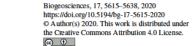
Model intercomparison of idealized global deforestation experiments

Lena Boysen¹ / Victor Brovkin^{1,2} / Julia Pongratz^{1,3} / Nicolas Vuichard, Philippe Peylin⁴ / Dave Lawrence⁵ / Spencer Liddicoat⁶ / Tomohiro Hajima⁷ / Vivek Arora⁸ / Matthias Rocher, Christine Delire⁹ / Yanwu Zhang¹⁰ / Lars Nieradzik¹¹ / Peter Anthoni¹² / Min-Hui Lo¹³ / Marysa Laguë¹⁴ / Deborah Lawrence¹⁵ / Wim Thiery¹⁶

1) MPI for Meteorology, Germany; 2) CEN, University of Hamburg, Germany; 3) University of Munich, Germany; 4) LSCE – IPSL, France; 5) NCAR/UCAR, USA; 6) Hadley Center, UK; 7) JAMSTEC, Japan; 8) CCCMA, Canada; 9) CNRM, France; 10) BCC, China; 11) University of Lund, Sweden; 12) KIT, Germany; 13) NTU, Taiwan; 14) Berkeley University, USA; 15) University of Virginia, USA; 16) Vrije Universiteit Brussel, Belgium

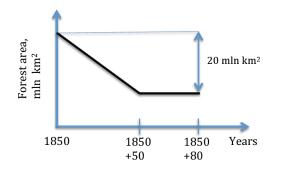


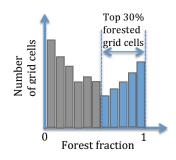
A novel, idealized global deforestation experiment

Geosci. Model Dev., 9, 2973–2998, 2016
www.geosci-model-dev.net/9/2973/2016/
doi:10.5194/gmd-9.2973-2016
② Author(s) 2016. CC Attribution 3.0 License.
② ③

The Land Use Model Intercomparison Project (LUMIP)
contribution to CMIP6: rationale and experimental design

David M. Lawrence¹, George C. Hurtt², Almut Arneth³, Victor Brovkin⁴, Kate V. Calvin⁵, Andrew D. Jones⁶,
Chris D. Jones⁶, Peter J. Lawrence¹, Nathalie de Noblet-Ducoudre՞, Julia Pongratz⁴, Sonia I. Seneviratne⁶, and

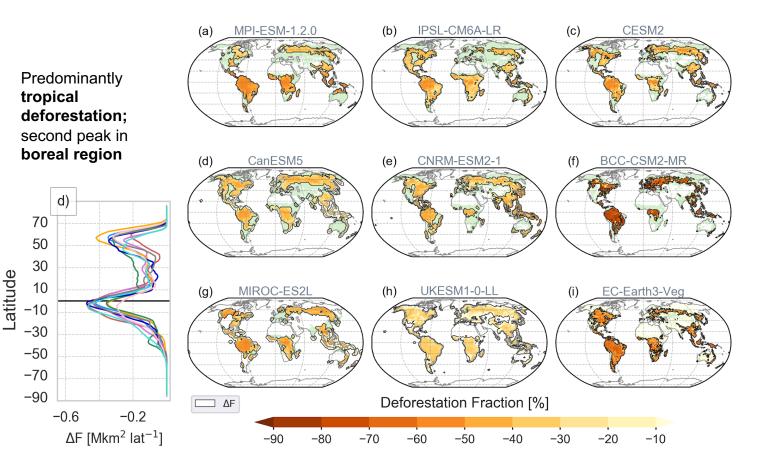



Global climate response to idealized deforestation in CMIP6 models

Lena R. Boysen¹, Victor Brovkin^{1,2}, Julia Pongratz^{1,3}, David M. Lawrence⁴, Peter Lawrence⁴, Nicolas Vuichard⁵, Philippe Peylin², Spencer Liddicoat⁶, Tomohiro Hajima⁷, Yanwu Zhang⁸, Matthias Rocher⁹, Christine Delire⁹, Roland Séférian⁹, Vivek K. Arora¹⁰, Lars Nieradzik¹¹, Peter Anthonl¹², Wim Thiery¹³, Marysa M. Lague¹⁴, Deborah Lawrence¹⁵, and Min-Hul Lo¹⁶

Experimental set up:

- Branching off PI-control; coupled land-atmosphereocean; CO₂ and land-use fixed in 1850
- 20 million km² of forest linearly removed over 50 years (historically: ~10 mio km²)
- Only from 30% most forested grid cells (→ same pattern across models)


Novelty

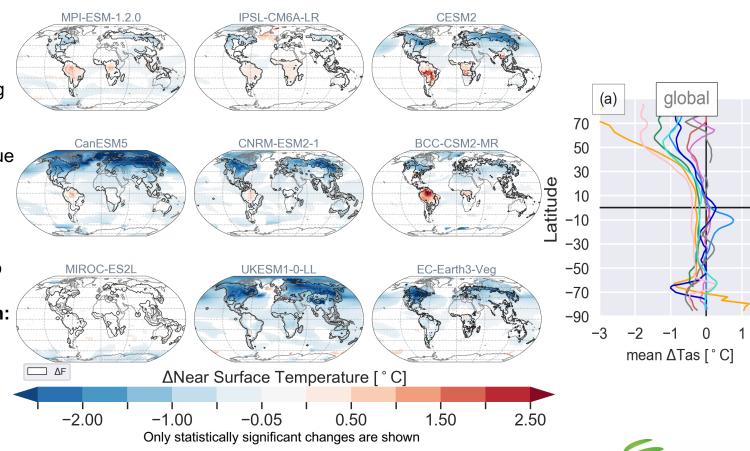
- Straightforward implementation
 - → comparability of models
- Robust detection: strong deforestation signal (> historical or RCP)
 - → Similar to 1%/yr CO₂ experiments
- Transient simulations
 - → signal over time
- Biogeophysical and carbon cycle effects in one run

Model	MPI- ESM1.2-LR		CESM2	BCC- CSM2-MR	CNRM- ESM2-1	CanESM5	MIROC- ES2L	EC-Earth3- Veg	UKESM1- 0-LL
years	150	80	80	80	80	90	150	80	80
realizations	7	3	3	1	1	1	1	1	1

Deforested fraction

Initial forest area: 36 - 66 10⁶ km²

Model	Initial forest cover [Mkm ²]
MPI	48.15
IPSL	56.25
CESM	46.98*
CNRM	66.39*
ВСС	35.96*
CanESM	56.48
UKESM	45.53
EC-Earth	37.75
MIROC	40.86
Model mean	48.26

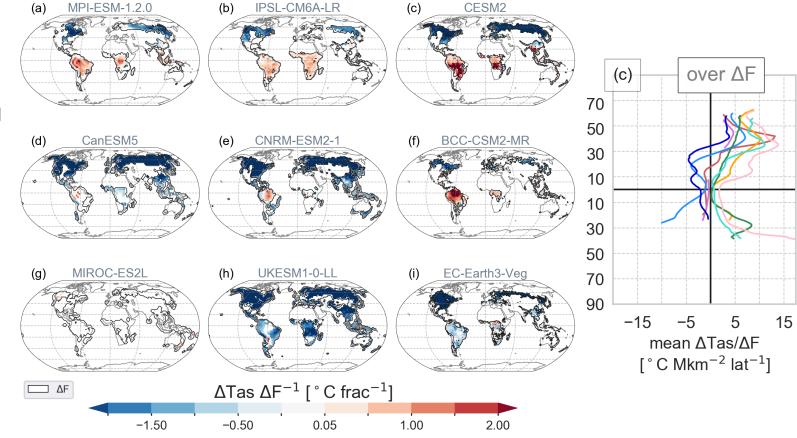

Temperature response to deforestation (last 30 years)

Generally, no surprises:

- Extratropical cooling due to albedo increase
- Tropical warming due to a reduction in evapo-transpiraion

Unexpected:

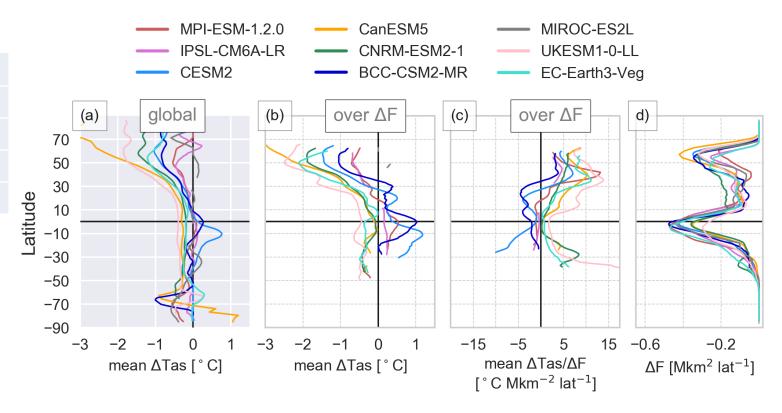
- cooling in UKESM and EC-Earth, also over land in tropics
- multi-model mean:
 -0.22±0.21° C



Temperature sensitivity to deforestation: $\Delta T/\Delta F$

Changes in Tas per unit of tree fraction ($\Delta T/\Delta F$): if universal, could be used for any landuse change scenario

A complication: Mixed local and non-local effects

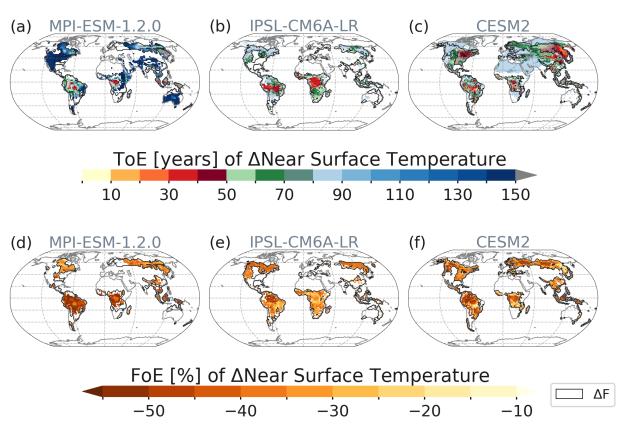


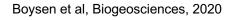
Zonal changes in temperature & zero latitude

Model	Zero lat			
MPI	17.7°N			
IPSL	11.4°N			
CESM	26.9°N			
ВСС	34.2°N			

multi-model mean: 23° N

Zero Latitude: Latitude of ∆T sign changes in Northern Hermisphere

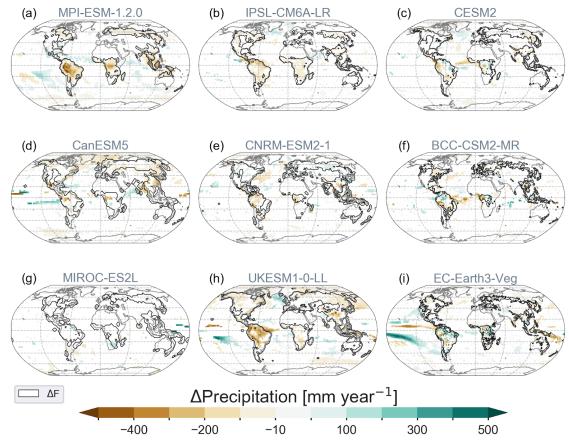


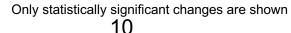

When do changes emerge (ensemble mode)?

Time/fraction of emergence:
When is the signal > noise?

(mean of trends) > $(1 \sigma \text{ of trends})$

- "Time of emergence": within 50 years over the strongly deforested tropical regions
- The signal propagates from the centre of deforestation to the edges
- The "fraction of emergence" is more similar among the models than the "time of emergence"


Conclusions


- The **biogeophysical effect** on global annual near-surface temperature ranges from no significant change to a cooling by 0.55°C, with **multi-model mean of -0.22±0.21°C**
- The latitude of changing the sign from warming to cooling ranges from 11 to 34°N, with a multi-model mean of 23°N. Above 23°N, reforestation would lead to biogephysical warming not accounted in simple models
- For those models that provided several ensemble members (MPI, IPSL and CESM2), the near-surface temperature changes emerge within 50 years over the tropical regions of strongest deforestation
- The biogeochemical effect of multi-model mean of land carbon reduction by 274±113 PgC calculated offline would be a warming by 0.52±0.22°C, suggesting that the net effect of deforestation is a warming
- Sensitivities such as $\Delta T/\Delta F$, $\Delta cLand/\Delta F$ in idealized runs could be compared with variable landuse scenarios in the CMIP6 runs, providing a basis for "realistic" CMIP6 simulations and usage in climate-carbon emulators

Precipitation response to deforestation

Reduction of hydrological cycle in tropics: transpiration of grasses < forests in tropics (exc. BCC and EC-Earth)

