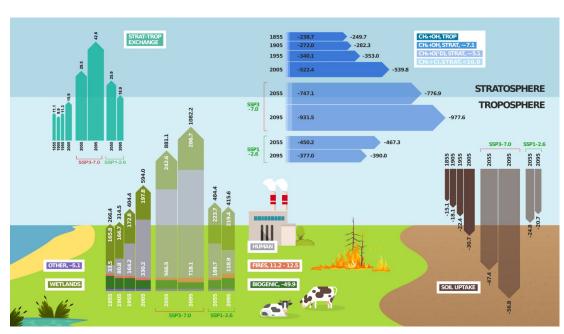


Mitigating Methane


Irreversible changes in the global CH₄ cycle under the heavy-mitigation SSP1-2.6 scenario

Gerd A. Folberth, Chris D. Jones, Fiona M. O'Connor, Nicola Gedney, Alistair A. Sellar, and Andy Wiltshire

CH₄ Emissions Driven UKESM

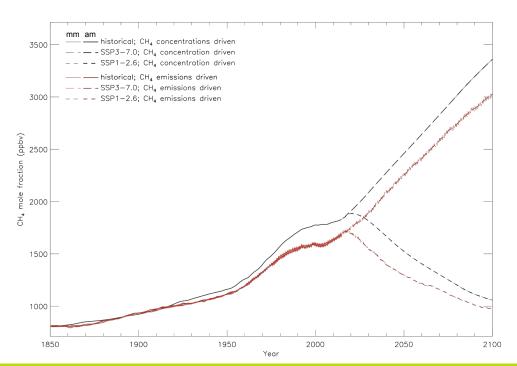
Motivation: Produce an interactive, fully coupled model of the methane cycle for process and mitigation research.

UKESM 1.0 release configuration:

- prescribed CH_₄ surface mole fractions
- + interactive CH₄ wetland emissions (cpld. to UKCA)
- + CH₄ prescribed anthropogenic and fire emissions
- + CH, soil uptake
- + residual CH₄ surface exchange flux diagnostic

250-Year Transient Simulation:

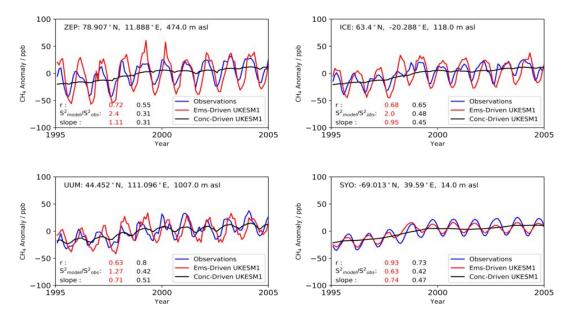
- PI-control simulation
- 3-member historic ensemble (1850-2014)
- SSP3-7.0 scenario simulation (2015-2100)
- SSP1-2.6 scenario simulation (2015-2100)


CH₄ Surface Mole Fraction – 1850 to 2100

CH₄ concentration-driven configuration CH₄ emissions-driven configuration

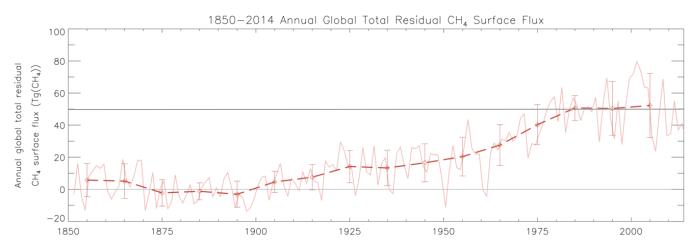
$$\Delta CH_4(PI \rightarrow PD) = \sim 1,100 \text{ ppb}$$

 $\Delta CH_4(PI \rightarrow PD) = \sim 900 \text{ ppb}$


 $\mathsf{Error}_{\Delta(\mathsf{Pl} \to \mathsf{PD})}$ in 2014: approx. -200 ppb $\mathsf{\%Error}_{\Delta(\mathsf{Pl} \to \mathsf{PD})}$ in 2014: approx. -20%

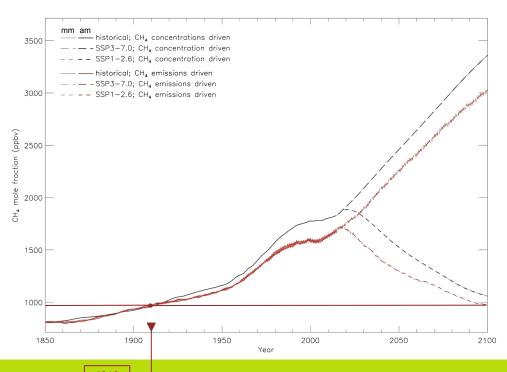
similar CH₄ lifetime in both configurations

CH₄ Surface Mole Fraction Anomalies



observations: monthly mean flask CH₄ data (1995 to 2005) from NOAA GML Carbon Cycle Cooperative Global Air Sampling Network (Dlugokencky, E.J., et al., 1983-2019, Version: 2020-07, https://doi.org/10.15138/VNCZ-M766, 274 2020).

Residual CH₄ Surface Exchange Flux


$$[CH_4]_{prsc.}$$
 - $[CH_4]_{inst.}$ $\rightarrow \Delta_{CH_4}$ (kg kg⁻¹) \rightarrow F_{CH_4} (kg m⁻²

CH₄ Recovery under SSP1-2.6

	Atmospheric Methane Content	
	surface mole fraction	whole atmosphere burder
1910s	986 ppb	2675 Tg
2090s*	992 ppb (+1%)	2750 Tg (+3%)
	Main Methane	e Sources (Tg/yr)
	wetlands	anthropogenic
1910s	169.3	91.6
2090s*	219.4 (+30%)	118.9 (+30%)
	Main Methane Sinks (Tg/yr)	
	CH₄+OH [◆]	Soil Uptake
1910	-287.7	-18.7
2090s*	-384.1 (+34%)	-20.7 (+11%)

^{*}for SSP1-2.6

Conclusions & Outlook

- We have developed a methane emissions-driven UKESM configuration
- This prototype version compares reasonably well with observations
- We show that even under aggressive mitigation options (SSP1-2.6) a complete reversal of the perturbations to the methane cycle since PI is unlikely. Methane still remains an excellent mitigation target.
- Emissions-driven methane cycle will become standard in future releases of UKESM (UMESM1.1, UKESM2.0)