experiment variables RQ2

F9 Design type RQ2

F10 Managed system RQ3

F11 Nature of managed system RQ3

F12 Data provenance RQ3

F13 Uncertainty RQ3

F14 Type of analysis RQ4

F15 Explicit answer to evaluation problem RQ4

F16 Threats to validity/limitations RQ4

F17 Results available RQ5

F18 Replication package available RQ5

F2 The aspects of the proposed approach that are evaluated. These are typ-
ically part of the overall goal of the experiment, mentioned explicitly or
implicitly. Options are collected during data-gathering. Examples may
include: effectiveness, efficiency, performance, cost, scalability, robust-
ness.

F3 Captures whether there is an explicit formulation of the evaluation prob-
lem by either research questions or hypotheses. Options: Research ques-
tions, hypotheses, None.

F4 The name of the variables that remain constant across different experi-
ment treatments. Options are collected during data-gathering. Examples
may include: “system load” and “network configuration.”

F5 The name and number of values of the the variables that are used to
create experiment blocks. A blocking factor is an independent variable
that probably has an effect on the response, but we are not interested in
that effect [33, p. 94]. Hence, the effects between blocks are not studied.
Options are collected during data-gathering. We use as a notation to
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refer to these variables as: “name (number of values).” Examples may
include: “model complexity (3)”.

F6 The name and number of values of the variables that change across differ-
ent experiment treatments. Options are collected during data-gathering.
We use as a notation to refer to these variables as: “name (number of
values).” Examples may include: “controllers pole (2)”.

F7 The name of the variables that measure the effect of a treatment (also
called response variables [33, p. 74]). Options are collected during data-
gathering. Examples may include: consumed energy, response time, re-
quests per second, number of servers, planning time.

F8 The number of factor values that are actually used in the experiment.
The factor names come from F6 and F5. The notation “name1 (number1
of values) x ... x nameN (numberN of values)” will be used. Examples
may include: “scenario (2) x QoS modeling approach (2)”.

F9 The design type used in the experiment, following the standard design
types of Wohlin et al. [33, p. 95]. This can be derived from F8, but is
added to speed up the analysis process. Options: One factor with two
values, One factor with more than two values, Two factors with two
values, More than two factors each with two values, Other.

F10 The name of the managed system, if any. Initial options are the SEAMS
artifacts that that can be used as managed systems (non-complete list
available at http://self-adaptive.org): Hogna, TAS, DeltaIoT, UNDER-
SEA, CrowdNav, SAVE, mRUBIS, SWIM, DragonFly, DingNet, DART-
Sim. Additional options are collected during data-gathering.

F11 The type of managed system used in the evaluation. Options are: Model
(e.g. the managed system is represented as a queuing model), Simu-
lated/Emulated (e.g. a Cloud simulator or device emulator of the man-
aged system), Real (e.g. a Java application or a physical deployment).

F12 Source of data related to the users or the environment of the managed
system. Options: Synthetic data (e.g. made-up pattern of user requests),
Emulated data (e.g. pattern of user requests created based on real-
world data), Real-world data (pattern of user requests captured from
real-world).

F13 The way uncertainty is represented in the experiment. This type of
uncertainty can create the need for self-adaptation. Options are collected
during data-gathering. An example is: the value of sensor measurements
are taken from a particular probability distribution during a run.

F14 The type of analysis that is performed on the results of the experiment.
Only the most prominent case is captured out of the following four op-
tions (with increasing prominence): None, Exposition (qualitative inter-
pretation, narrative), Descriptive statistics (e.g. plots), Statistical tests.
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F15 Captures whether there is an explicit answer to evaluation problem spec-
ified either as research questions or hypotheses. Options: yes, no, N/A
(to be used if the answer to F3 is “none”).

F16 The types of threats to validity mentioned (in a dedicated section/subsection
or paragraph), if any. Options are one or more (when applicable) of: no,
yes (without categories), internal, external, construct, conclusion.

F17 Whether the evaluation results are available (e.g. via a URL). Options:
yes, no.

F18 Whether a full replication package (containing not only the implemen-
tation of the managed system, but also scripts to run experiments and
data used as input – e.g. to perform a simulation or to parametrize a
framework) is present (e.g. via a URL). Options: yes, no.

Figure 4 maps the research questions and data items of our study to the
experiment process proposed by Wholin et al. [33] (cf. Figure 2). In our study
we cover all of the aspects of the process that are considered as relevant and
important for experiments by Wholin et al. [33] except the following ones (see
gray aspects in Figure 4):

• Selection of subjects because based on our experience of the SEAMS
venue we know that most experiments reported at SEAMS are technology-
oriented. In such cases, “different technical treatments are applied to dif-
ferent objects” whereas in “human-oriented experiments, humans apply
different treatments to objects” [33, p. 11]. Consequently, the subjects in
technology-oriented experiments do not play a role and thus, we do not
investigate the selection of subjects.

• Instrumentation because technology-oriented experiments (as reported in
SEAMS) are concerned with measurements performed in software systems
at a technical level. Thus, the technological instrumentation can be spe-
cific to each individual system and we would not gain insights about the
design of experiments by investigating the technologies used for instrumen-
tation. However, we capture the dependent variables of the experiment
that are eventually mapped to technological instruments for measurement.

• Data validation and data set reduction: we exclude validation of data and
data set reduction from our study because they are specific aspects of
experiments out of scope of what we target in this literature review.

Thus, our study covers the whole experiment process and key aspects that are
relevant for technology-oriented experiments reported at SEAMS. This coverage
gives us confidence that our study addresses all relevant aspects of experiments
and therefore, will provide a comprehensive overview of SEAMS experiments.
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RQ3: How are experiments operated? 

RQ2: What is the experimental design of experiments?

Experiment
idea

Experiment scoping

Experiment planning

Experiment operation

Presentation & package

Goal definition

Experiment design

Analysis & interpretation
Experiment data

Conclusions

Report & package

Experiment process

Preparation
Execution
Data validation

Descriptive statistics
Data set reduction
Hypothesis testing

Context selection
Hypothesis formulation
Variables selection
Selection of subjects
Choice of design type
Instrumentation
Validity evaluation

RQ1: What is the scope of experiments?

Scope: Evaluation target (F1)
Scope: Evaluation objective (F2)

Context selection: Managed system (F10)
Hypothesis formulation: Explicit formulation of evaluation
problem (F3)
Variable selection: Constant independent variables (F4),
blocking factors (F5), factors (F6), dependent variables
(F7), counts of experiment variables (F8)
Selection of subjects
Choice of design type: Design type (F9)
Instrumentation
Validity evaluation: Threats to validity (F16)

Managed system (F10)
Nature of managed system (F11), data 
provenance (F12), uncertainty (F13)
Data validation

RQ4: How is the experiment data analyzed?

Type of Analysis (F14)
Data set reduction
Explicit answer to evaluation problem (F15)
Threats to validity (F16)

RQ5: How are the results of the experiments packaged?

Results available (F17)
Replication package available (F18)

Figure 4: Research questions and data items mapped to the experiment process
by Wholin et al. [33].

3.6 Approach for the Analysis

We tabulate the data in spreadsheets for processing. We use descriptive statis-
tics to present and structure the quantitative aspects of the extracted data and
summarize the data in a comprehensible format to answer the research ques-
tions. We present results with plots using simple numbers and sometimes means
and standard deviations to help understand the results. For the data items F1,
F2, F4, F5, F6, F7, and F13 we collect free text and apply coding [27] to capture
the essence of the answers to these items.

In the following subsections, we provide the labels derived for each of the
above data items, for reproducibility’s sake.
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3.6.1 Target of Evaluation (F1)

Based on the MAPE-K reference model [12], we label the evaluation target to
stages of the feedback loop (monitoring, analysis, planning, execution), to the
whole feedback loops, and due to the recent trend of using machine learning to
learning methods.

• Feedback Loop Approach

• Monitoring Method

• Analysis Method

• Planning Method

• Execution Method

• Learning Method

3.6.2 Evaluation Objectives (F2)

We grouped the evaluation objectives that we found in the primary studies in
the following categories.

• Effectiveness: This refers to whether the adaptation goals are met. Ei-
ther effectiveness was explicitly mentioned as the evaluation objective, or
was derived when not stated explicitly and the evaluation’s purpose was
to show that an approach is either feasible or better than another. Also,
under effectiveness fall the sub-objectives of quality improvement, and
functional abilities (e.g. “ability to detect violations of real-time proper-
ties”, “ability to reduce adaptation space”).

• Learning ability : This refers to objectives that evaluate the capabilities
of learning approaches with respect to learning-specific criteria such as
accuracy, sensitivity, or correlation.

• Time efficiency : This refers to time or performance related experiments.

• Scalability : This refers to how a quality behaves when the an aspect of
the system (e.g. size, resources) is increased or decreased.

• Robustness: This refers to experiments aiming at showing that the ap-
proach or system is not sensitive to different changes.

• Other : This includes less popular objectives such as benchmarking capa-
bilities, fault detection capabilities, resource utilization, and SASO prop-
erties evaluation.
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3.6.3 Constant Independent Variables, Blocking Factors, and Fac-
tors (F4, F5, F6)

The independent variables are labeled with the basic elements of a self-adaptive
system (see Section 2.1), to which they refer.

• Managing system: Here we distinguished between Method and Parameter
based on whether the variable relates to a whole managing system method
or a parameter of it, respectively.

• Managed system: Here we distinguished between Different and Variation
based on whether the variable relates to a whole managed system or a
variation of it, respectively.

• Environment

• Goals

If a variable refers to more than one of these elements, we use the label
Cross-cutting.

3.6.4 Dependent variables (F7)

To label the dependent variables, we use the quality characteristics defined in
ISO/IEC 25010 (see Table 3)6. This standard provides a comprehensive list of
quality aspects that refer to stakeholder’s needs, which can be used to evaluate
a system in terms of meeting those needs.

3.6.5 Uncertainty (F13)

For each uncertainty item, we provided a label for both its type and its repre-
sentation.

We used the following as labels for the type of uncertainty:

• Human

• Context

• System

• Goals

We used the following as labels for the representation of uncertainty:

• Random

• Deterministic (Called “Predefined” in the paper)

• Probabilistic

If the representation of uncertainty is not clearly described or cannot be
derived by interpretation, we label the representation as Unclear.

6 https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
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Table 3: Quality characteristics of the ISO/IEC 25010 product quality model.

Quality characteristic Sub-characteristics

Functional Suitability Functional completeness

Functional correctness

Functional appropriateness

Performance efficiency Time behaviour

Resource utilization

Capacity

Compatibility Co-existence

Interoperability

Usability Appropriateness recognizability

Learnability

Operability

User error protection

User interface aesthetics

Accessibility

Reliability Maturity

Availability

Fault tolerance

Recoverability

Security Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Maintainability Modularity

Reusability

Analysability

Modifiability

Testability

Portability Adaptability

Installability

Replaceability
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