An advanced representation of the oceanic biological carbon pump: M⁴AGO in HAMOCC

<u>Jöran März</u>¹, Katharina D. Six¹, Irene Stemmler², Soeren Ahmerkamp³, Tatiana Ilyina¹

¹Max Planck Institute for Meteorology, Hamburg, Germany
 ²formerly: ¹ - present address: wobe-systems GmbH, Kiel, Germany
 ³Max Planck Institute for Marine Microbiology, Bremen, Germany

March 17th, 2021, CRESCENDO General Assembly

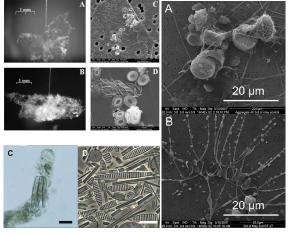
Representations of POC fluxes in ESMs

Sinking of particulate organic carbon (POC) is represented via:

→ Martin curve (e.g. standard HAMOCC; Mauritsen et al. 2019,

following Kriest & Oschlies 2008)

- → POC fractions: 'slow' and 'fast' sinking (e.g. MEDUSA; Yool et al. 2020)
- → Aggregation of POC (e.g. PISCES, NorESM; Gehlen et al. 2006,


Schwinger et al. 2016, following Kriest & Evans 2000)

→ Ballasting schemes (e.g. GFDL; Stock et al. 2020,

following Armstrong et al. 2002)

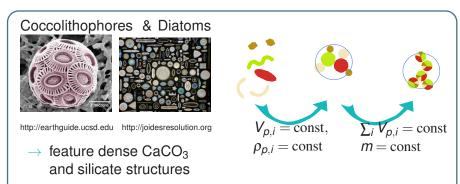
With the Microstructure, Multiscale, Mechanistic, Marine Aggregates in the Global Ocean (M⁴AGO) sinking scheme, we aim at explicitly representing marine aggregates and their mean sinking velocity, including 'ballasting effects', to advance HAMOCCs representation of the biological carbon pump.

Aggregate composition & microstructure

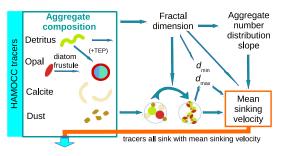
Aggregates of variable sizes are composed of heterogeneous primary particles with different size and density

Affects:

- excess density and porosity of aggregates
- → Sinking velocity & eventually POC transfer efficiency


Assmy et al. 2013, Iverson et al. 2010

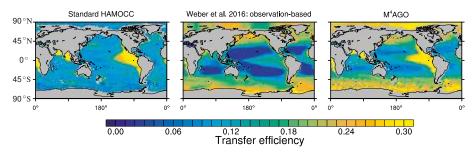
Aggregates' sinking velocities \rightarrow range from ≈ 1 m d⁻¹ to \gg 200 m d⁻¹


Representing poly-dense, poly-sized primary particles

M⁴AGO model core represents heterogeneous aggregate composition by POC, CaCO₃, silicate and dust:

→ Fractal representation of aggregate microstructure

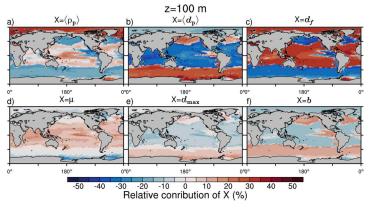
M⁴AGO schematic



M⁴AGO captures relevant aggregate properties and

- explicitly represents heterogeneously composed marine aggregates and their measurable properties (e.g. size, microstructure, porosity, excess density) in HAMOCC
- implicitly represents aggregation and remineralization-dependent fragmentation
- ightarrow includes temperature- and oxygen-dependent remineralization

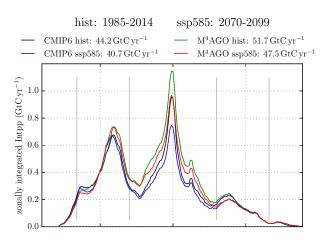
Improved latitudinal transfer efficiency pattern



Transfer efficiency =
$$\frac{\text{POC flux at z} \approx 1000 \,\text{m}}{\text{POC flux at z} = 100 \,\text{m}}$$

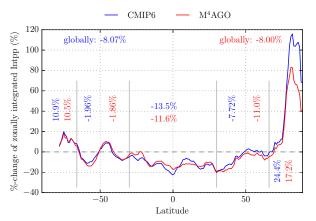
Transfer efficiency as a measure, how efficient POC can become sequestered

- → Temperature- and oxygen-dependent remineralization is a strong driver for the transfer efficiency pattern.
- → Spatio-temporally variable sinking velocity contributes to latitudinal transfer efficiency pattern.


Relative contributions of driving factors to $\langle w_s \rangle$

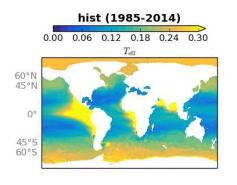
Mean settling velocity, $\langle w_s \rangle$, is primarily driven by

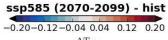
- ightarrow mean primary particle density, $\langle
 ho_{
 ho}
 angle$, and size, $\langle d_{
 ho}
 angle$, and
- \rightarrow potentially the microstructure, d_f , of marine aggregates.

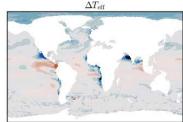

Net primary production (NPP) under ssp585 scenario

→ M⁴AGO with the temperature-dependent remineralization increases NPP particularly in the equatorial regions compared to standard HAMOCC

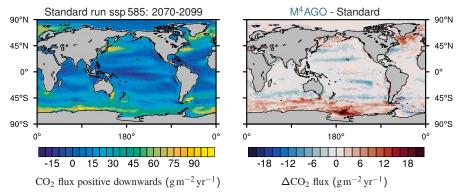
NPP under ssp585 scenario




M⁴AGO


- ightarrow slightly reduces %-decrease of NPP in the equatorial regions
- \rightarrow weakens NPP %-increase in the Arctic region (> 66 $^{\circ}$ N) compared to the standard HAMOCC (CMIP6).

M⁴AGO transfer efficiency under ssp585 scenario

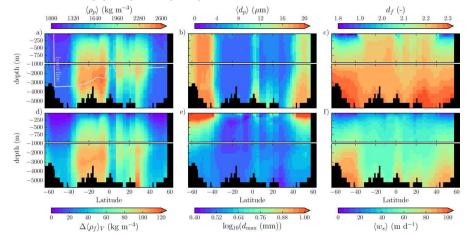


- Strongest future regional changes in transfer efficiency associated to changes in oxygen minimum zones.
- → Transfer efficiency significantly reduced in the Arctic Ocean by the end of the century (still higher than in the standard HAMOCC).

Air-sea CO₂ fluxes under ssp585 scenario

- → Higher transfer efficiency in high latitudes in M⁴AGO imprints on CO₂ uptake compared to standard HAMOCC.
- → Global CO₂ fluxes in M⁴AGO remain within the standard HAMOCC ensemble spread.

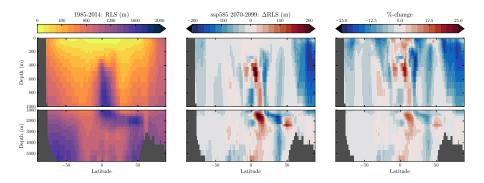
Conclusion


M⁴AGO

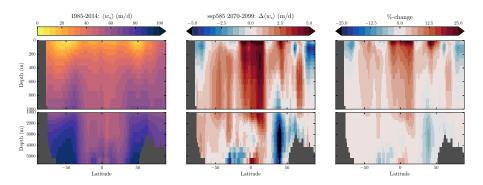
- → improves the representation of POC transfer efficiency
- → imprints on the latitudinal CO₂ uptake pattern
- ightarrow bridges the gap from microscale marine aggregate properties in spatio-temporally variable environments to global impacts on POC and air-sea $\rm CO_2$ fluxes
- → provides a link between phytoplankton community & size structure and POC fluxes
- $\rightarrow\,$ enables representation of aggregate properties-related processes (e.g. size-dependent remineralization)

Maerz et al. 2020, Biogeosciences (& in prep.)

Appendix


M⁴AGO aggregate properties (WOA P16, 150°W)

M⁴AGO reasonably reproduces the spatio-temporal variability of marine aggregate properties and mean sinking velocity.



POC remineralization length scale under ssp585

- $\rightarrow\,$ Strong changes of POC remineralization length scales in the Arctic region.
- mesoplegaic changes in the equatorial region linked to OMZ changes

Settling velocity under ssp585

- → Temperature-dependent remineralization enhances CaCO₃ ballasting effect on POC.
- $\rightarrow \,\, Q_{10}\text{-dependent}$ opal remineralization decreases opal frustule size- effect in high latitude regions.