An advanced representation of the oceanic biological carbon pump: M⁴AGO in HAMOCC <u>Jöran März</u>¹, Katharina D. Six¹, Irene Stemmler², Soeren Ahmerkamp³, Tatiana Ilyina¹ ¹Max Planck Institute for Meteorology, Hamburg, Germany ²formerly: ¹ - present address: wobe-systems GmbH, Kiel, Germany ³Max Planck Institute for Marine Microbiology, Bremen, Germany March 17th, 2021, CRESCENDO General Assembly ## Representations of POC fluxes in ESMs #### Sinking of particulate organic carbon (POC) is represented via: → Martin curve (e.g. standard HAMOCC; Mauritsen et al. 2019, following Kriest & Oschlies 2008) - → POC fractions: 'slow' and 'fast' sinking (e.g. MEDUSA; Yool et al. 2020) - → Aggregation of POC (e.g. PISCES, NorESM; Gehlen et al. 2006, Schwinger et al. 2016, following Kriest & Evans 2000) → Ballasting schemes (e.g. GFDL; Stock et al. 2020, following Armstrong et al. 2002) With the Microstructure, Multiscale, Mechanistic, Marine Aggregates in the Global Ocean (M⁴AGO) sinking scheme, we aim at explicitly representing marine aggregates and their mean sinking velocity, including 'ballasting effects', to advance HAMOCCs representation of the biological carbon pump. ## Aggregate composition & microstructure Aggregates of variable sizes are composed of heterogeneous primary particles with different size and density #### Affects: - excess density and porosity of aggregates - → Sinking velocity & eventually POC transfer efficiency Assmy et al. 2013, Iverson et al. 2010 Aggregates' sinking velocities \rightarrow range from ≈ 1 m d⁻¹ to \gg 200 m d⁻¹ # Representing poly-dense, poly-sized primary particles M⁴AGO model core represents heterogeneous aggregate composition by POC, CaCO₃, silicate and dust: → Fractal representation of aggregate microstructure #### M⁴AGO schematic #### M⁴AGO captures relevant aggregate properties and - explicitly represents heterogeneously composed marine aggregates and their measurable properties (e.g. size, microstructure, porosity, excess density) in HAMOCC - implicitly represents aggregation and remineralization-dependent fragmentation - ightarrow includes temperature- and oxygen-dependent remineralization ## Improved latitudinal transfer efficiency pattern Transfer efficiency = $$\frac{\text{POC flux at z} \approx 1000 \,\text{m}}{\text{POC flux at z} = 100 \,\text{m}}$$ Transfer efficiency as a measure, how efficient POC can become sequestered - → Temperature- and oxygen-dependent remineralization is a strong driver for the transfer efficiency pattern. - → Spatio-temporally variable sinking velocity contributes to latitudinal transfer efficiency pattern. # Relative contributions of driving factors to $\langle w_s \rangle$ Mean settling velocity, $\langle w_s \rangle$, is primarily driven by - ightarrow mean primary particle density, $\langle ho_{ ho} angle$, and size, $\langle d_{ ho} angle$, and - \rightarrow potentially the microstructure, d_f , of marine aggregates. ## Net primary production (NPP) under ssp585 scenario → M⁴AGO with the temperature-dependent remineralization increases NPP particularly in the equatorial regions compared to standard HAMOCC #### NPP under ssp585 scenario #### M⁴AGO - ightarrow slightly reduces %-decrease of NPP in the equatorial regions - \rightarrow weakens NPP %-increase in the Arctic region (> 66 $^{\circ}$ N) compared to the standard HAMOCC (CMIP6). ## M⁴AGO transfer efficiency under ssp585 scenario - Strongest future regional changes in transfer efficiency associated to changes in oxygen minimum zones. - → Transfer efficiency significantly reduced in the Arctic Ocean by the end of the century (still higher than in the standard HAMOCC). # Air-sea CO₂ fluxes under ssp585 scenario - → Higher transfer efficiency in high latitudes in M⁴AGO imprints on CO₂ uptake compared to standard HAMOCC. - → Global CO₂ fluxes in M⁴AGO remain within the standard HAMOCC ensemble spread. #### Conclusion #### M⁴AGO - → improves the representation of POC transfer efficiency - → imprints on the latitudinal CO₂ uptake pattern - ightarrow bridges the gap from microscale marine aggregate properties in spatio-temporally variable environments to global impacts on POC and air-sea $\rm CO_2$ fluxes - → provides a link between phytoplankton community & size structure and POC fluxes - $\rightarrow\,$ enables representation of aggregate properties-related processes (e.g. size-dependent remineralization) Maerz et al. 2020, Biogeosciences (& in prep.) Appendix # M⁴AGO aggregate properties (WOA P16, 150°W) M⁴AGO reasonably reproduces the spatio-temporal variability of marine aggregate properties and mean sinking velocity. #### POC remineralization length scale under ssp585 - $\rightarrow\,$ Strong changes of POC remineralization length scales in the Arctic region. - mesoplegaic changes in the equatorial region linked to OMZ changes ## Settling velocity under ssp585 - → Temperature-dependent remineralization enhances CaCO₃ ballasting effect on POC. - $\rightarrow \,\, Q_{10}\text{-dependent}$ opal remineralization decreases opal frustule size- effect in high latitude regions.