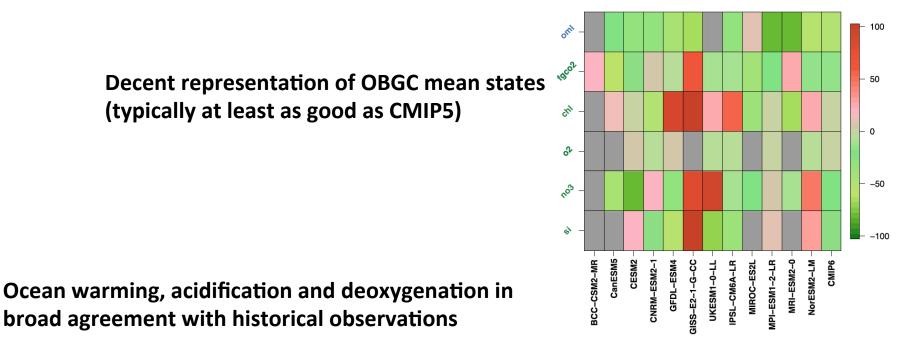
Lester Morgan Kwiatkowski CNRS Sorbonne Université Laboratoire de Océanographie et du Climat (LOCEAN) Paris

Ocean biogeochemistry projections from CMIP5 to CMIP6: what's new and have we learnt anything?

The initial trickle of CMIP6 marine biogeochemistry papers...


Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections

Lester Kwiatkowski¹, Olivier Torres², Laurent Bopp², Olivier Aumont¹, Matthew Chamberlain³, James R. Christian⁵, John P. Dunne⁶, Marion Gehlen⁷, Tatiana Ilyina⁸, Jasmin G. John⁶, Andrew Lenton^{3,4}, Hongmei Li⁸, Nicole S. Lovenduski⁹, James C. Orr⁷, Julien Palmieri¹⁰, Yeray Santana-Falcón¹¹, Jörg Schwinger¹², Roland Séférian¹¹, Charles A. Stock⁶, Alessandro Tagliabue¹³, Yohei Takano^{8,14}, Jerry Tjiputra¹², Katsuya Toyama¹⁵, Hiroyuki Tsujino¹⁵, Michio Watanabe¹⁶, Akitomo Yamamoto¹⁶, Andrew Yool¹⁰, and Tilo Ziehn³

Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6

Roland Séférian ¹ Sarah Berthet ¹ Andrew Yool² + Julien Palmiéri² + Laurent Bopp³ + Alessandro Tagliabue⁴ + Lester Kwiatkowski⁵ · Olivier Aumont⁵ · James Christian⁶ · John Dunne⁷ · Marion Gehlen⁸ · Tatiana Ilyina⁹ · Jasmin G. John⁷ · Hongmei Li⁹ · Matthew C. Long¹⁰ · Jessica Y. Luo⁷ · Hideyuki Nakano¹¹ · Anastasia Romanou¹² · Jörg Schwinger¹³ · Charles Stock⁷ · Yeray Santana-Falcón¹ · Yohei Takano^{9,14} · Jerry Tjiputra¹³ · Hiroyuki Tsujino¹¹ · Michio Watanabe¹⁵ · Tongwen Wu¹⁶ · Fanghua Wu¹⁶ · Akitomo Yamamoto¹⁵

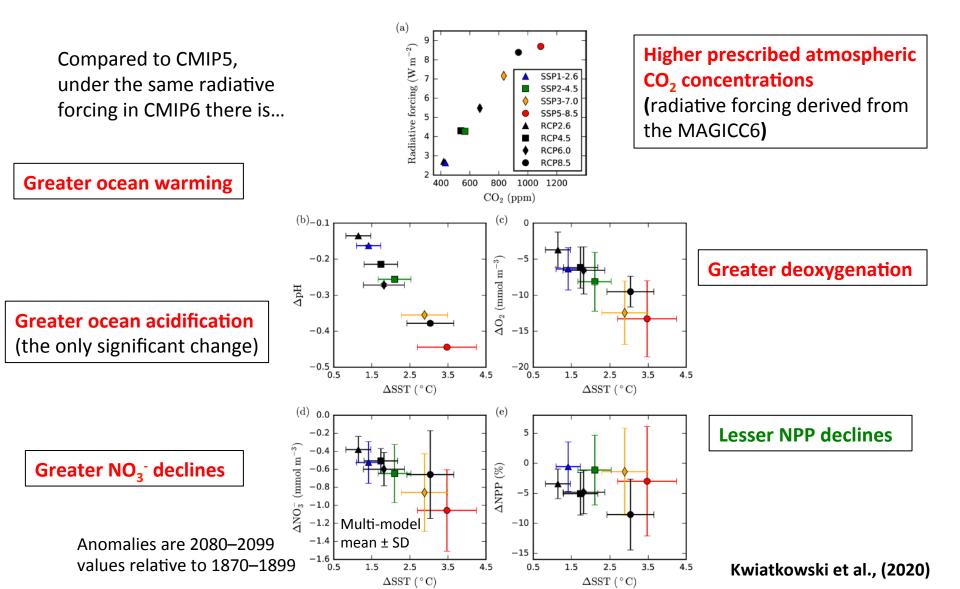
CMIP6 ocean biogeochemical performance (mean state and trends) gives us some confidence in future projections

Variable	Years	Observed trend and reference	CMIP6 trend
SST	1901-2012	+0.06 (°C decade ⁻¹ ; Hartmann et al., 2013)	$+0.055 \pm 0.015$ (°C decade ⁻¹)
SST	1979-2012	+0.095 (°C decade ⁻¹ ; Hartmann et al., 2013)	$+0.152 \pm 0.042$ (°C decade ⁻¹)
Surface pH		-0.018 (units decade ⁻¹ ; Lauvset et al., 2015)	-0.016 ± 0.0003 (units decade ⁻¹)
Subsurface O ₂	1970-2010	-0.30 to -1.52 (mmol m ⁻³ decade ⁻¹ ; Helm et al., 2011;	-0.49 ± 0.097
		Schmidtko et al., 2017; Ito et al., 2017; Bindoff, et al., in press)	$(\text{mmol}\text{m}^{-3}\text{decade}^{-1})$

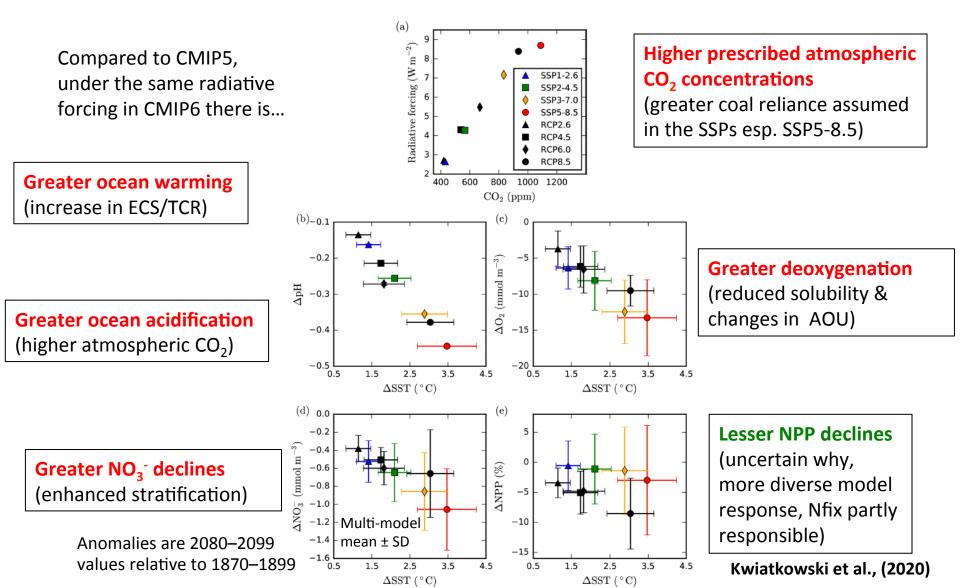
Séférian et al., (2020), Kwiatkowski et al., (2020)

What have we looked at? More of the same "stressors" and a little bit more

Projected 21st century decrease in marine productivity: a multi-model analysis


M. Steinacher^{1,2}, F. Joe K. Lindsay⁵, J. K. Mod Warming projections

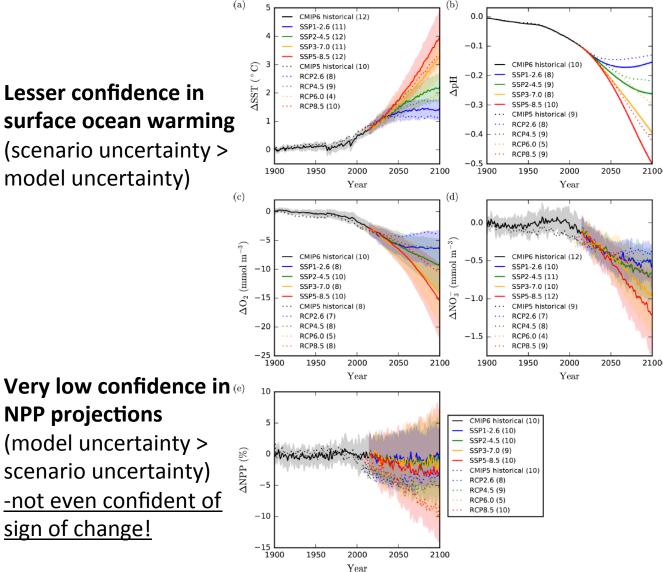
> V. Cocco^{1,2}, F. Joos^{1,2} A. Oschlies⁹, B. Schr projections with CMIP5 models


> > L. Bopp¹, L. Resplandy¹, J. C. Orr¹, S. C. Doney⁸, J. P. Dunne², M. Gehlen¹, P. Halloran³, C. Heinze^{6,9,10}, T. Ilyina⁴, R. Séférian^{1,5}, J. Tjiputra^{6,9,10}, and M. Vichi⁷

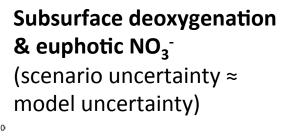
Updated projections of: -surface ocean warming -surface ocean acidification -subsurface (100-600m) deoxygenation -upper ocean/euphotic (0-100m) [NO₃⁻] -Integrated net primary production (NPP) + projections of:
-benthic ocean warming, acidification,
deoxygenation
-Seasonal cycles of temperature and
carbonate chemistry

What's changed in the ocean BGC projections?

What's changed in the ocean BGC projections?

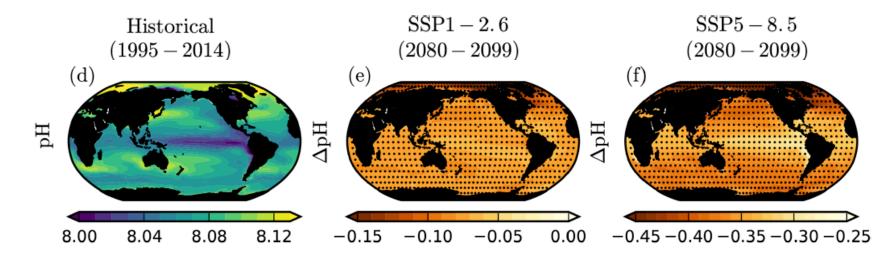


What's changed in the ocean BGC projections?

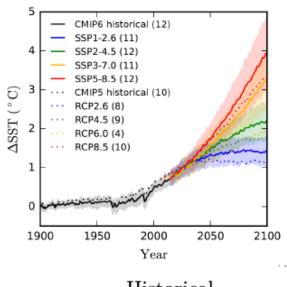

Lesser confidence in surface ocean warming (scenario uncertainty > model uncertainty)

NPP projections

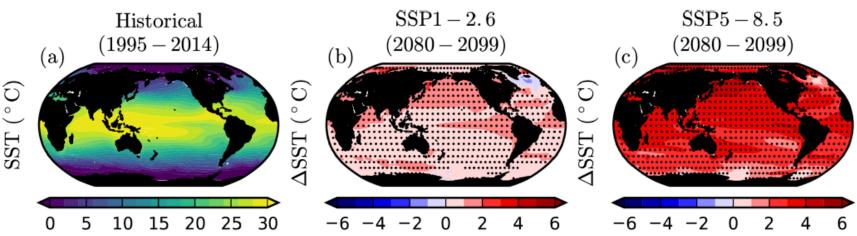
sign of change!


Highest confidence in surface OA projections (scenario uncertainty >> model uncertainty)

Greater surface ocean acidification due to higher atmospheric [CO₂]

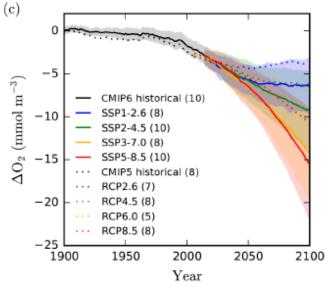

Year 2100 concentrations

Radiative Forcing	2.6 W m ⁻²		4.5 W m^{-2}		8.5 W m ⁻²	
Scenario	SSP1-2.6	RCP 2.6	SSP2-4.5	RCP 4.5	SSP5 8.5	RCP 8.5
CO ₂ (ppm)	445.6	421	602.8	538	1135.2	936
CH ₄ (ppb)	1056.4	1254	1683.2	13/6	2415.3	3751
N ₂ O (ppb)	353.9	344	377.3	372	391.8	435

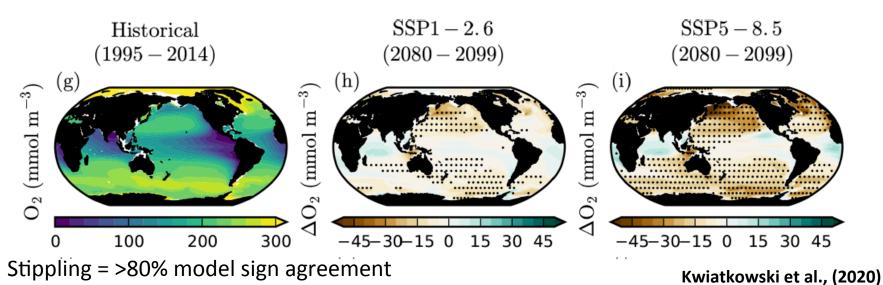


Stippling = mean anomaly > inter-model SD (robustness)

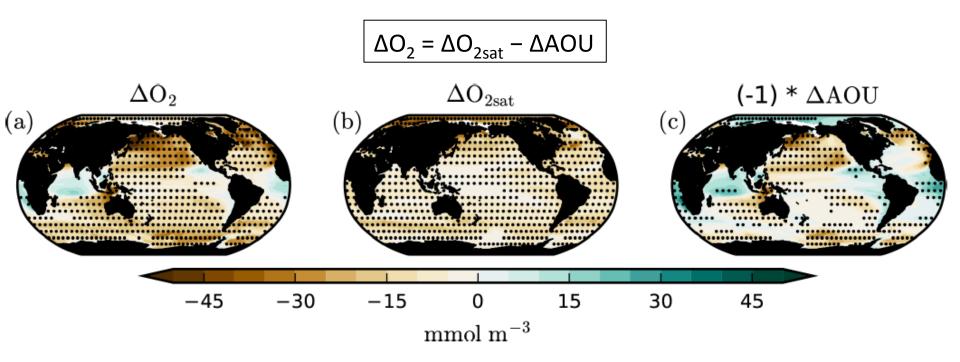
Enhanced surface ocean warming



- Greater warming due to higher ECS in CMIP6 (stronger positive cloud feedbacks, Zelinka et al., 2020)
- Spatial projections of surface warming very similar between CMIP6 and CMIP5
- Warming near ubiquitous with high confidence (North Atlantic "warming hole" still present)
- Arctic amplification still apparent

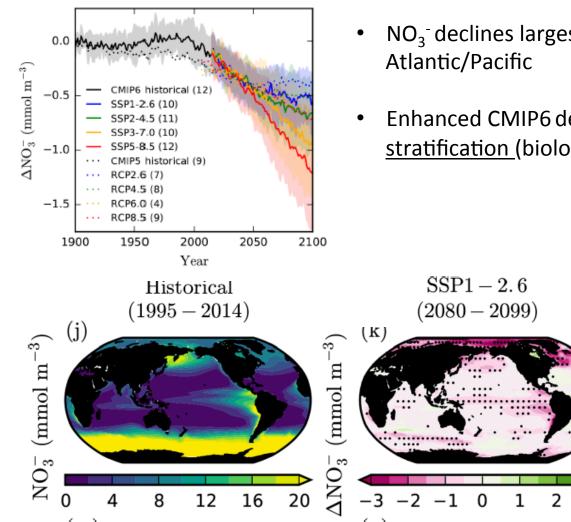


Stippling = mean anomaly > inter-model SD (robustness)


Enhanced subsurface (100-600m) deoxygenation

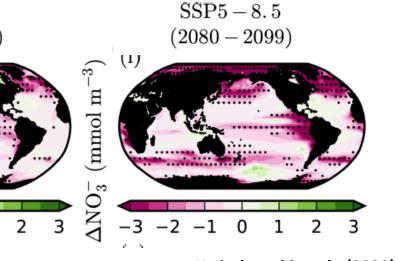
- Spatial projections of deoxygenation similar between CMIP6 and CMIP5
- Subsurface O₂ generally declines
- Increases in certain low latitude regions (but not robustly)

Enhanced subsurface (100-600m) deoxygenation: the role of the

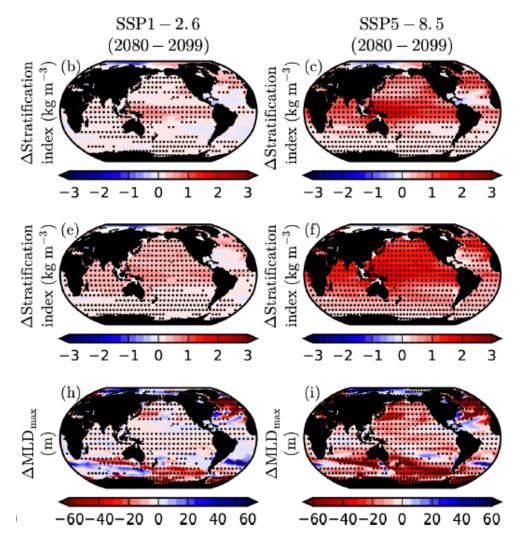


Reductions in subsurface oxygen due to

- 1. Temperature driven reductions in solubility (O_{2sat})
- 2. Mediated by Apparent Oxygen Utilisation (AOU) increases and decreases

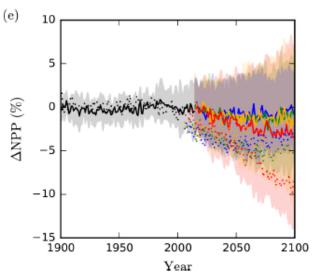

 same analysis not performed for CMIP5 but thermal solubility decline presumably enhanced in CMIP6
 Kwiatkow

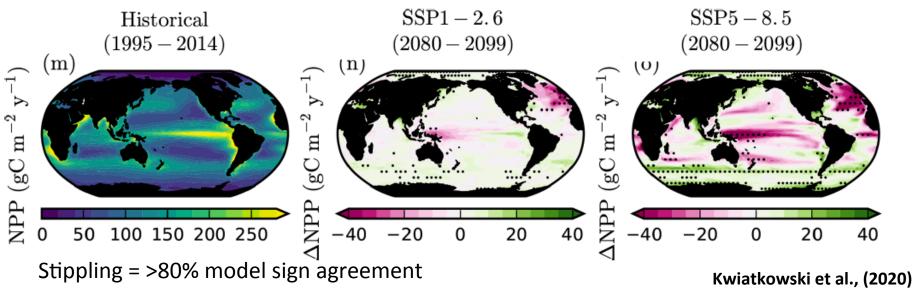
Enhanced upper ocean (0-100m) NO₃⁻ declines



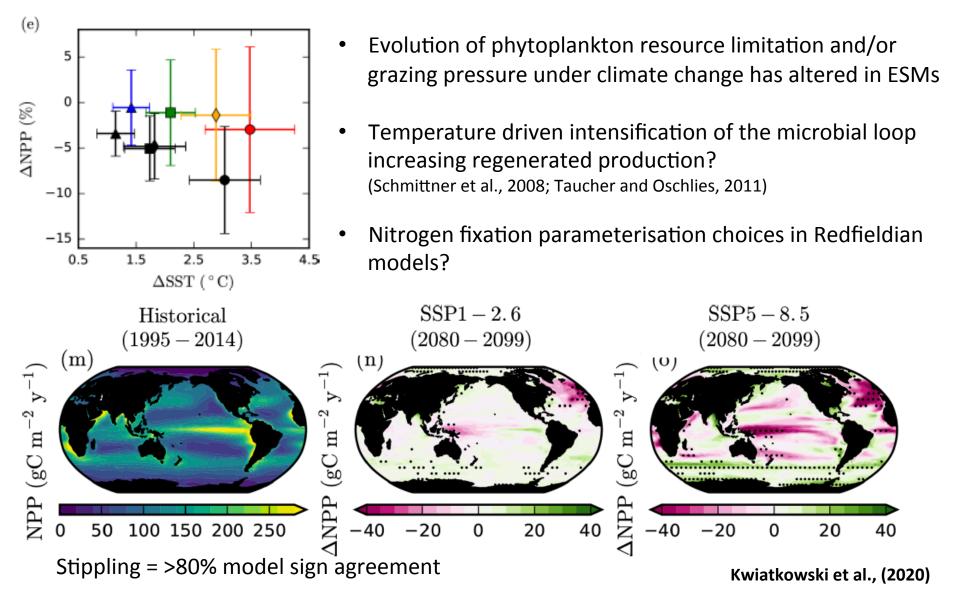
Stippling = >80% model sign agreement

- NO₃⁻ declines largest in Arctic, Eastern Pacific, North Atlantic/Pacific
- Enhanced CMIP6 declines consistent with the <u>enhanced</u> <u>stratification</u> (biological processes can't be ruled out)

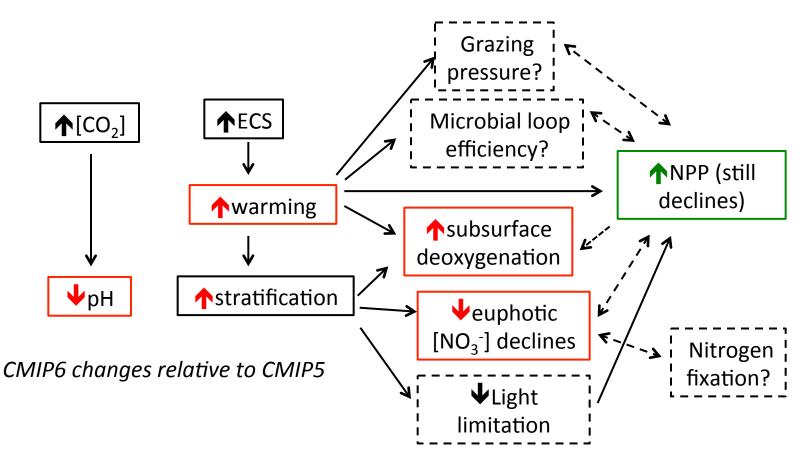

Enhanced upper ocean (0-100m) NO₃⁻ declines


- Stratification Indices increase in SSPs (greater density gradients due to upper ocean warming)
- Mixed layer depth (MLD) is reduced
- Increases in stratification are enhanced relative to comparative CMIP5 simulations (Cabré et al., 2014; Fu et al., 2016)

➔ Enhanced global-scale reduction in vertical supply of nutrients to the upper ocean in CMIP6


Lesser NPP declines with striking increases in uncertainty

- Global NPP projections driven by declines in low-mid latitudes and increase in high latitudes (as in CMIP5)
- Declines in the Indian Ocean and North Pacific much reduced in CMIP6
- The conventional narrative: Low-mid lat declines (nutrient driven), high lat increases (light driven)



But NO₃⁻ declines are greater in CMIP6 and NPP declines are reduced with 2x the uncertainty...

Conclusions

• CMIP6 warming, acidification, deoxygenation, nutrient and NPP decline largely depends on the extent of future emissions, <u>consistent with previous studies</u>

 We are not reducing projection uncertainties and in certain cases they are increasing! (maybe we're learning we don't know as much as we thought we did)

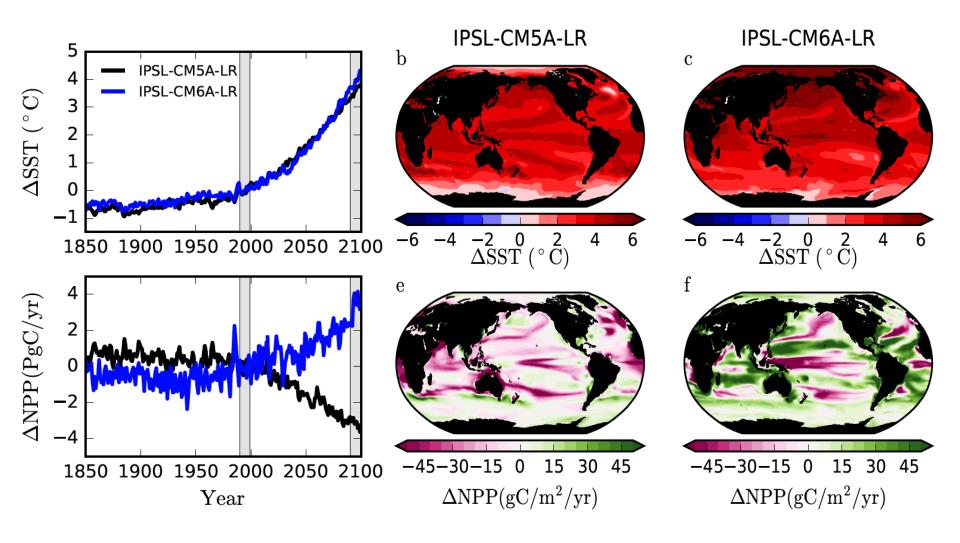
Thanks to all the authors and model developers

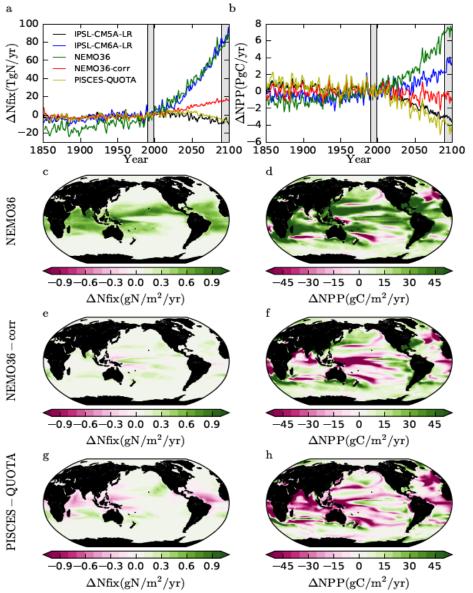
Any questions?

Biogeosciences, 17, 3439–3470, 2020 https://doi.org/10.5194/bg-17-3439-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Biogeosciences

Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections


Lester Kwiatkowski¹, Olivier Torres², Laurent Bopp², Olivier Aumont¹, Matthew Chamberlain³, James R. Christian⁵, John P. Dunne⁶, Marion Gehlen⁷, Tatiana Ilyina⁸, Jasmin G. John⁶, Andrew Lenton^{3,4}, Hongmei Li⁸, Nicole S. Lovenduski⁹, James C. Orr⁷, Julien Palmieri¹⁰, Yeray Santana-Falcón¹¹, Jörg Schwinger¹², Roland Séférian¹¹, Charles A. Stock⁶, Alessandro Tagliabue¹³, Yohei Takano^{8,14}, Jerry Tjiputra¹², Katsuya Toyama¹⁵, Hiroyuki Tsujino¹⁵, Michio Watanabe¹⁶, Akitomo Yamamoto¹⁶, Andrew Yool¹⁰, and Tilo Ziehn³



Ongoing work...unravelling the dramatic change in NPP response in IPSL-CM5/6

Bopp et al., (in prep)

Ongoing work...unravelling the dramatic change in NPP response in IPSL-CM5/6

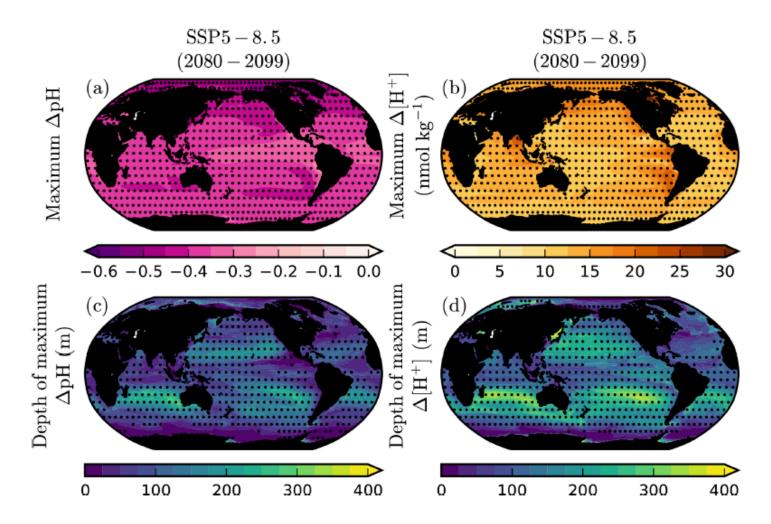
Nitrogen fixation is key:

It's parameterisation is non-trivial in Redfield models without an explicit DOP pool

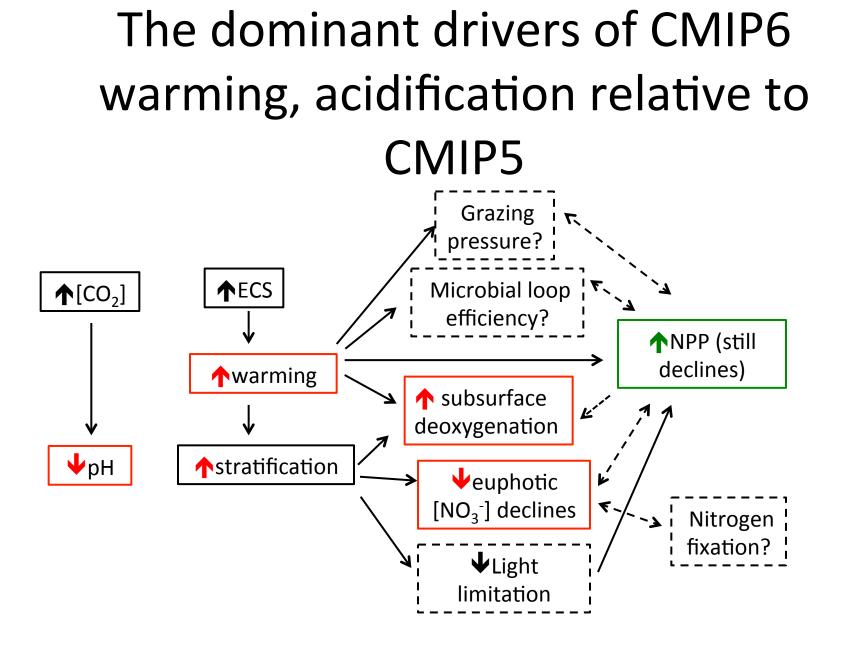
Mean N/P state and the balance between future T↑ and P↓ in Nfix drives the future low-latitude NPP response

The latest version of NEMO-PISCES and a NEMO-PISCESQUOTA project more conventional/traditional NPP declines

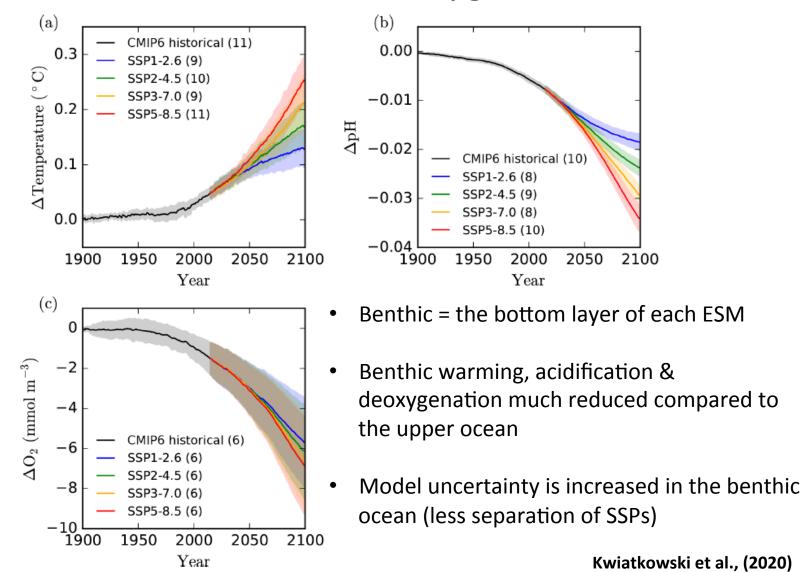
Bopp et al., (in prep)


CMIP6 models

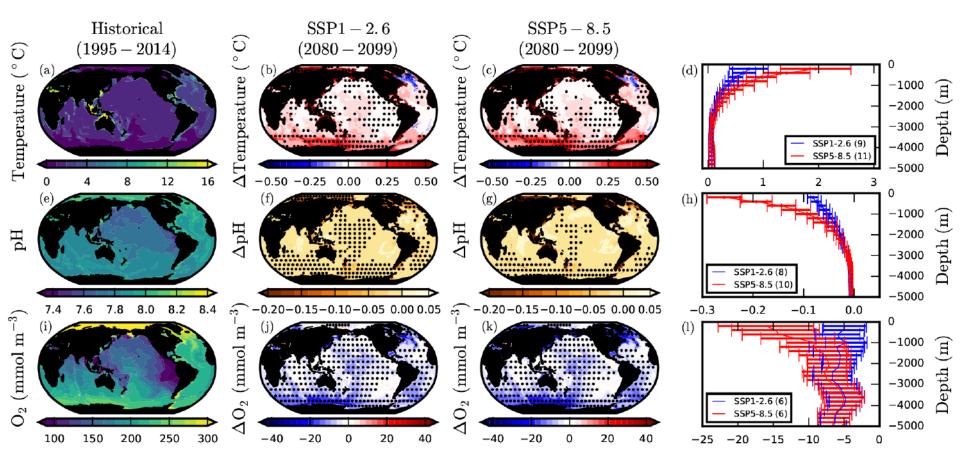
Model and reference	Ocean and sea ice	Marine biogeo- chemistry	Drivers	Simulations	Data DOI
ACCESS-ESM1.5 (Ziehn et al., 2020)	MOM5, CICE4	WOMBAT	Т, рН, О ₂ , NO ₃ ⁻ , NPP	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Ziehn et al. (2019a, b)
CanESM5 (Swart et al., 2019a)	NEMO 3.4.1-LIM2	CMOC	Т, pH, O ₂ , NO ₃	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Swart et al. (2019b, c)
CESM2	POP2-CICE5	MARBL-BEC	T, pH, NO_3^- , NPP	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Danabasoglu (2019a, b)
CESM2-WACCM	POP2-CICE5	MARBL-BEC	T, pH, NO_3^- , NPP	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Danabasoglu (2019c, d)
CNRM-ESM2-1 (Séférian et al., 2019)	NEMOv3.6- GELATOv6	PISCESv2-gas	Т, рН, О ₂ , NO ₃ ⁻ , NPP	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Séférian (2018, 2019)
GFDL-CM4 (Held et al., 2019; Dunne et al., 2020a)	MOM6, SIS2	BLINGv2	T, pH, O ₂ , NO ₃ ⁻	Historical, SSP2-4.5, SSP5-8.5	Guo et al. (2018a, b)
GFDL-ESM4 (Dunne et al., 2020b; Stock et al., 2020)	MOM6, SIS2	COBALTv2	T, pH, O ₂ , NO ₃ ⁻ , NPP	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Krasting et al. (2018); John et al. (2018)
IPSL-CM6A-LR (Boucher et al., 2020)	NEMOv3.6-LIM3	PISCESv2	$\mathrm{T},\mathrm{pH},\mathrm{O}_2,\mathrm{NO}_3^-,\mathrm{NPP}$	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Boucher et al. (2018, 2019)
MIROC-ES2L (Hajima et al., 2020)	COCO	OECO2	Т, рН, О ₂ , NO ₃ ⁻ , NPP	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Hajima et al. (2019); Tachiiri et al. (2019)
MPI-ESM1.2-HR (Müller et al., 2018; Mauritsen et al., 2019)	MPIOM	HAMOCC6	T, pH, O ₂ , NO ₃ ⁻ , NPP	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Schupfner et al. (2019); Jungclaus et al. (2019)
MRI-ESM2 (Yukimoto et al., 2019a)	MRICOM4	NPZD	Т, рН, О ₂ , NO ₃ ⁻	Historical, SSP5-8.5	Yukimoto et al. (2019b, c)
NorESM2-LM (Tjiputra et al., 2020)	BLOM- CICE5	iHAMOCC	Т, рН, О ₂ , NO ₃ ⁻ , NPP	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Seland et al. (2019a, b)
UKESM1-0-LL (Sellar et al., 2019)	NEMO v3.6, CICE	MEDUSA-2	Т, рН, О ₂ , NO ₃ ⁻ , NPP	Historical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5	Good et al. (2019); Tang et al. (2019)


CMIP5 models

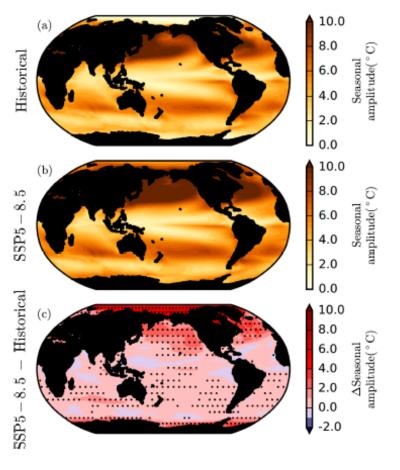
Model and reference	Ocean and sea ice	Marine biogeochemistry	Simulations
CESM1-BGC (Gent et al., 2011)	POP2-CICE4	BEC	Historical, RCP4.5, RCP8.5
CMCC-CESM (Vichi et al., 2011; Cagnazzo et al., 2013)	OPA8-2-LIM2	PELAGOS	Historical, RCP8.5
GFDL-ESM2G (Dunne et al., 2012)	GOLD	TOPAZ2	Historical, RCP2.6, RCP4.5, RCP6.0, RCP8.5
GFDL-ESM2M (Dunne et al., 2012)	MOM5	TOPAZ2	Historical, RCP2.6, RCP4.5, RCP6.0, RCP8.5
HadGEM2-ES (Collins et al., 2011)	UM	Diat-HadOCC	Historical, RCP2.6, RCP4.5, RCP6.0, RCP8.5
IPSL-CM5A-LR (Dufresne et al., 2013)	NEMOv3.2-LIM2	PISCES	Historical, RCP2.6, RCP4.5, RCP6.0, RCP8.5
IPSL-CM5A-MR (Dufresne et al., 2013)	NEMOv3.2-LIM2	PISCES	Historical, RCP2.6, RCP4.5, RCP8.5
MPI-ESM-LR (Giorgetta et al., 2013)	MPIOM	HAMOCC5-2	Historical, RCP2.6, RCP4.5, RCP8.5
MPI-ESM-MR (Giorgetta et al., 2013)	MPIOM	HAMOCC5	Historical, RCP2.6, RCP4.5, RCP8.5
NorESM1-ME (Bentsen et al., 2013)	MICOM-CICE4	HAMOCC5.1	Historical, RCP2.6, RCP4.5, RCP6.0, RCP8.5


Subsurface acidification

Anomalies are 2080–2099 values relative to 1995-2014


Benthic ocean projections of warming, acidification and deoxygenation

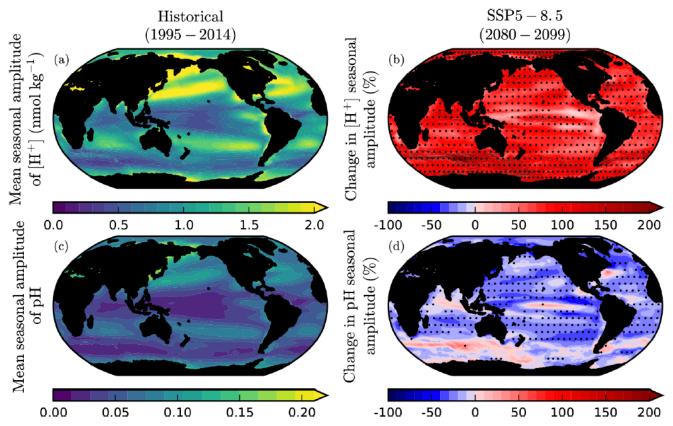
Kwiatkowski et al., (2020)


2100

Benthic ocean projections of warming, acidification and deoxygenation

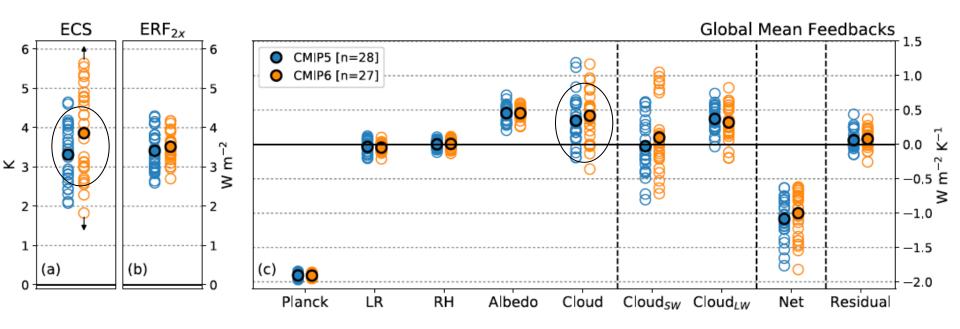
- 'Shallow' benthic waters and regions of deep water formation most affected (greater coupling to surface changes)
- Differences between SSPs confined to benthic waters in the upper 2000m

Amplification of seasonal surface ocean temperature variability



Stippling = >80% model sign agreement

- Seasonal amplitude of SST projected to increase <+0.5°C over most of the ocean,
- But, increases >+2°C in the North Atlantic/ Pacific and Southern Ocean
- and increases >+5°C in the Arctic!


Processes responsible: loss of sea ice, shoaling of summer MLD (Alexander et al., 2018; Carton et al., 2015)

Seasonal amplification/attenuation of surface ocean [H⁺]/pH

- Amplification of seasonal amplitudes of surface ocean pCO₂/[H⁺]
- Attenuation of seasonal amplitudes of surface ocean pH
- In agreement with historical observations (Landshutser et al., 2018) and CMIP5 models (McNeil & Sasse, 2016; Gallego et al., 2018; Kwiatkowski & Orr, 2018)

Greater surface ocean warming, driven by higher equilibrium climate sensitivity

Increase in ECS is primarily due to <u>stronger positive cloud feedbacks</u> from decreasing extratropical low cloud coverage and albedo

Zelinka et al., (2020)