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ABSTRACT 

People with multiple sclerosis (pwMS) often suffer from gait impairments. These changes in gait have been well-

studied in laboratory and clinical settings. A thorough investigation of gait alterations during community ambulation 

and their contributing factors, however, is lacking. The aim of the present study was to evaluate community ambulation 

and physical activity in pwMS and healthy controls and to compare in-lab gait to community ambulation. To this end, 

104 subjects were studied:44 pwMS and 60 healthy controls (whose age was similar to the controls). The subjects wore 

a tri-axial, lower-back accelerometer during usual-walking and dual-task walking in the lab and during community 

ambulation (1 week) to evaluate the amount, type, and quality of activity. The results showed that during community 

ambulation, pwMS took fewer steps and walked more slowly, with greater asymmetry, and larger stride-to-stride 

variability, compared to the healthy controls (p<0.001). Gait speed during most of community ambulation was 

significantly lower than the in-lab usual-walking value and similar to the in-lab dual-tasking value. Significant group 

(pwMS /controls) by walking condition (in-lab/community ambulation) interactions were observed (e.g., gait speed). 

Greater disability was associated with fewer steps and reduced gait speed during community ambulation. In contrast, 

physical fatigue was correlated with sedentary activity but was not related to any of the measures of community 

ambulation gait quality including gait speed. This disparity suggests that more than one mechanism contributes to 

community ambulation and physical activity in pwMS. Together, these findings demonstrate that during community 

ambulation, pwMS have marked gait alterations in multiple gait features, reminiscent of dual-task walking measured 

in the laboratory. Disease-related factors associated with these changes might be targets of rehabilitation.  
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INTRODUCTION 

Impairments of gait and mobility frequently affect people with multiple sclerosis (pwMS) [1] and are often considered 

among the most important functions that are affected by MS [2-4]. Given its importance, the assessment of walking in 

MS has been a focus of much scientific inquiry. Traditionally, gait impairments have been quantified using 

performance-based measures [5], lab-based motion analyses [6], and self-report [7]. Laboratory-based gait assessments 

indicate that pwMS walk more slowly and with a lower cadence than healthy individuals [1]. In addition, pwMS have 

greater stride-to-stride variability [1, 8], reflective of an unstable gait and a higher fall risk compared to healthy controls 

[1, 9, 10].  

 

These conventional approaches have provided considerable insight into MS. Nonetheless, they present only a static 

snapshot of walking ability, may have limited ecological relevance, and may suffer from issues related to recall and 

self-report bias. Measuring walking in the real-world may provide a better estimate of actual walking, not just a 

snapshot picture of how a person walks in the lab, but gait quality and its changes during the day and week. Indeed, 

accumulating evidence reveals significant differences between multiple aspects of in-lab, as compared to real-world 

walking (both quantity and quality), among people with an impaired gait like older adults and patients with Parkinson's 

disease [11-13]. These differences suggest that the two assessment environments reflect different aspects of behavior, 

perhaps what a person can do versus how the subject actually performs in free-living, real-world conditions [12]. To 

address these gaps, there has been growing interest in objectively quantifying physical activity [14, 15, 15, 16] and 

walking in the “real-world” in pwMS [14, 17, 18]. Initial studies utilizing wearable technology reported that daily-

living movement was associated with disability level, that quantity of walking (e.g. step counts and time spent walking) 

are lower in pwMS than in controls and may be a sensitive measure of disease progression [17-20].  The ability to 

measure the quality of walking (e.g. spatiotemporal parameters of gait) during real-world, community ambulation has 

the potential to inform interventions aimed at increasing mobility and quality of life [11, 15]. However, to date, the 

gait quality of pwMS during real-world, community ambulation has largely not been studied.  

 

To evaluate how real-world, community ambulation differs in pwMS and healthy individuals, we used a wearable 

device to assess the gait and physical activity of pwMS and healthy controls in the lab as well as during community 

ambulation. Our main goals were: (1) to examine gait quality and activity patterns during real-world, community 
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ambulation in pwMS as compared to a group of healthy subjects of a similar age, (2) to compare gait measured in the 

lab to real-world, community ambulation walking in pwMS and in healthy controls, and (3) to explore the association 

between clinical features of MS (e.g., fatigue, level of disability, cognitive dysfunction) and real-world gait quality 

and activity in pwMS. 

 

MATERIALS AND METHODS 

 Participants 

The findings presented here are based on the post-hoc analysis of data collected for different purposes in two different 

studies. Participants with relapsing-remitting MS (n=44) were recruited as part of a multi-center intervention study 

aimed at ameliorating motor-cognitive interactions in MS patients using virtual-reality (NCT02427997). Inclusion 

criteria for the MS patients were: relapsing-remitting type of MS according to McDonald criteria 2010, ages18-65 

years, free of relapse in the past 30 days, mild to moderate disability (i.e., Expanded Disability Status Scales (EDSS) 

score of 2 to 6) and a grade of ≥2 in at least one of the functional scales due to pyramidal, cerebellar, or proprioceptive 

disorder in the lower limbs. A convenient sample of healthy controls was included in a study designed to evaluate 

Parkinson’s disease; they were included if they had no neurological, orthopedic or psychiatric disorders that may affect 

gait and no substantial cognitive impairment (Montreal Cognitive Assessment score>21); their data were collected 

from February 2017 through October 2018. The data collection for gait and community ambulation was identical, 

except as noted below, for the dual-task walk. Subjects who wore the long-term monitoring device (see below) for less 

than 5 days were excluded. All participants provided written informed consent prior to participation. Study protocols 

were approved by the local ethical review boards and have therefore been performed in accordance with the ethical 

standards laid down in the 1964 Declaration of Helsinki and its later amendments. 

 

In-lab procedures 

Demographic (e.g., age, sex, height, education level) and MS-related subject characteristics (e.g., disease duration, 

EDSS) were obtained. All subjects walked at a self-selected pace for 1 minute (i.e., usual-walk) and again while 

performing a concurrent cognitive, dual-task [21]. Because of the post hoc nature of the present analyses, different 

dual tasks were used, although have been widely applied in previous dual-task studies of gait The patients with MS 

performed a word-list generating task; this task has been used previously used to study dual-task walking in MS  [22-
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26]. The healthy control group performed serial subtractions of 7 from a 3-digit number; a task has previously been 

used in multiple studies in MS and other cohorts  [22, 27, 28]. As described below, gait quality was measured with a 

tri-axial accelerometer (Opal, APDM) worn on the lower back [12, 13, 29]. In addition, participants in the MS group 

performed the timed-25 foot walk (T25FW) to assess walking disability [5] and the symbol-digit modalities test 

(SDMT) to assess cognitive function, processing speed [30]. Finally, the MS patients completed the modified fatigue 

impact scale (MFIS), a self-report measure of perceived physical, cognitive, and psychosocial fatigue [31].  

 

Real-world, community ambulation data collection 

After completing the in-lab assessment, subjects were asked to wear a small, body-fixed sensor (Axivity AX3, York, 

UK; dimensions: 23.0×32.5×7.6 mm; weight: 11 grams; 100 Hz sampling rate) taped to their lower back (lumbar 

vertebrae 4-5) to capture physical activity and real-world, community ambulation during the subsequent 7-day period 

[12, 13]. The participants were instructed to leave the device on throughout the week and to continue their daily 

activities as usual, without changing their routine. Upon completion of the recording, participants removed and 

returned the device to one of the study sites for data processing. 

 

Community ambulation and in-lab gait metrics and data processing  

An algorithm automatically identified the different types of activities (i.e., walking, lying, standing or sitting quietly) 

and each period of walking throughout the week-long recording [12, 32]. We then extracted three types of activity 

measures that reflect (1) the amount of physical activity (regardless of its source or type), (2) type of activity, and (3) 

the quality of walking [12, 32] (see Table 1). To compare measurements between the lab and real-world settings, we 

applied a similar analysis to the accelerometer data of the first 30 seconds of each walk during usual and dual-task 

walking trials in the lab and each walking bout during community ambulation. We extracted metrics of gait speed, 

cadence, stride regularity (higher values indicated greater regularity and lower stride-to-stride variability), step 

regularity (higher values indicated greater symmetry), and gait complexity (sample entropy, higher values indicate 

greater complexity) [12, 13, 29]. Based on all walking bouts of each subject’s 7-day recording, the typical (median), 

best (90%), and worst (10%) values of each parameter were extracted [12, 13].  
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Statistical analyses 

Statistical analyses were performed using SPSS (version 25, IBM, Armonk, NY, USA) and SAS (version 9.4). The 

Shapiro-Wilk test and visual inspection of box-plots assessed normality. To examine between-group differences in 

subject characteristics and real-world, community ambulation measures, we used independent t-tests, the Mann-

Whitney U tests (also referred to as Wilcoxon rank-sum tests), or Pearson's chi-square tests, as appropriate. To address 

our second aim, we conducted nonparametric repeated-measures analysis to compare representative gait metrics (e.g., 

gait speed, cadence) obtained in the lab to real-world walking values. Outliers were observed in some variables and 

not all variables passed the normality test. To be consistent across all measures, nonparametric analysis was thus 

applied to both parametric and nonparametric data. Nonparametric method was rank-based and it was robust to outliers. 

We applied a rank-based method using mixed models  [33, 34] to examine any group (pwMS vs. controls) by type of 

walk (in-lab vs. community ambulation) interaction effects, as well group and type of walk effects, adjusting for age 

and gender (similar results were obtained using the parametric RM ANOVA). If the significant group by type was 

significant, post-hoc test was thus performed to examine the relationship between each subject’s typical (median), best 

(90%), and worst (10%) real-world, daily-living walking, on the one hand, and each subject’s in-lab usual walking and 

dual-task walking, on the other hand [12].  To minimize the effects of multiple comparisons, only p-values <0.01 were 

considered as significantly different for these group comparisons. Correlation analyses among the patients with pwMS 

quantified the associations between the quantity and quality of real-world, community ambulation and the activity 

domains (i.e., type, quantity, and quality) and MS-related characteristics (e.g., disease duration, EDSS). Spearman’s 

partial correlation coefficients were estimated after adjusting for age and sex effects.  

 

 

RESULTS 

Subject characteristics 

The two groups were similar with respect to age, height and education level (all p's>0.112, see Table 2). The percentage 

of female participants tended to be larger among the pwMS (73%) than in the controls (51%, p=0.065). The average 

disease duration of the pwMS was 13.3±9.3 years and scores on the EDSS ranged between 2 and 6 with a median score 

of 3.5 (interquartile range: 2.5-5.0).  As anticipated, when tested in the lab, pwMS walked slower under usual- and 

dual-task walking conditions as compared to the healthy controls (p<0.001). As expected, subjects in both groups 
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showed a significant effect of the dual-task on gait (e.g., gait speed was significantly lower during dual-tasking than 

during usual walking, p<0.001). The % change in gait speed during dual-tasking was 11.7±15.3 % in the pwMS and 

15.3±7.8 %  in the control subjects (p=0.175, unadjusted). 

Between-group differences in real-world, community ambulation 

PwMS wore the accelerometer for 6.3±1.1 days and controls for 5.7±1.6 days (p=0.741). Compared to the controls, 

pwMS were significantly less active (see Table 3). PwMS took fewer steps per day (p<0.001), engaged in significantly 

fewer walking periods longer than 30 seconds, (p<0.001), and their overall physical activity during the day was lower. 

In addition, patients with MS spent significantly less time (1.20±0.54 hours) walking than the controls (1.90±0.72 

hours) during the day (p<0.001). The duration of other types of activities during the day did not differ between the two 

groups (p>0.05; see Table 3).  

When comparing the quality of real-world gait (i.e., each subject’s “typical” values) between the two groups (see Table 

3), pwMS walked significantly slower with a lower cadence than the controls (p<0.001). Moreover, during community 

ambulation, patients with MS walked with a less consistent gait pattern compared to the controls, as evidenced by a 

lower stride regularity, and with greater asymmetry (i.e., lower step regularity) (p<0.001). The pwMS also walked with 

a lower sample entropy (i.e., decreased complexity of real-world gait acceleration) than the healthy individuals 

(p<0.001).  The significant differences between the two groups in real-world, daily-living activity and gait measures 

persisted after adjusting for gender.     

Differences between gait measured in-lab versus real-world walking 

As summarized in Figure 1, the significant differences in gait quality between the two groups were maintained across 

all types of walking conditions (in-lab usual and dual-task walking, and real-world, community ambulation typical, 

best, and worst values) with the pwMS walking slower and with a lower cadence, stride regularity, step regularity, and 

sample entropy (group main effect p-values<0.001). A significant main effect of walk type was found for all metrics, 

suggesting there were differences between in-lab gait and real-world settings (main effect p-values<0.001).  Group x 

walking condition interaction effects were observed for gait speed, cadence and sample entropy, indicating that the 
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impact of the walking condition was not similar in both groups for these aspects of walking. Trends for group x walking 

condition interaction effects were also observed for step regularity and stride regularity.  

 

For the pwMS and the controls, the typical value (each subject’s median of all walking bouts) during real-world, 

community ambulation was similar to the dual-task in-lab value of gait speed and cadence (and different from the in-

lab usual-walking values). The best (90%) values of gait speed during community ambulation were significantly higher 

than the values of usual-walking in the lab among the controls. In contrast, among the pwMS, the best values of 

community ambulation gait speed were similar (p=0.298) to the usual-walking values in the lab. For the pwMS (but 

not for the controls), community living typical values of step regularity and stride regularity were also similar to the 

dual-task in-lab values.    

 

Correlations between MS-related characteristics and real-world, community ambulation 

The associations between real-world gait, physical activity, and MS symptoms are summarized in Table 4. Among the 

MS patients, higher daily-living step counts and increased engagement in relatively long walking bouts (i.e., ≥30 

seconds) were associated with shorter disease duration, lower disability level, higher (i.e., better) walking speed, and 

cognitive processing speed. Similar correlations were also observed between time spent walking during the day and 

disability level, motor and cognitive function. As expected, better gait quality (e.g., gait speed, cadence, step and stride 

regularity, and sample entropy) measured in the community was associated with lower disability levels and faster 

walking in the lab.  

 

Interestingly, better cognitive function as measured with the SDMT was related to faster walking speed, greater 

cadence, higher stride regularity, and higher sample entropy during community ambulation (Table 4). In addition, 

subjects who reported higher levels of physical fatigue had fewer long walking bouts, spent less time sitting or standing, 

and significantly more time lying down during the day. In contrast, both physical and cognitive fatigue were unrelated 

to any of the gait-quality measures during community ambulation.  
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Wear time compliance 

Among the people with MS, 5 subjects were excluded from the analysis due to low wear time days (as compared with 

the 44 subjects who had more than 5 days of wear time). The subjects who were excluded and those who were not 

excluded were similar (p>0.28)  with respect to age, sex, EDSS, disease duration and years of education. In other 

words, the device was acceptable and correctly worn in about 90% of the pwMS. Among the  control subjects, twenty 

subjects were excluded from analysis due to low wear time days (vs 60 subjects with more than 5 days of wear time). 

The control subjects who were excluded and those controls who were not excluded were similar (p>0.23)  with respect 

to age, sex and years of education.  

 

DISCUSSION 

This investigation provides some of the first results that demonstrate gait alterations in multiple domains during real-

world, community ambulation in pwMS. Specifically, the results confirm that pwMS are significantly less active than 

their healthy peers [16] and that daily-living step counts are sensitive to MS [19], while also showing that MS gait is 

impaired in natural, unconstrained walking. Interestingly, for multiple aspects of gait among patients with MS, the 

typical daily-gait performance was similar to dual-task walking values in the lab, whereas usual in-lab gait values more 

closely resembled walking periods that captured the "best" performance in the community setting (recall Figure 1). 

This observation suggests that to assess the gait of an MS patient in a clinic so that it reflects what happens outside of 

the lab during community ambulation, it is advisable to include a dual-task walking condition.  We can also speculate 

that enhancing dual-tasking gait in the lab should be a therapeutic goal  [35] since this walking condition more closely 

resembles much of the values of gait observed during community ambulation (recall Figure 1).  

 

Previous studies using wearable sensors in pwMS reported the sum or the intensity of the activity [16, 36, 37], while 

others examined a single domain of gait in the home setting [15, 20]. Our findings extend that work by describing free-

living, community ambulation gait across multiple domains. We found group and walking condition differences in all 

five measures of community ambulation gait quality, with significant or trends for group X walking condition 

interactions for all five measures as well. This suggests that the differences between in-lab gait and community 

ambulation are not parallel in MS and controls. For example,  the controls were able to increase their gait speed during 

community ambulation best (90%) walking, compared to in-lab usual walking. In contrast, for the pwMS, these best 
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values were not higher than the in-lab usual walking values. (recall Figure 1). Furthermore, pwMS had lower values 

of sample entropy measured during community ambulation compared to the controls, which may also reflect a less 

complex gait pattern during daily-living and suggest less adaptive gait [38]. Indeed, lower values of the complexity of 

gait have been associated with aging [39], a higher risk of falls [38], and lower levels of activity [40] among older 

adults. The limited ability of pwMS to change their pattern of walking during everyday life may restrict their capability 

to successfully navigate through complex environments, perhaps impinging on functional independence, and social 

participation. Given the importance of gait adaptability to safe ambulation, this may serve as a potential target of 

interventions.  

 

The group by walking condition interactions that were observed for gait speed, cadence, and sample entropy 

(complexity) demonstrate that community ambulation gait measures are not just a simple mirror-image of in-lab values 

in pwMS; this discrepancy is reminiscent of what has been seen in other cohorts [12, 13]. This idea is supported by the 

mild-moderate correlations between the in-lab measure of gait speed and community ambulation gait quality measures 

in pwMS (recall Table 4). For most gait quality measures, more than 50% of the variance (rho2) is not explained by 

the in-lab value of gait speed. These findings have important implications for clinical trials and research, as they open 

the door to additional, largely independent ways of quantifying gait impairments and daily functioning in pwMS and 

perhaps may allow for smaller sample sizes or shorter longitudinal studies.   

      

The associations observed between physical activity and MS-related features are consistent with previous reports 

linking lower physical activity levels in MS with greater disability and poorer performance in walking speed and 

cognitive function [41-43]. In addition, moderate to strong correlations were found between disability and in-lab 

walking speed and worse gait quality in the community, extending preliminary observations [18]. Furthermore, we 

found interesting associations between fatigue and daily-living physical activity. Physical and cognitive fatigue were 

unrelated to daily step count, daily walking time, or any of the gait quality measures. In contrast, worse physical fatigue 

was significantly correlated with a lower number of long walking events, less time sitting or standing, and more time 

resting (i.e., lying down) during the day. These disparate findings suggest that two distinct factors may contribute to 

daily-living walking and physical activity in pwMS. Other research groups observed only weak associations between 

the physical perceived fatigue and the amount, intensity and pattern of activity [44, 45]. Moreover, factors such as age, 
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type of MS, anxiety, and depression have moderated this association [45]. The present findings reveal a stronger 

association between fatigue and rest, suggesting that fatigue may not impact the quality of the activity but perhaps 

impacts the behavioral response to the activity, in the form of daytime rest. Future steps should explore whether 

fatiguing actions during the day are followed by periods of rest and whether resting benefits the quality of subsequent 

walking. The results also suggest that interventions that target fatigue should assess a broader range of behavior and 

not focus solely on gait or other dynamic activities, as these may be less sensitive markers of fatigue. To optimally 

augment daily-living mobility and function among pwMS, factors that contribute to gait, fatigue, and rest should be 

considered.   

 

Limitations and Conclusions 

The present study has several limitations. For example, because we used a convenient sample of healthy controls, the 

two groups were not perfectly matched with respect to gender distribution. However, even after adjusting for gender, 

the group differences persisted. In addition, because this study was essentially a post-hoc analysis of data collected for 

two different purposes, two different secondary, cognitive dual-tasks were used during the in-lab testing of dual-task 

walking. This. might explain the trend toward a larger mean value in the controls. Still, it is important to keep in mind 

that both groups elucidated the well-known dual-task effects on gait (i.e., gait speed was significantly lower during 

dual-task walking in both groups) and that the focus of this study was on comparing in-lab gait to walking during 

community ambulation in both groups. Nonetheless, because different cognitive tasks were used, we cannot directly 

compare the impact of the dual-task walking in the lab setting across groups, as has been done previously  [22]. Another 

consideration is that we did not evaluate the impact of the dual-task walking in the lab setting on the cognitive task. 

To obtain a more complete picture of the dual-task costs, it is best to evaluate dual-task changes in the performance of 

both the walking and the cognitive task  [22, 27, 46]. In addition, we did not explicitly ask the subjects to prioritize 

one task over the other when dual-tasking. In the future, it would be informative to study different types of dual-tasks 

in pwMS  [22] and controls and the role of prioritization  [23, 47, 48] when comparing in-lab walking performance to 

community ambulation. Perhaps specific dual-task and prioritization paradigms more closely reflect what happens 

during community ambulation than others. Nonetheless, the results shown in Figure 1 do provide an important 

comparison of dual-task walking in a lab-based setting to community ambulation.  
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Extending previous work that has shown the potential of using wearables in MS [14-16, 19, 21, 37, 41, 42], the results 

of the present study demonstrate marked changes in multiple domains of community ambulation gait quality, physical 

activity, and step counts in pwMS and potentially modifiable factors that are associated with these changes. The results 

show how important it is to evaluate walking characteristics in the real-world and not only in the clinic. Measurements 

based on a wearable device worn for multiple days also make it possible to understand the extent to which different 

types of tests in the clinic correlate with actual functioning, going beyond a single snapshot and toward metrics that 

are more relevant to the patient and more ecologically valid. They also suggest that multiple mechanisms affect 

different aspects of community ambulation and every-day physical activity in pwMS, potentially pointing the way 

towards multi-modal interventions. Nonetheless, prospective and intervention studies are needed to further evaluate 

the utility of these real-world measures and their responsiveness to therapy. The present findings set the stage for the 

future development, refinement, and evaluation of the utility of wearable-based methods to enhance the tracking of 

gait impairments, disease progression, and the effects of interventions in pwMS. 
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FIGURE CAPTION 

Figure 1. Comparison between in-lab and real-world, community ambulation among patients with multiple 

sclerosis (pwMS) and healthy controls. The gait metrics were extracted from the 30-second walking bouts of usual 

and dual-task walking trials in the lab, as well as from each subject’s worst (i.e., 10th percentile), typical (i.e., median) 

and best (i.e., 90th percentile) real-world walking. "A" denotes a significant difference (i.e., p<0.01) from in-lab usual 

walking and "B" indicates a significant difference (p<0.01) from in-lab dual-task walking. The nonparametric repeated 

measures ANOVA and the post-hoc, pairwise comparisons between in-lab and daily-living walking events within each 

group were adjusted for age and sex. Note that during real-world walking, pwMS did not walk faster than the speed 

measured during usual-walking in the lab, as reflected in the “best” values, while controls were able to walk faster 

during their "best" real-world values compared to the lab.    
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Table 1. Summary of the physical activity, type of physical activity, and quality of walking measures that were extracted from a body-

fixed sensor worn on the lower back during community ambulation for one week.  

Amount of Physical Activity Type of Activity Quality of Walking 

• Number of steps
• Number of walking bouts

(stratified by bout length)
• Intensity (average of signal

vector magnitude over 15-
second epochs and sum of total
physical activity)

• Time spent walking
• Time spent

sitting/standing quality
• Time spent lying down

during day

Domain Metric 

Pace Gait speed 

Rhythm Cadence 

Variability Stride regularity 

Symmetry Step regularity 

Complexity Sample entropy 



Table 2. Subject characteristics 

People with 

multiple sclerosis 

N=44 

Healthy controls 

N=60 

p-value

Age [yrs] 49.2±10.7 52.1±7.1 0.112 

Gender [% Female] 73% 51% 0.065a 

Height [m] 1.68±0.09 1.70±0.08 0.157 

Education [% high school / % undergrad degree 

/ % graduate degree] 
9% / 48% / 43% 7% / 38% / 55% 0.239b 

Usual gait speed [cm/sec] 107±31 129±17 <0.001 

Dual-task gait speed [cm/sec] 96±32 110±14 <0.001 

MS-related characteristics 

Disease duration [yrs] 13.3±9.3 

EDSS [median (interquartile range)] 3.5 (2.5-5.0) 

Timed-25 foot walking speed [m/sec] 1.32±0.51 

Symbol-digit modalities test score 47.6±14.4 

Modified fatigue impact scale 

Total score 40.4±16.5 

Physical fatigue score 20.1±7.8 

Cognitive fatigue score 16.9±8.7 

Psycho-social fatigue score 3.4±2.0 

Entries present mean ± SD unless otherwise stated. EDSS- Expanded disability status scale.  

ap-value is based on Pearson's chi-square. bp-value is based on Mann-Whitney U tests.  



Table 3. Differences in real-world, community ambulation between people with multiple sclerosis and 
healthy controls  

Multiple 

sclerosis 

(n=44) 

Healthy 

controls 

(n=60) 

p-value
A

m
o

u
n

t 
o

f 
ac

ti
vi

ty
 

Step count [#] 5979.3±2855.1 10062.5±3958.7 <0.001b 

Total activity during the day [g] 142.5±42.9 179.8±49.2 <0.001a 

Number of walking events ≥30 sec [#] 215.0±128.4 465.88±321.2 <0.001b 

Ty
p

e 
o

f 
ac

ti
vi

ty
 

Daily walking [hours] 1.20±0.54 1.90±0.72 <0.001b 

Daily lying supine [hours] 2.78±2.63 2.38±1.25 0.459b 

Daily standing or sitting [hours] 5.37±2.67 5.42±1.44 0.459b 

Q
u

al
it

y 
o

f 
ga

it
* 

Gait speed [cm/sec] 94±24 115±15 <0.001b 

Cadence [steps/minute] 99.3±11.8 109.5±7.2 <0.001a 

Stride regularity [arbitrary units] 0.48±0.18 0.58±0.12 0.001b 

Step regularity [arbitrary units] 0.52±0.18 0.63±0.13 <0.001b 

Sample entropy [arbitrary units] 0.24±0.11 0.32±0.09 <0.001a 

*Quality of gait was calculated based on all walking bouts of 30 seconds or more for each subject. Quality of walking

here refers to each subject’s “typical” median value among all walking bouts throughout the week. All significant 

differences persisted when adjusted for sex. Entries present mean ± SD of the real-world, daily activity. Physical activity 

is reported in units of g (gravity). a p-value is based on independent t-tests. bp-value is based on Mann-Whitney U tests. 



Table 4. Spearman correlations between community ambulation metrics and disease-related 

characteristics among the patients with multiple sclerosis, adjusted for age and sex.  

  Disease 
duration 

Disability 
level 

(EDSS) 

Fast 
walking 
speed 

(T25FW) 

Cognitive 
processing 

speed 
(SDMT) 

Physical 
fatigue 

Cognitive 
fatigue 

A
m

o
u

n
t 

o
f 

ac
ti

vi
ty

 

Daily step count [#] -0.432** -0.530** 0.483** 0.451** -0.334 -0.269 

Total activity during 
the day [g] -0.324* -0.337* 0.303 0.324* -0.083 -0.121 

Number of walking 
bouts≥30 seconds [#] 
 

-0.340* 
 

-0.400** 
 

0.355* 
 

0.426** 
 

-0.400* 
 

-0.145 
 

Ty
p

e 
o

f 
ac

ti
vi

ty
 Walking during the day 

[hours] -0.380* -0.492** 0.377* 0.410** -0.305 -0.354* 

Lying during the day 
[hours] 0.235 0.199 -0.179 -0.146 0.551** 0.255 

Sitting/standing during 
the day [hours] 
 

-0.315* 
 

-0.297 
 

0.291 
 

0.199 
 

-0.484* 
 

-0.192 
 

Q
u

al
it

y 
o

f 
ga

it
 

Gait speed [cm/sec] -0.111 -0.502** 0.740** 0.398** -0.277 -0.028 

Cadence [steps/minute] -0.100 -0.445** 0.691** 0.331* -0.264 0.133 

Stride regularity 
[arbitrary units] -0.110 -0.367* 0.578** 0.353* -0.197 -0.047 

Step regularity 
[arbitrary units] -0.256 -0.406** 0.627** 0.297 -0.296 -0.007 

Sample entropy 
[arbitrary units] -0.167 -0.400** 0.687** 0.328* -0.257 0.008 

  

 

 
*p-value<0.05;    **p-value<0.01 (entries with p-values <0.01 are bolded).  Please note that psycho-social 

fatigue was not correlated with any of the community ambulation measures.  Table entries are the 

Spearman correlation coefficient Rho. 

 

 

 


	Shema-Shiratzky_manuscript MS daily living feb 8 2020
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	In-lab procedures
	Real-world, community ambulation data collection
	Community ambulation and in-lab gait metrics and data processing
	Statistical analyses

	RESULTS
	Subject characteristics
	Between-group differences in real-world, community ambulation
	Differences between gait measured in-lab versus real-world walking
	Correlations between MS-related characteristics and real-world, community ambulation

	DISCUSSION

	Shema-Shiratzky_2020_Figure 1a
	Slide Number 1

	Shema-Shiratzky_2020_Figure 1b
	Slide Number 1

	Shema-Shiratzky_2020_Figure 1c
	Slide Number 1

	Shema-Shiratzky_2020_Figure 1d
	Slide Number 1

	Shema-Shiratzky_2020_Figure 1e
	Slide Number 1

	Shema-Shiratzky_2020_Table 1
	Shema-Shiratzky_2020_Table 2
	Shema-Shiratzky_2020_Table 3
	Shema-Shiratzky_2020_Table 4
	Fig.1e



